Semi-simple Lie algebra

Tuesday, March 20, 2018 9:02 AM

Reductive: g = f; where { is the Lie algebra of a compact Lie group K. (fis called a
compact real form.)
Semi-simple: reductive and trivial center.

ex. sl(n, C) is semi-simple. gl(n, C) is reductive but not semi-simple.

We have a K-invariant Hermitian metric on f; which restricts to usual metric on f.
(This is NOT the Killing form since it is Hermitian instead of bilinear.)

This makes the adjoint representation f unitary: (ady(Y), Z) = —(Y,ady(2)).

Then for the complexified action by X € {,

(adx(Y),Z) = —(Y,adx(2)).

Prop. Reductive g = g; @ 3 where g; is semisimple and 3 is the center.
Proof:

3is anideal, and so is g; = 3.

g, is semi-simple: it has trivial center since any central element of g; would be
central element of g and hence belongs to 3.

Compact real form: take away the center part in the compact real form.

f; =t N g;. Hermitian metric on g, restricts to usual metric on {;.
(f)c=g9g:letZ=X+iY € g; c gforX,Y €% Since 3is invariant under
conjugation, both X,Y € g;. Hence X,Y € {;.

Take K; to be the image of K of Ad: K — GL(¥). Itis compact.

Lie(K;) = f;:let [Z] € Lie(K;) where Z € Lie(K) =%. Z = Z% + Z3,

7% €%:7% = 7% = 7% and hence Z% €fng; =1,.

[Z] = Z% is well-defined: Z € Ker(ad) if and only if Z € 3, and so Z%t = 0.
It is injective for the same reason.

Surjectivity: forZ € f; c {, [Z] » Z.

QED

Prop. If K is simply-connected compact, then f; is semi-simple.

Proof: Need to see f has trivial center. Let 3 be the center and decompose by metric:
t =1, @ 3. Since Kis simply-connected, accordingly K = K; X Z where Z is
commutative, which must then by R". But K is compact and so n = 0, forcing 3 = 0.
QED

Decomposition in Lie algebra leads to decomposition of a simply-connected Lie
group:
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Consider the projection homomorphisms which correspond to Lie group
homomorphisms. The identity components of kernels give the factors which are
closed connected.

The two factors commute. Then have homomorphism from their product to G. It
has inverse since the corresponding Lie algebra map has inverse.

Prop. Semi-simple g = 69}”:1 gj where each g; is simple (no non-trivial ideal and
dimg; = 2). This decomposition is unique (up to reordering).

Proof:

Suppose g is not simple, and so it has a non-trivial ideal ). Theng = 1§ @ b-.

([6,5*] € b nht = {0}.) Anideal of b is also an ideal of g. Repeating and we get a
decomposition of g into into simple ideals. (dimg; = 2 since otherwise it is center.)

Unique: each g; is an irreducible representation of g (by adjoint action). Any
morphism g; — g, cannot be an isomorphism and hence zero for j # k: there is
X,Y € g; with [X,Y] # 0, but [g;,gx] = 0.

QED

From now on always assume semi-simple.

Cartan subalgebra b:

1. [h, ] = 0. (commutative)

2. If[H,X] = 0forall H € b, then X € h. (maximal commutative)
3. ady is diagonalizable for all H € b.

Construction: take a maximal commutative subalgebratin . Take b = 1.

b is Cartan:

1, 2 are direct from definition.

3: for any X € {, ady is skew-adjoint (with respect to the invariant metric) and hence
diagonalizable. For H = H; + iH, € b, since [H;, H,] = 0, they are simultaneously
diagonalizable and so ady is diagonalizable.

Rank: dimension of a Cartan subalgebra.
Cartan subalgebra is unique up to automorphism of g (proof skipped). Hence rank is
well-defined.

Roota € it =:pp C h™:

The adjoint K-action on f is unitary. Hencet c f acts on g = f as skew self-adjoint
operators. Thus eigenvalues of H € t are purely imaginary.
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(Note that the Hermitian metric restrict to be usual metric on by = it.)

Simultaneous eigenspace decomposition:

g=b®@ga-

acER

(80 gB] C @q+p (Where gy = b):
By Jacobi identity. For X € g4, Y € gg,

[H,1X,Y]] = [X,[H Y]] + [[H,X],Y] = (B, DX Y] + (0, D)[X, Y] = (o + B, H)[X, YI.

Ifax € R,then —a € R:
X € g_, if X € g, since a is purely imaginary valued.

R spans h™:
g has trivial center. If H € (Span R)* c b, then [H,X] = a(H)X = 0 for X € g, for all
a € R. Thus H is in the center and must be zero.

Theorem:

For each root a, there exists H, € hg and H, € R - « (by identifying hr = by via the
invariant metric), X, € g, Y, € g_, such that H,, X,, Y, satisfy the sI(2, C) relations.
Y, can be taken to be —X,,.

Indeed (a, H,) = 2 since [H,, X,] = 2X,.
2

Hence H, = —— (called the coroot) (a € br identified as hg) is the unique choice.

Proof:

Take H, as above, X € g, — {0}and Y = —X € g_, (since a is purely imaginary).
Then [H,, X] = 2X and [H,, Y] = —2Y.

We know that [X, Y] € b.

([X,Y],H) = (a, H)(Y,—X) forany X € g,,Y €Eg_o, H € b:
([X,Y],H) =(Y,ad_zH) = (Y, (@, H)(—X)) = (a, H){Y, —X).

Hence in above ([X,Y], H) = (a, H)|Y|? = (a, H)|Y|? (identifying a € bg).
Thus [X, Y] is perpendicular to any H € at,and so [X,Y] € C - H,.

2|Y|?
(X, Y] He) = 2IY[2. [X,Y] = 205 Ho.

Thus if we take X with |X| = |H,|/+/2 in the beginning, then [X,Y] = H,,.
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Prop: The only roots which are multiples of « is *+«.
Also g, is one dimensional.

Proof:

Suppose 3 = ca is also a root.

(ldH X[; = (B Ha)Xﬁ = ZCX'B

Since Span{H,, X,,Y,} = sl(2,C), 2cis an integer.
Reversing a and (3, 2/c is also an integer.

Then c can only be + %, +1, +2.

Take a to be the shortest one among all roots in its direction.

Take V* c g spanned by H, and all gz where f = ca are roots where ¢ = +1, +2.
V% is invariant under s, := Span{H,, X,, Y, }:

[Xa,Xﬁ] € Qu+p> [Xa, Yﬁ] € gqu-p Where a + f are multiples of a.

Then sg € V% is a representation of s,,.

52 is spanned by weight vectors X € g g with even weights:

ady X = (B,Hg,)X = 2c X. So the weight is either +2, +4.

For sI(2, C) representation, this implies it also has the weight zero, a contradiction
unless sg = 0.

Hence V% = s,, meaning X, € g,,Y, € g_, are the only root vectors (up to multiple)
in the direction of a.

QED

For any roots «, f3,
2{a.B)

(ﬁl a) - (a )

ady X = (B,H,) X for X € gg.
g is a representation of s, = sI(2,C). Hence (8,H,) € Z.

Hence s, - B — P = ka for k € Z.

2(a : .
sq(v) =v— 2aP) o is the reflection about a* < bR

(a,a)

Weyl group:
(Sq: @ €ER) € O(HR).

Prop: Weyl group preserves the set of roots.
For Z € gp, need to make a root vector in gg_.g.
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Forsl(2,C) = (H,X,Y) representation ,

Un(H)U™! = —m(H) where U = e™X) =) m(X).

e™ X (H)e ™) = Ad ) - w(H) = expadyy) - T(H) = w(H) — 2m(X).
e ™" Nr(H)e™ = g(H) + 2r(Y).

e N (X)e™ = g(X) + n(H) + n(Y).

e () (n(H) — Zn(X))e“(Y) = —n(H) — 21 (X).

e™ ™ (—n(H) — 2n(X))e ™ = —n(H) + 2n(X) — 2n(X) = —n(H).

Restricting g as a representation of s, = sl(2, C), have

Ugady Ug' = —ady,.

Also for H € at, [H,X,] = [H,Y,] = 0. Hence e®%%a - ady; = ady = ad - e 3%,
Thus Uj,ady U, = ady.

Combining, for all H € b,

UgadyUg' = ads_ .

Then U, - Z € g5 _.p:

ady - (Uy-Z)=Uy - (Ug" -ady -Uy) - Z=Uy-ads_y-Z = (B,5q -H)Uy-Z
= (Sq "B, H) Uy - Z.

QED

Weyl group is finite:
Its action on the set of roots gives an injection to the permutation group.
(Itis an injection since Span R = by.)

Summary for the root system R C hp = i t":
1. Rspans by .
2. For a € R, a are the only multiples of « which belong to R.
3.5, P €Rfora,B €R.
2(«a,
4, (@ f) €EZ

(a,a)

Theorem: g is simple <=> R is irreducible.

(Rirreducible means R # R; U R, where Spang(R;) and Spank(R,) are orthogonal.
Obviously in such a case R; and R, are root systems.)

Proof:

Semi-simple g is direct sum of simple g.

Each g, is invariant under conjugation:
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By uniqueness g; = g;. Suppose k # [. Then g, N g, = {0} and [g, gx] = O.
ar D g is invariant under conjugation.

Then (g, @ @;) N fisanideal off. Itleads to a decomposition of f and hence a
decomposition of the simply connected compact K.

Thus (g @ gr) Nt = Re g, corresponds to a compact subgroup K; c K.

Re g, = g which is (real) Lie algebra isomorphism.

X+X o X [X+XY+Y]=[XY]+[X Y] [XY])

Then Lie(K;) = g; has a complex structure!

Lie algebra f of a compact noncommutative Lie group K can never has a
complex structure:

Suppose it has a complex structure J (under which the Lie bracket is complex linear). Let
H not in the center. ady is non-zero and skew-symmetric (with respect to a K-invariant
BILINEAR metric such that J is isometry) and hence has an eigenvalue i1 # 0 and
eigenvector X.

[H,X] =A/X and [H,]X] = —AX.

So [—AJH, X] = A%X.

(22X, X) = (X,adyuX) = (X, —A2X)!

Thus we have f;, = g, N g, and T = Bf;. It corresponds to Lie group decomposition
of K and they give compact real forms of g.

And correspondingly t = @t, where t, = f;, Nt which are maximal commutative
subalgebra of f;,. h = @b, where b, = (t;)c which are Cartan subalegbras of g.

Then we have roots Ry, of g in by (and Span Ry, = by,).
They are regarded as roots of g.

These are all the roots of g in h* = @h; and hence R =U; Ry:
We have a root space decomposition of g by a direct sum of the root space

decompositions of gj.
QED

Exercises. (Section 7.8)

1. Let b be the Lie algebra of complex 3 X 3 upper triangular matrices with zeros on
the diagonal. Show that it does not have any Cartan subalgebra.

2. Give an example of a maximal commutative subalgebra of sI(2, C) which is not a
Cartan subalgebra.
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