Basis:
$H_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), H_{2}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$.
$X_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), X_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right), X_{3}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
$Y_{i}=X_{i}^{T}$.
Then $\left[H_{1}, H_{2}\right]=0,\left[H_{1}, X_{1}\right]=2 X_{1},\left[H_{1}, X_{2}\right]=-X_{2},\left[H_{1}, X_{3}\right]=X_{3},\left[H_{2}, X_{1}\right]=$
$-X_{1},\left[H_{2}, X_{3}\right]=X_{3},\left[H_{1}, Y_{1}\right]=-2 Y_{1}$, and so on;
$\left[X_{1}, Y_{1}\right]=H_{1},\left[X_{2}, Y_{2}\right]=H_{2},\left[X_{3}, Y_{3}\right]=H_{1}+H_{2},\left[X_{1}, X_{2}\right]=X_{3},\left[Y_{1}, Y_{2}\right]=-Y_{3}$ and so on.

Given a representation π, consider simultaneous eigenspaces of $\pi\left(H_{i}\right)$: first take an eigenspace \mathbb{U} of $\pi\left(H_{1}\right)$; since $\left[\pi\left(H_{1}\right), \pi\left(H_{2}\right)\right]=0, \pi\left(H_{2}\right)$ preserves \mathbb{U} and has an eigenspace in U.

Given a simultaneous eigenvector v , have eigenvalues m_{i} of $\pi\left(H_{i}\right)$. $\mu=\left(m_{1}, m_{2}\right) \in \mathfrak{h}^{*}$ is called a weight for π, where $\mathfrak{h}=\operatorname{Span}\left(H_{1}, H_{2}\right)$.
The space of all such simultaneous eigenvectors is called the μ-weight space. Its dimension is called to be the multiplicity of μ.

m_{i} are integers:

restrict the representation to $\left\langle H_{i}, X_{i}, Y_{i}\right\rangle \cong \mathfrak{s l}(2, \mathbb{C})$.
Now apply the above concept to the adjoint representation. The corresponding non-zero weights are called roots; elements in a weight space are called root vectors.
For $\mathfrak{s l}(2, \mathbb{C})$ the root vectors and roots are
X 2
Y -2

For $\mathfrak{s l}(3, \mathbb{C})$ the root vectors and roots are
$X_{1} \alpha_{1}=(2,-1)$
$X_{2} \alpha_{2}=(-1,2)$
$X_{3}(1,1)$
V (.7 1)

$X_{3}(1,1)$
$Y_{1}(-2,1)$
$Y_{2}(1,-2)$
$Y_{3}(-1,-1)$

α_{i} are called positive simple roots. All other roots are linear combinations of them with coefficients either all non-negative or all non-positive.

Prop: Let Z_{α} be a root vector.
$\pi\left(Z_{\alpha}\right)$ sends μ-weight space to $(\mu+\alpha)$-weight space.
Proof: let $0 \neq v \in \mu=\left(m_{1}, m_{2}\right)$-weight space of π. $\alpha=\left(a_{1}, a_{2}\right)$.
$\pi\left(H_{i}\right) \cdot \pi\left(Z_{\alpha}\right) v=\pi\left(Z_{\alpha}\right) \cdot \pi\left(H_{i}\right) v+\pi\left(\left[H_{i}, Z_{\alpha}\right]\right) v=m_{i} \pi\left(Z_{\alpha}\right) v+a_{i} \pi\left(Z_{\alpha}\right) v$
$=\left(m_{i}+a_{i}\right) \pi\left(Z_{\alpha}\right) v$.
QED
Def: The weights μ_{1} is higher than μ_{2} if $\mu_{1}-\mu_{2}=a \alpha_{1}+b \alpha_{2}$ for some $a, b \in \mathbb{R}_{+}$. It gives a partial ordering. (α_{1} is neither higher nor lower than α_{2}.)

Highest weight representation with weight μ :

There exists a weight vector $v \neq 0$ corresponding to μ such that $\pi\left(X_{j}\right) \cdot v=0$ for all j , and v is cyclic (that is $V=\mathrm{g} \cdot v$).

By definition $\boldsymbol{\mu}$ is really the highest weight and it has multiplicity one:

By keep on taking Y_{i} on v , get an invariant subspace which must be V . (it is invariant: A product of operations can always be expressed in terms of $\pi\left(Y_{1}\right)^{p_{1}} \pi\left(Y_{2}\right)^{p_{2}} \pi\left(Y_{3}\right)^{p_{3}} \pi\left(H_{1}\right)^{q_{1}} \pi\left(H_{2}\right)^{q_{2}} \pi\left(H_{3}\right)^{q_{3}} \pi\left(X_{1}\right)^{r_{1}} \pi\left(X_{2}\right)^{r_{2}} \pi\left(X_{3}\right)^{r_{3}}$.
Acting on v , it becomes scaling of $\pi\left(Y_{1}\right)^{p_{1}} \pi\left(Y_{2}\right)^{p_{2}} \pi\left(Y_{3}\right)^{p_{3}}$.)
Y_{i} decrease the weight. Hence μ is the unique highest weight, and the μ-weight space is one-dimensional: $\mathbb{C} \cdot v$.

CAUTION: V is cyclic does not imply it is irreducible:
For instance take $V_{2} \oplus V_{3}$ of $\mathfrak{s l}(2, \mathbb{C})$. Then $v_{2}+v_{3}$ is cyclic (where v_{i} are highest weight vector of V_{i}).
Indeed irreducible $<=>$ every non-zero vector is cyclic.
Irreducible <=> highest weight representation.
Proof.
=>)
Irreducible V is a direct sum of weight spaces:
There exists a μ-weight space V_{μ} over $\mathbb{C} . Z_{\alpha}$ sends V_{μ} to $V_{\mu+\alpha}$ (and H_{i} preserve V_{μ}). Then keep on taking Z_{α}, get an invariant subspace which is V itself. $V_{\mu_{1}} \cap V_{\mu_{2}}=\{0\}$ if $\mu_{1} \neq \mu_{2}$.

Since V is finite-dimensional, there must be a highest weight. A corresponding weight vector v must have $\pi\left(X_{j}\right) \cdot v=0$. v is cyclic since V is irreducible. Hence V is a highest weight representation.
<=)
Any finite dimensional representation of $\mathfrak{s I}(3, \mathbb{C})$ corresponds to that of $\operatorname{SU}(3)$ which is simply connected and compact. Hence it must be completely reducible. Each irreducible part is a direct sum of weight spaces. Hence the highest weight space, which has dimension one, must belong to one irreducible part. But it is cyclic, and hence the whole V is that part.
QED.

Theorem:

Irreducible representation V of $\mathfrak{s l}(3, \mathbb{C})<->\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ where the correspondence is given by taking the highest weight.

Proof:

->
Take the highest weight.
m_{i} are non-negative:
Restrict to $\left\langle H_{i}, X_{i}, Y_{i}\right\rangle \cong \mathfrak{s l}(2, \mathbb{C})$.
This is injective:
Suppose V and W have the same highest weight with weight vectors v and w .
Consider the subspace U generated by $(v, w) \in V \oplus W .(v, w)$ is a weight vector (since v and w have the same weight) which is highest cyclic. Hence U is
irreducible. The projection maps $U \rightarrow V$ and $U \rightarrow W$ are morphisms and non-zero, and hence are isomorphisms by Schur's Lemma.

This is surjective:
Standard representation $V=\mathbb{C}^{3}$: since
$H_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), H_{2}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
the standard basic vectors are weight vectors with $\mu=(1,0),(-1,1),(0,-1)$. Recall $\alpha_{1}=(2,-1), \alpha_{2}=(-1,2)$. Hence $(1,0)$ is the highest weight and e_{1} is a highest weight vector which is cyclic.

Dual of standard representation V^{*}. The action is right multiplication by g^{-1} on row vectors. The standard row vectors have weights $\mu=(-1,0),(1,-1),(0,1)$. $(0,1)$ is the highest weight and e_{3}^{*} is a highest weight vector.

Then consider $\boldsymbol{V}^{\otimes \boldsymbol{m}_{1}} \otimes\left(\boldsymbol{V}^{*}\right)^{\otimes \boldsymbol{m}_{2}}$.
$v_{m_{1}, m_{2}}=e_{1}^{\otimes m_{1}} \otimes\left(e_{3}^{*}\right)^{\otimes m_{2}}$ has weight $\left(m_{1}, m_{2}\right)$.
Take the invariant subspace generated by $v_{m_{1}, m_{2}}$. Then it is a highest weight representation with highest weight (m_{1}, m_{2}). Hence it is irreducible.
QED

Exercises. (Section 6.9)

6. Find the weights and multiplicities of the (2,0)-highest weight representation of $\mathfrak{s l}(3, \mathbb{C})$.
7. Show that the space of homogeneous polynomials of degree m in three variables is the $(0, \mathrm{~m})$-highest weight representation of $\mathfrak{s l}(3, \mathbb{C})$.
