**Completely reducible representation**: direct sum of irreducible ones. **Completely reducible Lie group/algebra:** every representation is completely reducible.

**Non-example**: 
$$\mathbb{R} \to \mathrm{GL}(2,\mathbb{C}), x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
.

Preserve  $e_1$ , but there is no other invariant subspace.

# If *V* is completely reducible, then given any invariant $U \subset V$ , there is U' such that $U \oplus U' = V$ :

 $V = V_1 \oplus \cdots \oplus V_k$ . There is  $V_i \not\subset U$  (otherwise U = V), say i = 1.

 $V_i$  irreducible implies  $V_1 \cap U = \{0\}$ .  $U \subset V_2 \oplus \cdots \oplus V_k$ .

Keep doing this until  $U = V_j \oplus \cdots \oplus V_k$ . Take  $U' = V_1 \oplus \cdots \oplus V_{j-1}$ .

By this proof,

every invariant subspace U of a completely reducible V is completely reducible.

## If $\Pi$ or $\pi$ is unitary, then it is completely reducible:

Take invariant subspaces and its orthogonal complement.

### If G is compact, then it is completely reducible:

Any representation is unitary with respect to a metric. Take arbitrary metric h, and take the average to make it G-invariant:

$$\langle v, w \rangle_G \coloneqq \int_G \langle \Pi(\mathbf{g}) \cdot v, \Pi(\mathbf{g}) \cdot w \rangle \ v_G$$

where  $v_G$  is a non-zero right-G-invariant top form on G. It is G-invariant:

$$\begin{split} \langle \Pi(h) \cdot v, \Pi(h) \cdot w \rangle_G &\coloneqq \int_G \langle \Pi(g) \cdot \Pi(h) \cdot v, \Pi(g) \cdot \Pi(h) \cdot w \rangle \ v_G \\ &= \int_G \langle \Pi(R_h \cdot g) \cdot v, \Pi(R_h \cdot g) \cdot w \rangle \ v_G \\ &= \int_G \langle \Pi(g) \cdot v, \Pi(g) \cdot w \rangle \ (R_h^*)^{-1} \cdot v_G = \int_G \langle \Pi(g) \cdot v, \Pi(g) \cdot w \rangle \ v_G = \langle v, w \rangle_G. \end{split}$$

Hence  $\mathfrak{sl}(n,\mathbb{C}) = \mathfrak{su}(n) \otimes \mathbb{C}$  is completely reducible.

#### Schur's Lemma:

If V, W are irreducible representations, then any non-zero morphism  $\phi: V \to W$  is

an isomorphism. Any  $\phi_1$  and  $\phi_2 \neq 0$  are related by  $\phi_1 = \lambda \phi_2$ . If V=W, then  $\phi = \lambda \cdot Id$ .

#### **Proof:**

Consider Ker  $\phi$ , which is a representation since  $\phi$  intertwines with G-action. V is irreducible and  $\phi \neq 0$  imply Ker  $\phi = 0$ .

Consider Im  $\phi$ . W is irreducible and and  $\phi \neq 0$  imply Im  $\phi = W$ .

If V=W, consider eigenvalues of  $\phi$ . There exists an eigenvalue  $\lambda$  since we work over  $\mathbb{C}$ . The eigenspace is G-invariant since  $\phi$  is intertwining. V is irreducible implies the eigenspace is V.

For  $\phi_1, \phi_2: V \to W$ , consider  $\phi_2^{-1} \circ \phi_1: V \to V$ , which is  $\lambda \cdot Id$ .

**Corollary:** for a commutative Lie group/algebra, irreducible representation is one-dimensional.

**Proof:**  $\Pi(g): V \to V$  for any g is a morphism:  $\Pi(h) \circ \Pi(g) = \Pi(g) \circ \Pi(h)$ . Schur's lemma gives  $\Pi(g) = \lambda_g \cdot \text{Id}$ . Any subspace is invariant. Irreducible => 1d.

Same proof gives

**Corollary:**  $\Pi(g) = \lambda_g \cdot \text{Id}$  if g belongs to center and  $\Pi$  is irreducible.

# Heisenberg group

$$H = \left\{ \begin{pmatrix} 1 & x & \theta \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

which is universal cover of

$$G = \mathbb{R} \times \mathbb{R} \times \mathbb{S}^1$$
 with

$$(x_1, y_1, u_1) \cdot (x_2, y_2, u_2) = (x_1 + x_2, y_1 + y_2, e^{2\pi i x_1 y_2} u_1 u_2).$$
  
 $u = e^{2\pi i \theta}.$  (Inverse of  $(x, y, u)$  is  $(-x, -y, e^{2\pi i xy} u^{-1}).$ )

$$G = H/N$$
 where  $N = \left\{ \begin{pmatrix} 1 & 0 & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : k \in \mathbb{Z} \right\}.$ 

$$(x_1, y_1, u_1) \cdot (x_2, y_2, u_2) \cdot (-x_1, -y_1, e^{2\pi i x_1 y_1} u_1^{-1})$$

$$= (x_2, y_2, e^{-2\pi i (x_1 + x_2) y_1} e^{2\pi i x_1 y_2} e^{2\pi i x_1 y_1} u_2)$$

$$= (x_2, y_2, e^{2\pi i (x_1 y_2 - x_2 y_1)} u_2).$$

Thus **center** is x = y = 0.

**Theorem:** G has no faithful representation.

**Proof:** Lift to representation  $\widetilde{\Pi}$  of H with Ker  $\supset N$ .

Claim:  $Ker(\widetilde{\Pi}) \supset Z(H)$ , and hence  $Ker(\Pi) \supset Z(G) = \{0\} \times \{0\} \times \mathbb{S}^1$ , not faithful.

Proof of claim: consider the Lie algebras. Want to see  $\text{Ker}(\pi) \ni \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = Z$ .

Then  $Ker(\widetilde{\Pi}) \ni e^{tZ}$ .

Then 
$$\ker(\Pi) \ni e^{-x}$$
.
$$e^{Z} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in N. \text{ Thus } e^{\pi(Z)} = \widetilde{\Pi}(e^{Z}) = \text{Id. Hence } e^{k \pi(Z)} = \text{Id for all } k \in \mathbb{Z}.$$

But  $e^{k \pi(Z)}$  is polynomial in k since  $\pi(Z)$  is nilpotent. Then the equation has infinitely many roots implies the polynomial is identically zero.  $\pi(Z)$  is nilpotent: need to show it only has zero eigenvalue. Note that Z = [X, Y]. Hence  $\operatorname{tr}(\pi(Z)|_U) = 0$  for any Z-eigenspace U (which is perserved by  $\pi(X)$ ,  $\pi(Y)$ since they commute with  $\pi(Z)$ ). Thus the eigenvalue must be zero.

# **Exercises.** (Section 4.9)

- 5. Consider the standard representation of the Heisenberg group acting on  $\mathbb{C}^3$ . Determine all the invariant subspaces. Is the standard representation completely reducible?
- 11. Let V be an irreducible representation over  $\mathbb{C}$ . Show that every non-trivial invariant subspace of  $V \oplus V$  is of the form  $\{(\lambda_1 v, \lambda_2 v): v \in V\} \cong V$  for some  $(\lambda_1, \lambda_2) \in \mathbb{C}^2 - \{0\}.$