Complex representation: $\Pi: G \to GL(V)$ where *V* is a complex vector space.

For Lie algebras, $\pi: g \to gI(V)$. Recall group homomorphism induces algebra homomorphism (and vice versa if *G* is simply connected). Thus Π gives $\pi = \frac{d}{dt}\Big|_{t=0} \Pi(e^{tx})$. Also $\pi \circ \operatorname{Ad}_g = \operatorname{Ad}_{\Pi(g)} \circ \pi = \Pi(g) \cdot \pi \cdot \Pi(g)^{-1}$.

Examples: standard representations; adjoint representations.

Faithful: the homomorphism is injective. **Irreducible**: V has no non-trivial invariant subspace. **Unitary**: there is a Hermitian metric on V such that $\Pi: G \to U(V)$. **Morphism** between representation: $V \to W$ which commutes with the action (intertwining).

Suppose G is connected.

1. If is irreducible if and only if π is: $W \subset V$ invariant under G => invariant under g. If W is invariant under g, then it is invariant under $\exp tX \in G$. But any element in G can be written as product of these.

2. $\Pi_1 \cong \Pi_2$ if and only if $\pi_1 \cong \pi_2$:

=> is obvious since $V \to W$ intertwines with the group actions implies it intertwines with the algebra actions. <=) $V \to W$ intertwines with $\pi_i(X)$, and hence $\exp \pi_i(X) = \Pi(\exp X)$, and hence $\Pi(g)$ for arbitrary g.

3. Given Π . Π : $G \rightarrow U(V) \iff \pi$: $\mathfrak{g} \rightarrow \mathfrak{u}(V)$:

-> we already have $\pi: g \to gI(V)$. It is obvious that the image is contained in u(V). <- $\Pi(\exp X) = \exp(\pi(X)) \in U(V)$. Any $g \in G$ is a product of $\exp X$.

Most important example:

Substitution important chample:

$$SU(2) \rightarrow GL(\mathbb{C}^{2}), \text{ and hence } SU(2) \rightarrow SU\left(Sym^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right)\right). \text{ Explicitly}$$

$$g \cdot f = \left(g^{-1}\right)^{*}f = f\left(g^{-1} \cdot z\right).$$
Induces $\mathfrak{su}(2) \rightarrow \mathfrak{su}\left(Sym^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right)\right).$

$$X \cdot f = \left.\frac{d}{dt}\right|_{t=0} f\left(g_{t}^{-1} \cdot z\right) = df\Big|_{z} \cdot \left(-X \cdot z\right).$$
Complexify: $\mathfrak{su} \otimes \mathbb{C} = \mathfrak{sl}_{\mathbb{C}}$ (any complex matrix is a sum of Hermitian and skew-Hermitian matrices.)
Have $\mathfrak{sl}(2, \mathbb{C}) \rightarrow \mathfrak{sl}\left(Sym^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right)\right)$ defined by the same formula.
Suppose $f = z_{1}^{l}z_{2}^{k} (l+k=m). df = lz_{1}^{l-1}z_{2}^{k} dz_{1} + kz_{1}^{l}z_{2}^{k-1} dz_{2}.$
Let $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$
 $X \cdot z_{1}^{l}z_{2}^{k} = lz_{1}^{l-1}z_{2}^{k} (-z_{2}) = -lz_{1}^{l-1}z_{2}^{k+1}.$
 $Y \cdot z_{1}^{l}z_{2}^{k} = lz_{1}^{l-1}z_{2}^{k} (-z_{1}) = -kz_{1}^{l+1}z_{2}^{k-1}.$
 $H \cdot z_{1}^{l}z_{2}^{k} = lz_{1}^{l-1}z_{2}^{k} (-z_{1}) + kz_{1}^{l}z_{2}^{k-1} (z_{2}) = (-l+k)z_{1}^{l}z_{2}^{k}.$
Eigenspace decomposition of H:

$$g \xrightarrow{\pi} gl(V)$$

$$e^{xp} \downarrow C \downarrow e^{xp}$$

$$G \xrightarrow{\pi} GL(V)$$

 $Sym^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right) = \bigoplus_{l+k=m} \mathbb{C} \cdot z_{1}^{l} z_{2}^{k}$ with eigenvalues k - l.

 $Sym^m((\mathbb{C}^2)^*)$ is an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$: Suppose W is an invariant subspace and $0 \neq f \in W$. Apply X enough times, it becomes zero. $0 \neq X^q \cdot f \in \mathbb{C} \cdot z_2^m$ for some q. Hence W contains $\mathbb{C} \cdot z_2^m$. Now take Y^p , then W contains everything.

Exercises. (Section 4.9)

- 2. Show that the adjoint representation and the standard representation of $\mathfrak{so}(3)$ are isomorphic.
- 13. Let π be a representation of $\mathfrak{sl}(2, \mathbb{C})$. Show that the eigenvalues of $\pi(H)$ for $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are integers (by using $e^{2\pi i H} = Id \in SU(2)$).