$$gl(2n,R) = 5U(2n,R) = 5U(2n,R)$$

Lie(G):

- 1. $gI(2n, \mathbb{R})$: all matrices.
- 2. $\mathfrak{sl}(2n, \mathbb{R})$: $\operatorname{tr}(X) = 0$. Obtained by taking $\frac{d}{dt}\Big|_{t=0}$ on $\det A(t) = 1$ where $A(0) = \operatorname{Id}$ and $\frac{d}{dt}\Big|_{t=0} A(t) = X$.
- 3. $\mathfrak{so}(2n, \mathbb{R}): X = -X^T$.
- 4. $gI(2n, \mathbb{C})$: all complex matrices.
- 5. $\mathfrak{sp}(2n,\mathbb{C})$:

$$\left(\begin{pmatrix}0 & -Id\\Id & 0\end{pmatrix}\right)^{T} = \begin{pmatrix}0 & -Id\\Id & 0\end{pmatrix}.$$

- 6. $u(n): X = -X^*$
- 7. $\mathfrak{su}(n)$: $X = -X^*$ and tr(X) = 0.

Lie derivative:

$$ad(X) \cdot Y = [X, Y] = \frac{d}{dt} \bigg|_{t=0} \frac{d}{ds} \bigg|_{s=0} \exp tX \exp sY \exp(-tX)$$

For $\mathfrak{gl}(2n, \mathbb{R})$: XY - YX.

Adjoint action on $g = \text{Lie}(G) = T_1G$ in general: $Ad(g) \cdot Y = R_{g^{-1}} \cdot Y|_g$.

For $\mathfrak{gl}(2n, \mathbb{R})$: gYg^{-1} .

$$ad(X) = \frac{d}{dt}\Big|_{t=0} Ad(\exp tX).$$

Ad(g) can be understood as right multiplication by g^{-1} on (left-invariant) vector fields. Denote

 $Ad(g) \cdot Y = Y \cdot g^{-1}$. Obvious that

 $Ad(g \cdot h) = Ad(g) \circ Ad(h).$

$$Ad(g) \cdot [X,Y] = [Ad(g) \cdot X, Ad(g) \cdot Y]$$
:

$$Ad(g) \cdot [X, Y] = \frac{d}{dt} \Big|_{t=0} (Y \cdot \exp(-tX)) \cdot g^{-1} = \frac{d}{dt} \Big|_{t=0} (Y \cdot g^{-1}) \cdot (g \cdot (\exp(-tX)) \cdot g^{-1}) \Big|_{t=0}$$

$$= \frac{d}{dt}\Big|_{t=0} (Y \cdot g^{-1}) \cdot (\exp(-t X \cdot g^{-1})) = [Ad(g) \cdot X, Ad(g) \cdot Y]$$

For gI(n, \mathbb{R}): $2n \operatorname{tr}(X_1X_2) - 2 \operatorname{tr}(X_1)\operatorname{tr}(X_2)$.

Thus it is $2n \operatorname{tr}(X_1X_2)$ for $\mathfrak{sl}(n,\mathbb{R})$ which is positive definite on symmetric matrices and negative definite on skew-symmetric matrices (and hence indefinite on $\mathfrak{sl}(n,\mathbb{R})$).

Can verify by using the basis e_{ij} of $gI(n, \mathbb{R})$.

$$\operatorname{tr}(X \cdot) = n \operatorname{tr}(X) = \operatorname{tr}(\cdot X); \operatorname{tr}(X_1 \cdot (-) \cdot X_2) = (\operatorname{tr} X_1)(\operatorname{tr} X_2).$$

For $\mathfrak{su}(n)$: 2n $\operatorname{tr}(X_1X_2)$. Verify in a similar way. This is negative definite since $X_2 = -X_2^*$.

Adjoint action always preserve the Killing form:

$$\operatorname{tr}(ad(X_1) \circ ad(X_2)) = \operatorname{tr}(ad(Ad(g) \cdot X_1) \circ ad(Ad(g) \cdot X_2)).$$

$$ad(Ad(g) \cdot X_1) \circ ad(Ad(g) \cdot X_2) \cdot Y = [Ad(g) \cdot X_1, [Ad(g) \cdot X_2, Y]] = Ad(g)[X_1, [X_2, Ad(g^{-1}) \cdot Y]]$$

= $Ad(g) \circ ad(X_1) \circ ad(X_2) \circ Ad(g)^{-1}$

whose trace equals to $tr(ad(X_1) \circ ad(X_2))$.

Examples of Lie homomorphisms:

- 1. det: $GL(n, \mathbb{C}) \to \mathbb{C}^{\times}$. Ker = $SL(n, \mathbb{C})$.
- 2. $\mathbb{R} \to SO(2)$ rotation by $\theta \in \mathbb{R}$.
- 3. $Ad: G \to GL(\mathfrak{g})$. Correspondingly $ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is a Lie algebra homomorphism. Moreover Ad(g): $g \to g$ is a Lie algebra homomorphism.
- 4. $SU(2) \rightarrow SO(3)$ by acting on $\mathfrak{su}(2)$ (space of skew-Hermitian matrices) by gXg^{-1} . The adjoint action

preserves the Killing form which is just the standaru metric (ap solution) $SU(2) \cong \mathbb{S}^3$: Identify $\alpha + j \beta \in \mathbb{H}$ as $\begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix}$. Then $SU(2) = \{|\alpha + \beta j|^2 = 1\} \subset \mathbb{H}$.

Coniugate transpose is quaternionic conjugation. $SU(2) \cong \mathbb{S}^3$: Identify $\alpha + j \beta \in \mathbb{H}$ as $\begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix}$. Then $SU(2) = \{|\alpha + \beta j|^2 = 1\} \subset \mathbb{H}$. $= (A_x + j \overline{A_y}) + (j B_x - \overline{B_y})$ $\sim \begin{pmatrix} A - \overline{b} \\ B & \overline{b} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

 $\mathfrak{su}(2)$ is identified as Im \mathbb{H} . ($\alpha \in i\mathbb{R}$ and hence skew-Herm. & tr=1.) The adjoint action is $uxu^{-1} = ux\bar{u}$.

The homomorphism is 2:1. Consider preimage of Id: $uxu^{-1} = x$ for all $x \in \text{Im } \mathbb{H}$. Then $u \in \mathbb{R}$. But $|u|^2 = 1$, and hence $u = \pm 1$. Indeed $\pm u$ maps to the same rotation in SO(3). Hence $SO(3) = \mathbb{S}^3/\pm = \mathbb{RP}^3$.

Note that $ux\bar{u}$ fixes u and \bar{u} , and hence fixes $\frac{u-\bar{u}}{2} \in \text{Im } \mathbb{H}$. This spans the axis of rotation. Normalize $\frac{u-\bar{u}}{2}$ to h.

Then $u = \cos \theta/2 + h \sin \theta/2$ for some θ . Then $ux\bar{u}$ is rotation by θ . For instance take h = i, then $ux\bar{u} = e^{i\theta/2}$ (ai + bj + ck) $e^{-i\theta/2} = ai + e^{i\theta}$ (bj + ck) which is rotating the {j,k}-plane by θ . Thus the homomorphism is surjective.

5. Given a Lie homomorphism $\Phi: G \to H$, have the tangent map $\phi: g \to \mathfrak{h}$ with $\Phi \circ \exp_G(X) = \exp_H \circ \phi(X)$.

Consider $\Phi: SU(2) \to SO(3)$, $g \mapsto Ad(g)$. $\phi(X) = ad(X) = [X, -]$. Explicit: take the basis $E_1 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} E_2 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} E_3 = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ f su(2). Then

$$[E_1, E_2] = E_3, [E_2, E_3] = E_1, [E_3, E_1] = E_2. \text{ Thus}$$

$$ad(E_1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, ad(E_2) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, ad(E_3) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercises. (Section 3.9)

- 10. Show that there is a linear isomorphism $\phi: \mathfrak{su}(2) \to \mathbb{R}^3$ such that $\phi([X,Y]) = \phi(X) \times \phi(Y)$ (the cross product for \mathbb{R}^3).
- 11. Show that $\mathfrak{su}(2)$ and $\mathfrak{sl}(2,\mathbb{R})$ are not isomorphic Lie algebras.