Have $\exp \square : \mathfrak{gl}(n,\mathbb{C}) \to GL(n,\mathbb{C})$. The defining property is

$$\frac{d}{dt}\exp tX = X\Big|_{\exp tX} = (L_{(\exp tX)})_* X\Big|_0 = (\exp tX) \cdot X \text{ with } \exp 0 = 1_{GL(n)}.$$

(Since GL(n) is an open subset of $Mat_{n\times n}$, tangent space at any point is identified with $Mat_{n\times n}$.)

$$e^X = \sum_{m=0}^{\infty} \frac{X^m}{m!}$$

satisfies the defining properties.

Indeed it absolutely converges under the standard complete Hilbert-Schmidt matrix norm. (Note that $|XY| \leq |X| \cdot |Y|$. Apply Cauchy-Schwartz on each entry.)

From the definition,

$$1.e^{(X)} = e^{X^*}$$

1.
$$e^{(X)} = e^{X^*}$$
.
2. $e^{X+Y} = e^X e^Y = e^Y e^X$ if $XY = YX$.

3.
$$|e^X| \le e^{|X|}$$
.

$$4 e^{CXC^{-1}} = Ce^{X}C^{-1}$$

To **compute** e^X , take Jordan canonical form S + N where S is diagonal, N is nilpotent. Then $e^{C(S+N)C^{-1}} = Ce^S e^N C^{-1}$

exp is invertible in a small neighborhood of 0 and hence has inverse. Want to have

$$\log A = \sum_{m=1}^{\infty} \frac{(-1)^{m-1} (A-I)^m}{m} \text{ for } A \in GL(n) \text{ to be its inverse.}$$

The above series is **complex analytic** in the disc |z-1| < 1.

 $e^{\log z} = z$ holds since it holds on the interval (0,2) (identity theorem).

To talk about
$$\log e^w = w$$
, need $|e^w - 1| < 1$.
$$|e^w - 1| = \left| w + \frac{w^2}{2!} + \cdots \right| \le |w| + \frac{|w|^2}{2!} + \cdots = e^{|w|} - 1 < 1$$

if $|w| < \log 2$. Then by identity theorem $\log e^w = w$.

For diagonal matrix A, it is obvious that $e^{\log A} = A$. Since **every matrix is the limit of** diagonalizable matrices, this still holds for general matrices.

(Consider Jordan form. Then perturb diagonal. Have distinct eigenvalues.)

Similarly $\log e^X = X$, if $|e^X - I| < 1$. This is ensured by $|X| < \log 2$.

$$\exp \square : \mathfrak{gl}(n,\mathbb{C}) \to GL(n,\mathbb{C})$$
 is surjective.

Take Jordan canonical form. For each block $J = \lambda I + N = \lambda \left(I + \frac{N}{4}\right)$ onsider

$$\log J \coloneqq (\log \lambda)I + \sum_{m=1}^{\infty} \frac{(-1)^{m-1} \left(\frac{N^n}{\lambda}\right)}{m}$$

(Itti N/2) - Id) ...

which makes sense since $(N)^m = 0$ for m large enough.

Then $\exp \log J = J$: cannot use the previous argument since $\left| \frac{N}{J} \right|$ can be big (and *after* perturbing to diagonalizable matrices, the series may no longer converge).

Consider $J_t = \lambda \left(I + \frac{t N}{\lambda^2}\right)$ By previous result $\exp \log J_t = J_t$ for t small. Also both LHS and RHS are analytic in t (indeed log is now polynomial). Hence true for all t.

Note that exp \square **is NOT injective**: ex. circle. $\log \lambda$ has different branches. So exp is invertible only in a small neighborhood (so that we can consistently take the branch log 1 = 0.)

Note: exp: $\mathfrak{gl}(n,\mathbb{R}) \to GL(n,\mathbb{R})$ is NOT surjective. (Nor $\mathfrak{sl}(n,\mathbb{R}) \to SL(n,\mathbb{R})$.)

For instance take $\begin{pmatrix} -4 & 0 \\ 0 & -\frac{1}{4} \end{pmatrix}$. Its square root have at least four eigenvalues 2i, -2i,

 $\frac{i}{2}$, $-\frac{i}{2}$ (since the char. poly. for the square root, a real matrix, is invariant under conjagation).

Note: For compact Riemannian manifold, exp is surjective.

Even when *exp* is not surjective,

every g can be written as $\exp X_1 \dots \exp X_k$ for some X_1, \dots, X_k if G is connected:

The set of all such elements is both open and closed: exp is a local diffeomorphism on U around 0.

For $\exp X_1 \dots \exp X_k$, we have an open neighborhood $\exp X_1 \dots \exp X_k \cdot \exp U$ inside the set. Hence it is open.

If $g_i \to g$ where g_i are such elements, $g_i \in g \cdot \exp U$ for i big enough. $g^{-1}g_i = \exp X$. Hence $g = g_i \exp -X = \exp X_1 \dots \exp X_k \exp -X$. Thus it is closed.

In particular the **image of the exponential map may not be a subgroup**: the image generates the whole connected Lie group, but some elements may not lie in the image.

Also **exp may not be an open map** (even for compact Lie group): consider SU(2).

 $\begin{pmatrix} \pi i & 0 \\ 0 & -\pi i \end{pmatrix}$ su(2) is mapped to -1. Open neighborhood: two distinct eigenvalues (near πi and $-\pi i$) with eigen-directions close to (1,0) and (0,1).

Image under exp: same eigen-directions, exp of the eigenvalues.

But near $-1 \in SU(2)$, have $-\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ with eigenvectors (1,i) and (1,-i). They are not contained in the image and hence image is not open.

(The problem is that exp maps the whole unit sphere in $\mathfrak{su}(2)$ to a point.)

Exercises. (Section 2.6)

- 4. Using the Jordan canonical form, show that every complex square matrix is the limit of a sequence of diagonalizable matrices. (For instance consider the vectors $e_1 + \epsilon \ e_2 + \dots + \epsilon^{k-1} e_k$.)
- 10. Using log \square , show that for *X* ∈ gI(n, \mathbb{C}),

$$\lim_{m \to \infty} \left(1 + \frac{X}{m} \right)^m = e^X.$$

