Thursday, February 22, 2018 12:10 PM

Basis:

$$\begin{split} H_1 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, H_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \\ X_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, X_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, X_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ Y_i &= X_i^T. \\ Then \begin{bmatrix} H_1, H_2 \end{bmatrix} = 0, \begin{bmatrix} H_1, X_1 \end{bmatrix} = 2X_1, \begin{bmatrix} H_1, X_2 \end{bmatrix} = -X_2, \begin{bmatrix} H_1, X_3 \end{bmatrix} = X_3, \begin{bmatrix} H_2, X_1 \end{bmatrix} = -X_1, \begin{bmatrix} H_2, X_3 \end{bmatrix} = X_3, \begin{bmatrix} H_1, Y_1 \end{bmatrix} = -2Y_1, \text{ and so on;} \\ \begin{bmatrix} X_1, Y_1 \end{bmatrix} = H_1, \begin{bmatrix} X_2, Y_2 \end{bmatrix} = H_2, \begin{bmatrix} X_3, Y_3 \end{bmatrix} = H_1 + H_2, \begin{bmatrix} X_1, X_2 \end{bmatrix} = X_3, \begin{bmatrix} Y_1, Y_2 \end{bmatrix} = -Y_3 \text{ and so on.} \end{split}$$

Given a representation π , consider simultaneous eigenspaces of $\pi(H_i)$: first take an eigenspace U of $\pi(H_1)$; since $[\pi(H_1), \pi(H_2)] = 0, \pi(H_2)$ preserves U and has an eigenspace in U.

Given a simultaneous eigenvector v, have eigenvalues m_i of $\pi(H_i)$. $\mu = (m_1, m_2) \in \mathfrak{h}^*$ is called a **weight** for π , where $\mathfrak{h} = \text{Span}(H_1, H_2)$. The space of all such simultaneous eigenvectors is called the μ -weight space. Its dimension is called to be the multiplicity of μ .

m_i are integers:

restrict the representation to $\langle H_i, X_i, Y_i \rangle \cong \mathfrak{sl}(2, \mathbb{C})$.

Now apply the above concept to the adjoint representation. The corresponding non-zero weights are called **roots**; elements in a weight space are called **root vectors**.

vectors. For $\mathfrak{sl}(2, \mathbb{C})$ the root vectors and roots are X = 2 Y = -2For $\mathfrak{sl}(3, \mathbb{C})$ the root vectors and roots are $X_1 = (2, -1)$ $X_2 = (-1, 2)$ $X_3 = (1, 1)$ X = (-1, 2)

Lie group Page 1

 α_i are called positive simple roots. All other roots are linear combinations of them with coefficients either all non-negative or all non-positive.

Prop: Let Z_{α} be a root vector. $\pi(Z_{\alpha})$ sends μ -weight space to $(\mu + \alpha)$ -weight space. **Proof**: let $0 \neq v \in \mu = (m_1, m_2)$ -weight space of π . $\alpha = (a_1, a_2)$. $\pi(H_i) \cdot \pi(Z_{\alpha})v = \pi(Z_{\alpha}) \cdot \pi(H_i)v + \pi([H_i, Z_{\alpha}])v = m_i \pi(Z_{\alpha})v + a_i \pi(Z_{\alpha})v$ $= (m_i + a_i)\pi(Z_{\alpha})v$. QED

Def: The weights μ_1 is **higher** than μ_2 if $\mu_1 - \mu_2 = a\alpha_1 + b\alpha_2$ for some $a, b \in \mathbb{R}_+$. It gives a partial ordering. (α_1 is neither higher nor lower than α_2 .)

Highest weight representation with weight μ :

There exists a weight vector $v \neq 0$ corresponding to μ such that $\pi(X_j) \cdot v = 0$ for all j, and v is cyclic (that is $V = g \cdot v$).

By definition μ is really the highest weight and it has multiplicity one:

By keep on taking Y_i on v, get an invariant subspace which must be V. (**it is invariant**: A product of operations can always be expressed in terms of $\pi(Y_1)^{p_1}\pi(Y_2)^{p_2}\pi(Y_3)^{p_3}\pi(H_1)^{q_1}\pi(H_2)^{q_2}\pi(H_3)^{q_3}\pi(X_1)^{r_1}\pi(X_2)^{r_2}\pi(X_3)^{r_3}$. Acting on v, it becomes scaling of $\pi(Y_1)^{p_1}\pi(Y_2)^{p_2}\pi(Y_3)^{p_3}$.) Y_i decrease the weight. Hence μ is the unique highest weight, and the μ -weight space is one-dimensional: $\mathbb{C} \cdot v$.

CAUTION: V is cyclic does not imply it is irreducible:

For instance take $V_2 \bigoplus V_3$ of $\mathfrak{sl}(2, \mathbb{C})$. Then $v_2 + v_3$ is cyclic (where v_i are highest weight vector of V_i). Indeed irreducible $\langle = \rangle$ every non-zero vector is cyclic.

Irreducible <=> highest weight representation. Proof.

=>) Irreducible V is a direct sum of weight spaces:

There exists a μ -weight space V_{μ} over \mathbb{C} . Z_{α} sends V_{μ} to $V_{\mu+\alpha}$ (and H_i preserve V_{μ}). Then keep on taking Z_{α} , get an invariant subspace which is V itself. $V_{\mu_1} \cap V_{\mu_2} = \{0\}$ if $\mu_1 \neq \mu_2$.

Since V is finite-dimensional, there must be a highest weight. A corresponding weight vector v must have $\pi(X_j) \cdot v = 0$. v is cyclic since V is irreducible. Hence V is a highest weight representation.

<=)

Any finite dimensional representation of $\mathfrak{sl}(3, \mathbb{C})$ corresponds to that of SU(3) which is simply connected and compact. Hence it must be completely reducible. Each irreducible part is a direct sum of weight spaces. Hence the highest weight space, which has dimension one, must belong to one irreducible part. But it is cyclic, and hence the whole V is that part. QED.

Theorem:

Irreducible representation *V* of $\mathfrak{sl}(3, \mathbb{C}) <-> (m_1, m_2) \in \mathbb{Z}_{\geq 0}^2$ where the correspondence is given by taking the highest weight.

Proof:

-> Take the highest weight. m_i are non-negative: Restrict to $\langle H_i, X_i, Y_i \rangle \cong \mathfrak{sl}(2, \mathbb{C}).$

This is injective:

Suppose V and W have the same highest weight with weight vectors v and w. Consider the subspace U generated by $(v, w) \in V \bigoplus W$. (v, w) is a weight vector (since v and w have the same weight) which is highest cyclic. Hence U is irreducible. The projection maps $U \rightarrow V$ and $U \rightarrow W$ are morphisms and non-zero, and hence are isomorphisms by Schur's Lemma.

This is surjective: **Standard representation** $V = \mathbb{C}^3$: since $H_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, H_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

the standard basic vectors are weight vectors with $\mu = (1,0), (-1,1), (0,-1)$. Recall $\alpha_1 = (2, -1), \alpha_2 = (-1, 2)$. Hence (1,0) is the highest weight and e_1 is a highest weight vector which is cyclic.

Dual of standard representation V^* . The action is right multiplication by g^{-1} on row vectors. The standard row vectors have weights $\mu = (-1,0), (1,-1), (0,1)$. (0,1) is the highest weight and e_3^* is a highest weight vector.

Then consider $V^{\otimes m_1} \otimes (V^*)^{\otimes m_2}$.

 $v_{m_1,m_2} = e_1^{\otimes m_1} \otimes (e_3^*)^{\otimes m_2}$ has weight (m_1, m_2) . Take the invariant subspace generated by v_{m_1,m_2} . Then it is a highest weight representation with highest weight (m_1, m_2) . Hence it is irreducible. **QED**

Exercises. (Section 6.9)

- 6. Find the weights and multiplicities of the (2,0)-highest weight representation of 𝒶𝔅𝔅𝔅(3, ℂ).
- 8. Show that the space of homogeneous polynomials of degree m in three variables is the (0,m)-highest weight representation of $\mathfrak{sl}(3, \mathbb{C})$.