
Prop.	Given a root, there exists a base containing it.
Proof: A base corresponds to a chamber.  Given a root , there is a chamber which has a facet given by (and ( , ) > 0 for H inside the chamber).  produces a base.  is indecomposible: We can take H very close to the hyperplane such that ( , ) is minimal among all positive roots.  QED
Prop. The Weyl group W is generated by where ∈ ∆.  It acts faithfully and transitively on the set of Weyl chambers.(Hence as sets, ≅ {Weyl chambers} ≅ {Bases}.)
Proof: Let ⊂ be generated by for ∈ ∆.Let be the dominant chamber.  Want: for ′ in any chamber, there is ∈ ′ such that ⋅ ∈ .Suppose ′ not in C.  So there is a wall in between:  there exists ∈ ∆such that (α, ) < 0.Reflection along this wall decreases the distance: Fix ∈ .| − | − | ⋅ − | = − 4⟨ , ⟩⟨α, ⟩ ⟨ , ⟩ > 0.Keep on doing this, gradually ′ is reflected into C since ′ is finite.Hence ′, and hence W, acts on Weyl chambers transitively.Faithfulness is obvious.For any root ∈ , ∈ ∆ for some chamber ′.  By above there exists some ∈ ′ such that ⋅ = .  Then ⋅ ∈ ∆.= ⋅ ⋅ ⋅ ∈ .Hence = .  QED
Minimal	expression:	Write ∈ in a minimal product of reflections associated to elements in ∆.
Prop.	Two	distinct	elements	in	 cannot	lie	in	the	same	orbit	of	 .
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Proof: Want to say ≠ ⋅ for any w.  Induction on length of minimal expression.  Let 1 ≠ = … be a minimal expression ( ∈ ∆).
Then	 and	 ⋅ are	on	different	sides	of	 :Again use induction.  Suppose and … ⋅ are on the same side.  So … ⋅ is on another side by inductive assumption.  Then ⋅ and are on different sides of ( ⋅ ) where =… .  But then ( ⋅ ) = α and so = ⋅ = .Then = ⋅ = = … , contradicting the minimality.Suppose = ⋅ .  Then ∈ .  Thus = … ⋅ , contradicting the inductive assumption.  QED
Prop: For ∈ ∆, preserves − { }.
Proof: Consider ∈ − { } and express it in terms of the base.  It must involve an element in the base which is not .  ⋅ = −and so it does not change the coefficient of , which is positive.  Hence ⋅ is still positive.  QED
Dynkin	diagram:Vertices are base roots.Number of edges between two vertices , is ⟨ , ⟩⟨ , ⟩ (WLOG | | ≥ | |) which is either 0,1,2,3.  (Recall	that	it	determines	the	angle,	which	
must	be	obtuse.)Direction of edge is from longer to shorter.(Choice of base does not matter: any two are related by reflection.)
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Morphism	of	Dynkin	diagram:map between vertex sets preserving the numbers and directions of arrows between any two vertices.
R	is	irreducible	<=>	Dynkin	diagram	is	connected:<= = ∪ , then ∆ = ∆ ∪ ∆ which are orthogonal to each other.  Then obviously the Dynkin diagram is disconnected.=> If Dynkin disconnected, then ∆ = ∆ ∪ ∆ which are orthogonal to each other.  All roots are obtained from base by Weyl action.  Since orthogonal the Weyl action preserves = Span(∆ ).    Hence any root is either in or .

and	 are	isomorphic	<=>	Dynkin	diagrams	are	isomorphic:WLOG assume irreducible.=> Take base of , mapping to a base of .    Then the isomorphism is an isometry up to scaling.<= We have map between base roots, which is isometry up to scaling.  Then it certainly respects Weyl group actions.
Classification:

Integral	structure:ℤ∗ = ℤ ⋅ { ∈ ∗ for ∈ ∆} gives the integral structure (which is a lattice in ∗ = ℝ).The dual is ℤ = { ∈ : ( , ) ∈ ℤ}.  Recall( , ) = 2⟨ , ⟩⟨ , ⟩ .So ⊂ ℤ.The dual basis { ∗ } ⊂ ℤ of { } ⊂ ℤ∗ is called the fundamental weights.  It is characterized by



∗ , = 2⟨ ∗ , ⟩⟨ , ⟩ = .
A	special	element:≔ ∈ .( , ) = 1 for all ∈ ∆ (and hence ∈ ℤ, = ℤ ∩ ):12 ( , ) = 1.For other ∈ , ⋅ ∈ .  If ⊥ , then ⟨ , ⟩ = 0; if not, then ≠⋅ and ⟨ + ⋅ , ⟩ = 0.  Hence their contribution sum up to zero.
Partial	ordering:Like (3, ℂ), have partial ordering on :≥ if μ − ∈ ℝ ⋅ ∆.It has the following properties (proof skipped):
If	 ∈ ,	then	 ≥ .		 ⋅ ≤ ∀ ∈ .		∈ ( ⋅ ) if	and	only	if	 ⋅ ≤ .

If	 ∈ ℤ, = ℤ ∩ ,	then	 ≥ .

Exercises.		(Section	8.12)
Let , ∈ be linearly independent.  If + ∈ for ∈ ℤ , then +∈ for = 0, … , .1.

Show that if − ∉ , then the Dynkin diagram must have a nontrivial 
automorphism. 
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