Lie(G) := $T_1G \cong \{ \text{left-G-invariant vector fields} \}$.

Integrating along $X \in Lie(G)$ gets a

one-parameter subgroup of diffeomorphisms $\exp^t X = \exp tX : G \to G$.

 $(\exp(s+t)X = \exp sX \circ \exp tX.)$

 $X \in \text{Lie}(G)$ is complete: walk a bit, and left multiplication by the endpoint.

Abuse of notation: under the diffeomorphism $\exp tX$, denote $1 \mapsto \exp tX \in G$.

This defines $\exp: \mathfrak{g} \to G$. (Don't even use metric!)

Since X is left-invariant, the diffeomorphism $\exp^t X$ is $g \mapsto g \exp tX$ (right multiplication.) $d\exp|_{0} = Id$. Hence exp is a local diffeomorphism.

Lie derivative satisfies [X,Y] = -[Y,X] and Jacobi identity.

 $L_X Y$ is still left-invariant:

$$L_XY|_g = \frac{d}{dt}\Big|_{t=0} \frac{d}{ds}\Big|_{s=0} g \exp tX \exp sY \exp(-tX). \text{ Thus } h \ L_XY|_g \neq L_XY|_{hg}.$$

Lie(G) is a **Lie algebra**: a vector space with [-, -]. **Lie subalgebra**: subspace closed under [-, -].

Lie subgroup H: Image of an injective group homomorphism to G which is an immersion. (NOTE: NEED NOT EMBEDDED, that is, may not be homeomorphism to image!)

Theorem:

Subalgebra of Lie(G) <-> connected Lie subgroup of G.

- <- is trivial: take tangent space at 1. Closed under Lie bracket since H is a submanifold near 1.
- -> follows from the **Frobenius theorem** in differential topology:

A sub-bundle of TM whose sheaf of local sections are closed under [-,-] integrates to a foliation.

Then take the leaf containing 1. It is closed under multiplication:

suppose $g, h \in \text{leaf}_1$. $g \cdot h = L_g \cdot h \in L_g \cdot \text{leaf}_1 = \text{leaf}_g = \text{leaf}_1$.

(Foliation: a collection of disjoint connected immersed submanifolds (called leafs) whose union is the whole space M, and can take local coordinates x_1, \dots, x_n of M such that the leafs are given by taking x_{k+1}, \dots, x_n to be constants.)

Closed subgroup theorem:

A closed subgroup H of G must be a submanifold (that is embedded).

(Note: don't need H to be Lie subgroup in the condition.)

topology + grap str. => smooth of

Denote $(exp^{t}X)(1) = exp^{t}X$.

 $\left(\frac{1}{k!}\left(g \cdot exp^{t}(X)\right) = g \cdot \left(X \Big|_{eq^{t}X}\right) = X\Big|_{q \cdot s.t.Y}$

exptX = expt X since both satisfy the same D.E.

Dente exp X = exp X

. $\frac{d}{ds} \exp^s t X = t \times \Big|_{sep^s t X}$

to exp X = t·X

exp^{set} X satisfies the same D.E.

 $(e \phi^{\dagger} X)(q) = q \cdot exp^{\dagger}(X)$:

exptX = exptX:

Proof:

Need to restricts charts of G to charts of H at all $h \in H$. Consider an open set U of g where exp is a

Want to argue $h \cdot \exp$ restricted to $U \cap \mathfrak{h}$ provides a chart of H. Need to define $\mathfrak{h}!$

 $\mathfrak{h} \coloneqq \{X \in \mathfrak{g} : \exp tX \in H \text{ for all } t \in \mathbb{R}\}.$

 $\mathfrak{h} \subset \mathfrak{g}$ is a vector subspace: $0 \in \mathfrak{h}$. Closed under scaling.

 $X + Y \in \mathfrak{h}$ if X and Y are: consider $\exp t(X + Y)$.

TRICKY: $\exp t(X + Y) \neq (\exp tX)(\exp tY)!$

For t small.

 $(\exp tX)(\exp tY) = \exp(\phi(t))$ for some smooth path ϕ . $(\phi(0) = 0.)$

Take $\frac{d}{dt}\Big|_{t=0}$, get $\phi'(0) = X + Y$. Thus $\phi = t(X+Y) + t^2Z(t)$.

Replace t by $\frac{t}{x}$:

$$\left(\left(\exp\frac{tX}{n}\right)\exp\left(\frac{t}{n}\right)\right) = \exp\left(t(X+Y) + \frac{t^2}{n}Z\left(\frac{t}{n}\right)\right)$$
 and hence

$$\lim_{n \to \infty} \left(\left(\exp \frac{tX}{n} \right) \left(\exp \frac{tY}{n} \right) \right)^n = \exp t(X + Y)$$

Since H is closed, LHS belongs to H.

Thus $\mathfrak{h} \subset \mathfrak{g}$ is a vector subspace.

Need to take U sufficiently small such that $\exp(U \cap \mathfrak{h}) = (\exp U) \cap H$. (Always have $\exp(U \cap \mathfrak{h}) \subset$ $(\exp U) \cap H$.) Then $h \cdot \exp$ restricted to $U \cap \mathfrak{h}$ provides a chart of H around h.

Need to take U sufficiently small such that $\exp(U \cap \mathfrak{h}) = (\exp U) \cap H$. (Always have $\exp(U \cap \mathfrak{h}) \subset$ $(\exp U) \cap H$.) Then $h \cdot \exp$ restricted to $U \cap h$ provides a chart of H around h.

Assume such U does not exist. Then have a sequence of points in H converging to 1 but not in $\exp(U \cap \mathfrak{h})$. Take a meric on \mathfrak{a} and $\mathfrak{a} = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$.

Then the points can be written as $(\exp a_i)(\exp b_i)$ for $a_i \in \mathfrak{h}$ and $b_i \in \mathfrak{h}^{\perp}$ (since $(\exp a)(\exp b)$: $\mathfrak{h} \times \mathfrak{h}^{\perp} \to \mathfrak{h}$ G is local diffeo).

NOTE THAT $\exp b_i \in H$ since $(\exp a_i)(\exp b_i) \in H$. But still $\exp b_i/m$ may not in H for some $m \in \mathbb{Z}$. b_i are normalized to points on the unit sphere. Take a convergent subsequence and denote its limit by $v \in \mathfrak{h}^{\perp}$. For any $t \in \mathbb{R}$, tv is a limit of $\{t_ib_i\}$ for some $t_i \in \mathbb{Z}_{>0}$. (This uses $|b_i| \to 0$.) $\exp t_ib_i \in H$, and hence $\exp tv \in H$ since H is closed! Then $v \in \mathfrak{h}$ by definition of \mathfrak{h} , a contradiction!

Lie homomorphism $G \rightarrow H$:

smooth group homomorphism.

Theorem:

Continuous homomorphism $G \rightarrow H$ is automatically smooth!

First, any continuous homomorphism $\gamma \colon \mathbb{R} \to H$ is $\gamma(t) = \exp tX$ for some X (and hence smooth):

For
$$t_0$$
 small, $\gamma(t_0) = \exp t_0 X$ for some X. $\gamma(t_0) = \gamma\left(\frac{t_0^k}{t_0}\right) = \exp\left(\frac{t_0 X}{t_0}\right)$ and hence

 $\gamma\left(\frac{t_0^{-1}}{k}\right) = \exp\left(\frac{t_0 \overset{\leftarrow}{k}}{k}\right)$ (In the region that exp is diffeomorphism, $(-)^k \in G$ corresponds to $k \cdot (-) \in \mathfrak{g}$ which is

Then
$$\gamma\left(\frac{p\ t_0^{|X|}}{k}\right) = \exp\left(\frac{p\ t_0X}{k}\right)$$
 for all p,k . By continuity $\gamma(t) = \exp tX$.
Now consider $\Phi\colon G \to H$, $1_G \mapsto 1_H$. Use charts provided by \exp to understand the map.

 $\Phi \circ \exp_{G}(X) = \exp_{H} \circ \Phi(X)$. ϕ is a priori only defined near X = 0.

For each X, $\Phi \circ \exp_G(tX)$ gives a continuous homomorphism $\mathbb{R} \to H$. From above

Φ • $\exp_G(tX) = \exp_H tY$. Such Y is unique since \exp_H is a local diffeomorphism. We define $\varphi(X) = Y$. Thus $\varphi \colon g \to \mathfrak{h}$. Suffice to prove φ is linear, and hence Φ is smooth around 1_G . Then $\Phi = L_{\Phi(g)} \circ \Phi \circ L_{g^{-1}}$ (since it is homomorphism) is smooth around g.

ϕ is linear:

 $\Phi \circ \exp_{\mathbf{G}}(\mathbf{t} \, \mathbf{s} \mathbf{X}) = \exp_{\mathbf{H}} \mathbf{t} \, s \phi(\mathbf{X}). \ \phi(\mathbf{s} \mathbf{X}) \text{ also satisfies this. By uniqueness } \phi(\mathbf{s} \mathbf{X}) = s \phi(\mathbf{X}).$

$$\exp_{\mathrm{H}} t \, \phi(X+Y) = \Phi \circ \exp_{\mathrm{G}} \mathsf{t}(X+Y) = \Phi \left(\lim_{n \to \infty} \left(\exp_{\mathrm{G}} \left(\frac{\mathsf{t}X}{n} \right) \exp_{\mathrm{G}} \left(\frac{\mathsf{t}Y}{n} \right) \right)^n \right)$$

$$= \lim_{n \to \infty} \Phi\left(\exp_G\left(\frac{tX}{n}\right) \exp_G\left(\frac{tX}{n}\right)\right) \Phi \text{ is continuous}\right)$$

$$= \lim_{n \to \infty} \left(\left(\Phi \circ \exp_G \frac{tx}{n} \right) \Phi \circ \exp_G \frac{t}{n} \right) \Phi \text{ is homomorphism} \right)$$

$$= \lim_{n \to \infty} \left(\left(\exp_{H} \phi \left(\frac{t}{H} \right) \exp_{H} \phi \left(\frac{t}{H} \right) \right) \right)$$

$$= \lim_{n \to \infty} \Biggl(\Biggl(exp_H \frac{t \, \varphi(X)}{n} \Biggr) \Biggl(exp_H \frac{t \, \varphi(Y)}{n} \Biggr) \Biggr)^n$$

$$= \exp_{\mathrm{H}} \mathrm{t}(\phi(\mathrm{X}) + \phi(\mathrm{Y}))$$

By uniqueness $\phi(X + Y) = \phi(X) + \phi(Y)$.

Exercises. (Section 2.6)

$$\exp\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \neq \begin{pmatrix} e^a & b\frac{e^a-e^d}{a-d} \\ 0 & e^d \end{pmatrix}$$
 (where the right hand side is defined by taking limit when $a=d$.

8. Consider
$$X = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
 compute e^{tX} and e^{tY} by diagonalization. Visualize the curves $e^{tX} \cdot v$ and $e^{tY} \cdot v$ for $v \neq 0$.