Why representation?

Represent a group by matrices. Linear actions are the simplest symmetry. Physics: force (principle bundle) and matter (section of vector bundle).

Complex representation: $\Pi: G \to GL(V)$ where *V* is a complex vector space.

For Lie algebras, $\pi: g \rightarrow gI(V)$.

Recall group homomorphism induces algebra homomorphism (and vice versa if G is simply connected).

Thus Π gives $\pi = \frac{d}{dt}\Big|_{t=0} \Pi(e^{tx})$. Also $\pi \circ \operatorname{Ad}_g = \operatorname{Ad}_{\Pi(g)} \circ \pi = \Pi(g) \cdot \pi \cdot \Pi(g)^{-1}$.

Examples: standard representations of matrix groups; adjoint representations.

 $\begin{array}{c} \Pi_{i}(g) \mid G \mid \Pi_{2}(g) \\ V \rightarrow W \end{array}$

Faithful: the homomorphism is injective.

Irreducible: V has no non-trivial invariant subspace.

Unitary: there is a Hermitian metric on *V* such that $\Pi: G \to U(V)$. (Then can take \perp of invariant subspace) **Morphism** between representation: $V \to W$ which commutes with the action (intertwining).

Suppose G is connected.

$$g \xrightarrow{\pi} gl(V)$$

$$e^{xp} \downarrow C \downarrow e^{xp}$$

$$G \xrightarrow{\pi} GL(V)$$

1. Π is irreducible if and only if π is:

 $W \subset V$ invariant under G => invariant under g.

If W is invariant under g, then it is invariant under

 $\exp tX \in G$. But any element in *G* can be written as product of these.

2. $\Pi_1 \cong \Pi_2$ if and only if $\pi_1 \cong \pi_2$:

=> is obvious since $V \to W$ intertwines with the group actions implies it intertwines with the algebra actions. <=) $V \to W$ intertwines with $\pi_i(X)$, and hence $\exp \pi_i(X) = \Pi(\exp X)$, and hence $\Pi(g)$ for arbitrary g.

3. Given Π . Π : $G \rightarrow U(V) <-> \pi$: $g \rightarrow \mathfrak{u}(V)$:

-> we already have $\pi: g \to gI(V)$. It is obvious that the image is contained in u(V). <- $\Pi(\exp X) = \exp(\pi(X)) \in U(V)$. Any $g \in G$ is a product of $\exp X$.

Most important example:

$$SU(2) \to GL(\mathbb{C}^2)$$
, and hence $SU(2) \to SU\left(Sym^m\left(\left(\mathbb{C}^2\right)^*\right)\right)$. Explicitly
 $g \cdot f = (g^{-1})^* f = f(g^{-1} \cdot z)$.
Induces $\mathfrak{su}(2) \to \mathfrak{su}\left(Sym^m\left(\left(\mathbb{C}^2\right)^*\right)\right)$.
 $X \cdot f = \left.\frac{d}{dt}\right|_{t=0} f\left(g_t^{-1} \cdot z\right) = df\Big|_z \cdot (-X \cdot z)$.

Complexify: $\mathfrak{su} \otimes \mathbb{C} = \mathfrak{sl}_{\mathbb{C}}$ (any complex matrix is a sum of Hermitian and skew-Hermitian matrices.) Have $\mathfrak{sl}(2,\mathbb{C}) \to \mathfrak{sl}(Sym^m((\mathbb{C}^2)^*))$ defined by the same formula.

Suppose
$$f = z_1^l z_2^k (l + k = m)$$
. $df = l z_1^{l-1} z_2^k dz_1 + k z_1^l z_2^{k-1} dz_2$.
Let $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

 $X \cdot z_1^l z_2^k = l z_1^{l-1} z_2^k (-z_2) = -l z_1^{l-1} z_2^{k+1}.$ $Y \cdot z_1^l z_2^k = k z_1^l z_2^{k-1} (-z_1) = -k z_1^{l+1} z_2^{k-1}.$ $H \cdot z_1^l z_2^k = l z_1^{l-1} z_2^k (-z_1) + k z_1^l z_2^{k-1} (z_2) = (-l+k) z_1^l z_2^k.$ Eigenspace decomposition of H:

 $Sym^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right) = \bigoplus_{l+k=m} \mathbb{C} \cdot z_{1}^{l} z_{2}^{k}$ with eigenvalues k-l.

 $Sym^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right)$ is an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$:

Suppose W is an invariant subspace and $0 \neq f \in W$. Apply X enough times, it becomes zero. $0 \neq X^q \cdot f \in \mathbb{C} \cdot z_2^m$ for some q. Hence W contains $\mathbb{C} \cdot z_2^m$. Now take Y^p , then W contains everything.

Classification of irreducible representations of $\mathfrak{sl}(2, \mathbb{C})$:

it must be isomorphic to $V_{m+1} = Sym^m \left(\left(\mathbb{C}^2 \right)^* \right).$

Proof:

Have the basis {*H*, *X*, *Y*}. For *H*, there is an eigenvalue *a* and a non-zero eigenvector *v*. $X \cdot v$ is an eigenvector of *H* with eigenvalue a + 2: $H \cdot (X \cdot v) = X \cdot H \cdot v + 2X \cdot v = (a + 2) (X \cdot v)$. Similarly $Y \cdot v$ is an eigenvector of *H* with eigenvalue a - 2:

Since finite-dimensional, $v_0 \coloneqq X^N \cdot v \neq 0$ but $X^{N+1} \cdot v = 0$. (Such v_0 is called to be a highest-weight vector. Its H-eigenvalue λ_0 is called to be the highest weight.) Take $v_k = Y^k v_0$ which are eigenvectors of H with distinct eigenvalues $\lambda_0 - 2k$. $X \cdot v_0 = 0$. $X \cdot v_1 = Y \cdot X \cdot v_0 + H \cdot v_0 = \lambda_0 v_0$. $X \cdot v_2 = Y \cdot X \cdot v_1 + H \cdot v_1 = (2\lambda_0 - 2)v_1$. $X \cdot v_k = (k\lambda_0 - 2(1 + \dots + k - 1))v_{k-1} = k(\lambda_0 - (k - 1))v_{k-1}$.

For certain k, $v_k \neq 0$ but $v_{k+1} = 0$. $X \cdot v_{k+1} = 0$ and so $k = \lambda_0$.

(Up to this point, have not used irreducible.)

Span $\{v_0, ..., v_{\lambda_0}\}$ is invariant. Hence it must be the whole. It is isomorphic to $Sym^{\lambda_0}((\mathbb{C}^2)^*)$.

Can conclude the following for **not necessarily irreducible representations of** $\mathfrak{sl}(2, \mathbb{C})$: 1. All eigenvalues of H are integers. If an H-eigenvector v has $X \cdot v = 0$, then the eigenvalue is non-negative. 2. $\pi(X), \pi(Y)$ are nilpotent. 3. If k is an H-eigenvalue, so are -|k|, ..., |k|.

Since $\mathfrak{su}(2) \cong \mathfrak{so}(3)$, these are all the irreducible representations of $\mathfrak{so}(3)$. These are all the irreducible representations of SU(2) which is simply connected. But SO(3) is not!

Prop: V_{m+1} integrates to a **representation of SO(3)** if and only if *m* is even.

Proof: (m = 0 is the trivial representation.)Recall $ad: \mathfrak{su}(2) \cong \mathfrak{so}(3)$ which sends

 $E_{1} = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, E_{2} = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, E_{3} = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ to}$ $F_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, F_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, F_{3} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ $V_{m+1} = \text{Span}\{v_{0}, \dots, v_{m}\}, v_{j} \text{ are H-eigenvectors with eigenvalues } m - 2j.$ $E_{1} = \frac{i}{2}H \text{ has eigenvalue (m-2j)}i/2.$ If m is odd, $e^{2\pi E_{1}} = e^{2\pi F_{1}}$ has eigenvalue -1. But $e^{2\pi F_{1}} = \text{Id! Contradiction!}$

Suppose m is even. Want to say $SU(2) \rightarrow GL(V_{m+1})$ has kernel containing $\pm Id$, and hence descends to $SO(3) \rightarrow GL(V_{m+1})$. $-Id_{SU(2)} = e^{2\pi E_1}$ has eigenvalue 1 on v_j for all j, and hence acts as $Id_{GL(V_{m+1})}$.

Exercises. (Section 4.9)

- 2. Show that the adjoint representation and the standard representation of $\mathfrak{so}(3)$ are isomorphic.
- 13. Let π be a representation of $\mathfrak{sl}(2, \mathbb{C})$. Show that the eigenvalues of $\pi(H)$ for $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are integers (by using $e^{2\pi i H} = Id \in SU(2)$).