Abstract root system

Thursday, March 22, 2018 1:44 PM

Root system $R \subset E$:

- 1. R spans E.
- 2. For $\alpha \in R$, $\pm \alpha$ are the only multiples of α which belong to R.
- 3. $s_{\alpha} \cdot \beta \in R$ for $\alpha, \beta \in R$.

4.
$$\frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}.$$

Weyl group: the group generated by s_{α} .

Can be identified as a subgroup of the permutation group of R (and hence is finite if R is finite).

If $R \subset E$ and $S \subset F$ are root systems, then so is $R \cup S \subset E \oplus F$.

Morphism of root system:

linear map A with $A(R) \subset S$ and commute with Weyl action: $A(s_{\alpha} \cdot \beta) = s_{A\alpha} \cdot (A\beta).$

Note that it may not preserve metric. (Allow scaling.)

Prop. let α, β be linearly independent roots. WLOG let $|\alpha| \ge |\beta|$. Then either 1. $\langle \alpha, \beta \rangle = 0$. 2. $\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle$ and the angle between the two lines is $\frac{\pi}{3}$. 3. $\langle \alpha, \alpha \rangle = 2\langle \beta, \beta \rangle$ and the angle between the two lines is $\frac{\pi}{4}$. 4. $\langle \alpha, \alpha \rangle = 3\langle \beta, \beta \rangle$ and the angle between the two lines is $\frac{\pi}{6}$. **Proof:** $m_1 = \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$ and $m_2 = \frac{2\langle \alpha, \beta \rangle}{\langle \beta, \beta \rangle} \in \mathbb{Z}$. $m_1 m_2 = 4 \cos^2 \theta$.

Hence $0 \le m_1 m_2 \le 4$. Five cases: $m_1 m_2 = 0,1,2,3,4$. Remaining is plane geometry.

QED

Cor:

Angle between roots α and β is strictly obtuse => $\alpha + \beta$ is root. strictly acute => $\alpha - \beta$ and $\beta - \alpha$ are roots. **Proof**:

Consider $s_{\alpha} \cdot \beta$ which is a root. QED

 \mathbf{R}^{\vee} : set of all coroots $H_{\alpha} = \frac{2\alpha}{\langle \alpha, \alpha \rangle}$.

Prop. R^{\vee} is also a root system and it has the same Weyl group. $(R^{\vee})^{\vee} = R$.

Proof:

Condition 1 and 2 for root system are obvious.

Direct check that

$$\frac{2H_{\alpha}}{\langle H_{\alpha}, H_{\alpha} \rangle} = \alpha.$$
(Hence $(R^{\vee})^{\vee} = R.$)
 $\frac{2\langle H_{\alpha}, H_{\beta} \rangle}{\langle H_{\alpha}, H_{\alpha} \rangle} = \langle \alpha, H_{\beta} \rangle = \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}.$

$$s_{H_{\alpha}} \cdot H_{\beta} = s_{\alpha} \cdot H_{\beta} = \frac{2}{\langle \beta, \beta \rangle} s_{\alpha} \cdot \beta = \frac{2}{\langle s_{\alpha} \cdot \beta, s_{\alpha} \cdot \beta \rangle} s_{\alpha} \cdot \beta = H_{s_{\alpha} \cdot \beta}.$$
QED

Base Δ (set of all positive simple roots): a subset of R which is a basis of E, and every root is an integer combination in Δ with coefficients of the same sign.

Any two vectors in Δ have right or obtuse angle:

Otherwise $\alpha - \beta$ would be a root, contradicting that all coefficients are the same sign.

Construction of a base:

Take a hyperplane not containing any root of R (take H not in any α^{\perp} , and take H^{\perp}).

Take R^+ to be the roots in one side.

Prop. The set Δ of indecomposible elements of R^+ is a base.

(Indecomposible means $\alpha \neq \beta + \gamma$ for any $\beta, \gamma \in R^+$.) **Proof**:

Any roots in R^+ is an integer combination of Δ with positive coefficients:

Suppose not. Take such a root α with minimal $\langle \alpha, H \rangle$. $\alpha \notin \Delta$, so $\alpha = \beta + \gamma$ for $\beta, \gamma \in R^+$. But $\langle \alpha, H \rangle = \langle \beta, H \rangle + \langle \gamma, H \rangle$, contradicting the minimality.

Any other roots are $-\alpha$ for $\alpha \in R^+$. Hence **any root is an integer combination of** Δ **with coefficients of the same sign**.

Δ is linearly independent:

Suppose $\sum_{\alpha} c_{\alpha} \alpha = \sum_{\beta} d_{\beta} \beta$ where the coefficients are all positive (and the sums are over disjoint subsets of Δ). Consider its norm squared: $\sum c_{\alpha} d_{\beta} \langle \alpha, \beta \rangle$.

 $\langle \alpha, \beta \rangle \leq 0$ for any distict $\alpha, \beta \in \Delta$, and so the above has to be zero: Otherwise $\alpha - \beta$ and $\beta - \alpha$ would be roots, and one of them belongs to R^+ , contradicting that coefficients have the same sign.

Thus $\sum_{\alpha} c_{\alpha} \alpha = \sum_{\beta} d_{\beta} \beta = 0$ and all coefficients are positive. But all α

and β are in one side of H, and so this is impossible. QED

Any base must arise in this way, namely, there is a hyperplane not containing any roots such that the base is the set of indecomposible elements in one side of the hyperplane:

Take an element h in the dual cone $\{h \in E^* : (h, \alpha) > 0 \forall \alpha \in \Delta\}$. Then Δ and R^+ is contained in one side of h^{\perp} . R^- is contained in the other side.

Taking the indecomposable roots in the positive side of h^{\perp} gives a base. This is Δ : both are base and hence have the same number of elements. $\alpha \in \Delta$ is indecomposable: suppose $\alpha = \beta + \gamma$ for $\beta, \gamma \in R^+$. Expressing in terms of the basis Δ , we see that it is not possible.

Prop. If Δ is a base for *R*, then Δ^{\vee} is a base for R^{\vee} .

Proof: From above Δ arises as indecomposible roots on one side of a hyperplane. α^{\vee} for $\alpha \in R^+$ lie on the same side, and that for $\alpha \in R^-$ lie on the other side. Thus indecomposible coroots on the positive side gives rise to a base for R^{\vee} . This is Δ^{\vee} : they have the same number of elements. $H_{\alpha} \in \Delta^{\vee}$ is indecomposible: the coroots in Δ^{\vee} also form a basis (since they just differ from roots by scaling). Suppose $H_{\alpha} = H_{\beta} + H_{\gamma}$ for $\beta, \gamma \in R^+$. Expressing in terms of the basis Δ^{\vee} , we see that it is not possible.

Weyl chambers:

Connected components of $E - \bigcup_{\alpha} \alpha^{\perp}$.

Dominant (or fundamental) chamber C (relative to Δ):

 $\langle \alpha, H \rangle > 0$ any $H \in C$ and $\alpha \in \Delta$.

{Base Δ } <-> {Weyl chamber *C*}:

-> take the dominant chamber relative to Δ . It is the **dual cone** { $H \in E^*$: $(\alpha, H) > 0 \forall \alpha \in \Delta$ } which is a Weyl chamber since $(\alpha, H) \neq 0$ for any $\alpha \in R$. <- Take any $H \in C$. H^{\perp} does not contain any root and hence the indecomposible roots on the side $(\alpha, H) > 0$ define a base. For all other elements $H' \in C$, since H' and H are in the same connected component of $E - \bigcup_{\alpha} \alpha^{\perp}$, (α, H_t) can never be zero and hence cannot change sign for a path H_t connecting them.

Exercises. (Section 7.8)

7. Suppose *A* is an isomorphism between two irreducible root systems. Show that it is a constant multiple of an isometry.

9.
$$P(H) \coloneqq \prod_{\alpha \in R^+} \langle \alpha, H \rangle$$
.
Show that $P(w \cdot H) = \det(w) P(H)$ for all $w \in W$ and $H \in E$.