
Reductive:	 where	 is	the	Lie	algebra	of	a	compact	Lie	group	K.		 is	called	a	
compact	real	form.
Semi‐simple:	reductive	and	trivial	center.

ex.	 , is	semi‐simple.		 , is	reductive	but	not	semi‐simple.

We	have	a	 ‐invariant	Hermitianmetric	on	 which	restricts	to	usual	metric	on	 .		
This	is	NOT	the	Killing	form	since	it	is	Hermitian	instead	of	bilinear.
This	makes	the	adjoint	representation	 unitary:	 ad , , ad .
Then	for	the	complexified	action	by	 ∈ ,
ad , , ad .

Prop.	Reductive	 ⊕ where	 is	semisimple	and	 is	the	center.
Proof:
is	an	ideal,	and	so	is	 ≔ .
is	semi‐simple:	it	has	trivial	center	since	any	central	element	of	 would	be	

central	element	of	 and	hence	belongs	to	 .
Compact	real	form:	take	away	the	center	part	in	the	compact	real	form.	
≔ ∩ .		Hermitian	metric	on	 restricts	to	usual	metric	on	 .

:	let	 ∈ ⊂ for	 , ∈ .		Since	 is	invariant	under	
conjugation,	both	 , ∈ .		Hence		 , ∈ .
Take	 to	be	the	image	of	K	of	Ad: → .		It	is	compact.
Lie ≅ :	let	 ∈ Lie where	 ∈ Lie K .		 .			

∈ :	 ̅ and	hence		 ∈ ∩ .
↦ is	well‐defined:	 ∈ Ker ad if	and	only	if	 ∈ ,	and	so	 0.

It	is	injective	for	the	same	reason.
Surjectivity:	for	 ∈ ⊂ ,	 ↦ .
QED

Prop.	If	K	is	simply‐connected	compact,	then	 is	semi‐simple.
Proof:	Need	to	see	 has	trivial	center.		Let	 be	the	center	and	decompose	by	metric:	

⊕ .		Since	K	is	simply‐connected,	accordingly	 where	Z	is	
commutative,	which	must	then	by	 .		But	K	is	compact	and	so	 0,	forcing	 0.
QED

Decomposition	in	Lie	algebra	leads	to	decomposition	of	a	simply‐connected	Lie	
group:

Semi‐simple	Lie	algebra
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Consider	the	projection	homomorphisms	which	correspond	to	Lie	group	
homomorphisms.		The	identity	components	of	kernels	give	the	factors	which	are	
closed	connected.
The	two	factors	commute.		Then	have	homomorphism	from	their	product	to	G.		It	
has	inverse	since	the	corresponding	Lie	algebra	map	has	inverse.

Prop.	Semi‐simple	 ⨁ where	each	 is	simple	 no	non‐trivial	ideal	and	
dim 2 .		This	decomposition	is	unique	 up	to	reordering .
Proof:	
Suppose	 is	not	simple,	and	so	it	has	a	non‐trivial	ideal	 .		Then	 ⊕ .		

, ⊂ ∩ 0 . 		An	ideal	of	 is	also	an	ideal	of	 .		Repeating	and	we	get	a	
decomposition	of	 into	into	simple	ideals.		 dim 2 since	otherwise	it	is	center.

Unique:	each	 is	an	irreducible	representation	of	 by	adjoint	action .		Any	
morphism	 → cannot	be	an	isomorphism	and	hence	zero	for	 :	there	is	
, ∈ with	 , 0,	but	 , 0.

QED

From	now	on	always	assume	semi‐simple.

, 0.		 commutative1.
If	 , 0 for	all	 ∈ ,	then	 ∈ .		 maximal	commutative2.
ad is	diagonalizable	for	all	 ∈ .3.

Cartan	subalgebra	 :

Construction:	take	a	maximal	commutative	subalgebra	 in	 .		Take	 .			
is	Cartan:

1,	2	are	direct	from	definition.
3:	for	any	 ∈ ,	ad is	skew‐adjoint	 with	respect	to	the	invariant	metric 	and	hence	
diagonalizable.		For	 ∈ ,	since	 , 0,	they	are	simultaneously	
diagonalizable	and	so	ad is	diagonalizable.

Rank:	dimension	of	a	Cartan	subalgebra.
Cartan	subalgebra	is	unique	up	to	automorphism	of	 proof	skipped .		Hence	rank	is	
well‐defined.

Root	 ∈ 	 ∗ : ∗ ⊂ ∗:
The	adjoint	K‐action	on	 is	unitary.		Hence	 ⊂ acts	on	 as	skew	self‐adjoint	
operators.		Thus	eigenvalues	of	 ∈ are	purely	imaginary.
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Note	that	the	Hermitian	metric	restrict	to	be	usual	metric	on	 ≔ .

Simultaneous	eigenspace	decomposition:

⊕
∈

.

, ⊂ where	 :
By	Jacobi	identity.		For	 ∈ , ∈ ,	
, , , , , , β, H X, Y α, H X, Y α β, H X, Y .

If	 ∈ ,	then	 ∈ :
∈ if	 ∈ since	 is	purely	imaginary	valued.

spans	 ∗:
has	trivial	center.		If	H ∈ Span	 ⊂ ,	then	 , α 0 for	 ∈ for	all	

α ∈ .		Thus	H	is	in	the	center	and	must	be	zero.

Theorem:
For	each	root	 ,	there	exists	 ∈ and	 ∈ ⋅ by	identifying	 ≅ ∗ via	the	
invariant	metric ,	 ∈ ,	 ∈ such	that	 , , satisfy	the	 2, relations.
can	be	taken	to	be	 .

Indeed	 α, 2 since	 , 2 .
Hence	

, 	
(called	the	coroot) ∈ ∗ identified	as	 	is	the	unique	choice.

Proof:
Take	 as	above,	 ∈ 0 and	 ∈ since	 is	purely	imaginary .		
Then	 , 2 and	 , 2 .
We	know	that	 , ∈ .

, , , , for	any	 ∈ ,	 ∈ ,	 ∈ :
, , , ad , , , , .

Hence	in	above	 , , , | | α, | | identifying	 ∈ .
Thus	 , is	perpendicular	to	any	 ∈ ,	and	so	 , ∈ ⋅ .		

, , 2| | .		 ,
| |

| |
.

Thus	if	we	take	X	with	| | | |/√2 in	the	beginning,	then	 , .
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Prop:	The	only	roots	which	are	multiples	of	 is	 .
Also	 is	one	dimensional.
Proof:	
Suppose	β is	also	a	root.

β, 2 .
Since	Span , , ≅ 2, ,	2c	is	an	integer.
Reversing	 and	 ,	2/c	is	also	an	integer.
Then	 can	only	be	 , 1, 2.

Take	 to	be	the	shortest	one	among	all	roots	in	its	direction.
Take	 ⊂ spanned	by	 and	all	 where	 are	roots	where	 1, 2.

is	invariant	under	 ≔ Span , , :
, ∈ ,	 , ∈ where	 are	multiples	of	 .

Then	 ⊂ V is	a	representation	of	 .
is	spanned	by	weight	vectors	 ∈ with	even	weights:

, 2 	 .		So	the	weight	is	either	 2, 4.
For	 2, representation,	this	implies	it	also	has	the	weight	zero,	a	contradiction	
unless	 0.
Hence	V ,	meaning	 ∈ , ∈ are	the	only	root	vectors	 up	to	multiple 	
in	the	direction	of	 .
QED

For	any	roots	α, β,

,
,
, 	

∈ :

, 	 for	 ∈ .
is	a	representation	of	 ≅ 2, .		Hence	 , ∈ .

Hence	 ⋅ for	 ∈ .		

≔ ,

, 	
is	the	reflection	about	 ⊂ ∗ .

Weyl	group:
: ∈ ⊂ ∗ .

Prop:	Weyl	group	preserves	the	set	of	roots.
For	 ∈ ,	need	to	make	a	root	vector	in	 ⋅ .
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For	 2, , , representation	 ,
where	 :

Ad ⋅ exp ad ⋅ 2 .
2 .
π .

2 π 2π .
π 2π π 2π 2π π .

Restricting	 as	a	representation	of	 ≅ 2, ,	have	
ad ad .

Also	for	 ∈ ,	 , , 0.		Hence	 ⋅ ad ad ad ⋅ .		
Thus	 ad ad .
Combining,	for	all	 ∈ ,
ad ad ⋅ .

Then	 ⋅ ∈ ⋅ :
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ad ⋅ ⋅ , ⋅ 	 ⋅
⋅ , 	 ⋅ .

QED

Weyl	group	is	finite:
Its	action	on	the	set	of	roots	gives	an	injection	to	the	permutation	group.
It	is	an	injection	since	Span	 	 ∗ .

R	spans	 ∗ .1.
For	 ∈ , are	the	only	multiples	of	 which	belong	to	R.2.
⋅ ∈ for	α, ∈ .3.

2 ,
,

∈ .4.

Summary	for	the	root	system	 ⊂ ∗ 	 ∗:

Theorem:	 is	simple	 	R	is	irreducible.
R	irreducible	means	 ∪ where	Span R and	Span R are	orthogonal.		
Obviously	in	such	a	case	 and	 are	root	systems.
Proof:	
Semi‐simple	 is	direct	sum	of	simple	 .
Each	 is	invariant	under	conjugation:
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.

By	uniqueness	 .		Suppose	 .		Then	 ∩	 0 and	 , 0.
⊕ is	invariant	under	conjugation.

Then	 ⊕	 ∩ is	an	ideal	of	 .		It	leads	to	a	decomposition	of	 and	hence	a	
decomposition	of	the	simply	connected	compact	K.
Thus	 ⊕	 ∩ Re	 corresponds	to	a	compact	subgroup	 ⊂ .
Re	 ≅ which	is	 real 	Lie	algebra	isomorphism.

↔ .	 , , , ↔ , .
Then	Lie ≅ has	a	complex	structure!

Lie	algebra	 of	a	compact	noncommutative	Lie	group	K	can	never	has	a	
complex	structure:
Suppose	it	has	a complex structure J (under which the Lie bracket is complex linear).  Let 
H not in the center.   is non‐zero and skew‐symmetric (with respect to a K‐invariant 
BILINEAR metric such that J is isometry) and hence has an eigenvalue  0 and 
eigenvector  .
, and  , .

So  , .
, , ad , λ !

Thus	we	have	 ∩ 	 and	 ⨁ .		It	corresponds	to	Lie	group	decomposition	
of	K	and	they	give	compact	real	forms	of	 .
And	correspondingly	 ⨁ where	 ∩ which	are	maximal	commutative	
subalgebra	of	 .		 ⨁ where	 which	are	Cartan	subalegbras	of	 .		

Then	we	have	roots	 of	 in	 ∗ and	Span	 ∗ .
They	are	regarded	as	roots	of	 .

These	are	all	the	roots	of	 in	 ∗ ⨁ ∗ and	hence		 ∪ :	
We	have	a	root	space	decomposition	of	 by	a	direct	sum	of	the	root	space	
decompositions	of	 .
QED

Let	 be	the	Lie	algebra	of	complex	3 3 upper	triangular	matrices	with	zeros	on	
the	diagonal.		Show	that	it	does	not	have	any	Cartan	subalgebra.

1.

Give	an	example	of	a	maximal	commutative	subalgebra	of	 2, which	is	not	a	
Cartan	subalgebra.

2.

Exercises.		(Section	7.8)
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