## Why representation?

Represent a group by matrices. Linear actions are the simplest symmetry.
Physics: force (principle bundle) and matter (section of vector bundle).

Complex representation: $\Pi: G \rightarrow G L(V)$ where $V$ is a complex vector space.
For Lie algebras, $\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$.
Recall group homomorphism induces algebra homomorphism (and vice versa if $G$ is simply connected).
Thus $\Pi$ gives $\boldsymbol{\pi}=\left.\frac{\boldsymbol{d}}{\boldsymbol{d} t}\right|_{\boldsymbol{t}=\mathbf{0}} \Pi\left(\boldsymbol{e}^{\boldsymbol{t} \boldsymbol{x}}\right)$. Also $\pi \circ \operatorname{Ad}_{g}=\operatorname{Ad}_{\Pi(g)} \circ \pi=\Pi(g) \cdot \pi \cdot \Pi(g)^{-1}$.
Examples: standard representations of matrix groups; adjoint representations.
Faithful: the homomorphism is injective.
Irreducible: $V$ has no non-trivial invariant subspace.
Unitary: there is a Hermitian metric on $V$ such that $\Pi$ : $G \rightarrow U(V)$. (Then can take $\perp$ of invariant subspace)
Morphism between representation: $V \rightarrow W$ which commutes with the action (intertwining).

Suppose G is connected.


## 1. $\Pi$ is irreducible if and only if $\pi$ is:

$W \subset V$ invariant under $G=>$ invariant under $\mathfrak{g}$.


If $W$ is invariant under $\mathfrak{g}$, then it is invariant under $\exp t X \in G$. But any element in $G$ can be written as product of these.

## 2. $\Pi_{1} \cong \Pi_{2}$ if and only if $\pi_{1} \cong \pi_{2}$ :

$=>$ is obvious since $V \rightarrow W$ intertwines with the group actions implies it intertwines with the algebra actions. $<=) V \rightarrow W$ intertwines with $\pi_{i}(X)$, and hence $\exp \pi_{i}(X)=\Pi(\exp X)$, and hence $\Pi(g)$ for arbitrary $g$.
3. Given $\Pi$. $\Pi$ : $\boldsymbol{G} \rightarrow \boldsymbol{U}(\boldsymbol{V})<->\boldsymbol{\pi}: \boldsymbol{g} \rightarrow \mathfrak{u}(V)$ :
$->$ we already have $\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$. It is obvious that the image is contained in $\mathfrak{u}(V)$.
$<-\Pi(\exp X)=\exp (\pi(X)) \in U(V)$. Any $g \in G$ is a product of $\exp X$.

## Most important example:

$S U(2) \rightarrow G L\left(\mathbb{C}^{2}\right)$, and hence $\boldsymbol{S U}(\mathbf{2}) \rightarrow \boldsymbol{S U}\left(\boldsymbol{S y m} \boldsymbol{m}^{\boldsymbol{m}}\left(\left(\mathbb{C}^{2}\right)^{*}\right)\right)$. Explicitly
$g \cdot f=\left(g^{-1}\right)^{*} f=f\left(g^{-1} \cdot z\right)$.
Induces $\mathfrak{s u}(2) \rightarrow \mathfrak{s u}\left(\operatorname{Sym}^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right)\right)$.
$X \cdot f=\left.\frac{d}{d t}\right|_{t=0} f\left(g_{t}^{-1} \cdot z\right)=\left.d f\right|_{z} \cdot(-X \cdot z)$.
Complexify: $\mathfrak{s u} \otimes \mathbb{C}=\mathfrak{s l}_{\mathbb{C}}$ (any complex matrix is a sum of Hermitian and skew-Hermitian matrices.)
Have $\mathfrak{s l}(\mathbf{2}, \mathbb{C}) \rightarrow \mathfrak{s l}\left(\boldsymbol{S y m}^{\boldsymbol{m}}\left(\left(\mathbb{C}^{2}\right)^{*}\right)\right)$ defined by the same formula.
Suppose $f=z_{1}^{l} z_{2}^{k}(l+k=m)$. $d f=l z_{1}^{l-1} z_{2}^{k} d z_{1}+k z_{1}^{l} z_{2}^{k-1} d z_{2}$.
Let $X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), Y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
$X \cdot z_{1}^{l} z_{2}^{k}=l z_{1}^{l-1} z_{2}^{k}\left(-z_{2}\right)=-l z_{1}^{l-1} z_{2}^{k+1}$.
$Y \cdot z_{1}^{l} z_{2}^{k}=k z_{1}^{l} z_{2}^{k-1}\left(-z_{1}\right)=-k z_{1}^{l+1} z_{2}^{k-1}$.
$H \cdot z_{1}^{l} z_{2}^{k}=l z_{1}^{l-1} z_{2}^{k}\left(-z_{1}\right)+k z_{1}^{l} z_{2}^{k-1}\left(z_{2}\right)=(-l+k) z_{1}^{l} z_{2}^{k}$.
Eigenspace decomposition of H :
$\operatorname{Sym}^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right)=\bigoplus_{l+k=m} \mathbb{C} \cdot z_{1}^{l} z_{2}^{k}$ with eigenvalues $k-l$.

$\operatorname{Sym}^{\boldsymbol{m}}\left(\left(\mathbb{C}^{2}\right)^{*}\right)$ is an irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$ :
Suppose W is an invariant subspace and $0 \neq f \in W$. Apply X enough times, it becomes zero.
$0 \neq X^{q} \cdot f \in \mathbb{C} \cdot z_{2}^{m}$ for some $q$. Hence W contains $\mathbb{C} \cdot z_{2}^{m}$. Now take $Y^{p}$, then W contains everything.
Classification of irreducible representations of $\mathfrak{s l}(2, \mathbb{C})$ :
it must be isomorphic to $V_{m+1}=\operatorname{Sym}^{m}\left(\left(\mathbb{C}^{2}\right)^{*}\right)$.

## Proof:

Have the basis $\{H, X, Y\}$.
For $H$, there is an eigenvalue $a$ and a non-zero eigenvector $v$.
$X \cdot v$ is an eigenvector of $H$ with eigenvalue $a+2$ :
$H \cdot(X \cdot v)=X \cdot H \cdot v+2 X \cdot v=(a+2)(X \cdot v)$.
Similarly $Y \cdot v$ is an eigenvector of $H$ with eigenvalue $a-2$ :
Since finite-dimensional, $v_{0}:=X^{N} \cdot v \neq 0$ but $X^{N+1} \cdot v=0$. (Such $v_{0}$ is called to be a highest-weight vector. Its H-eigenvalue $\lambda_{0}$ is called to be the highest weight.)
Take $v_{k}=Y^{k} v_{0}$ which are eigenvectors of H with distinct eigenvalues $\lambda_{0}-2 k$.
$X \cdot v_{0}=0$.
$X \cdot v_{1}=Y \cdot X \cdot v_{0}+H \cdot v_{0}=\lambda_{0} v_{0}$.
$X \cdot v_{2}=Y \cdot X \cdot v_{1}+H \cdot v_{1}=\left(2 \lambda_{0}-2\right) v_{1}$.
$X \cdot v_{k}=\left(k \lambda_{0}-2(1+\cdots+k-1)\right) v_{k-1}=k\left(\lambda_{0}-(k-1)\right) v_{k-1}$.
For certain $\mathrm{k}, v_{k} \neq 0$ but $v_{k+1}=0 . X \cdot v_{k+1}=0$ and so $k=\lambda_{0}$.
(Up to this point, have not used irreducible.)
$\operatorname{Span}\left\{v_{0}, \ldots, v_{\lambda_{0}}\right\}$ is invariant. Hence it must be the whole. It is isomorphic to $\operatorname{Sym}^{\lambda_{0}}\left(\left(\mathbb{C}^{2}\right)^{*}\right)$.

Can conclude the following for not necessarily irreducible representations of $\mathfrak{s l}(2, \mathbb{C})$ :

1. All eigenvalues of H are integers. If an H -eigenvector v has $X \cdot v=0$, then the eigenvalue is non-negative.
2. $\pi(X), \pi(Y)$ are nilpotent.
3. If $k$ is an H -eigenvalue, so are $-|k|, \ldots,|k|$.

Since $\mathfrak{s u}(2) \cong \mathfrak{s o}(3)$, these are all the irreducible representations of $\mathfrak{s o}(3)$. These are all the irreducible representations of $S U(2)$ which is simply connected. But $S O(3)$ is not!

Prop: $V_{m+1}$ integrates to a representation of $\mathbf{S O}(3)$ if and only if $m$ is even.
Proof: ( $m=0$ is the trivial representation.)
Recall $a d: \mathfrak{s u}(2) \cong \mathfrak{s p}(3)$ which sends
$E_{1}=\frac{1}{2}\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), E_{2}=\frac{1}{2}\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right), E_{3}=\frac{1}{2}\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ to
$F_{1}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right), F_{2}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right), F_{3}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
$V_{m+1}=\operatorname{Span}\left\{v_{0}, \ldots, v_{m}\right\}, v_{j}$ are H-eigenvectors with eigenvalues $m-2 j$.
$E_{1}=\frac{i}{2} H$ has eigenvalue (m-2j)i/2.
If m is odd, $e^{2 \pi E_{1}}=e^{2 \pi F_{1}}$ has eigenvalue -1 . But $e^{2 \pi F_{1}}=$ Id! Contradiction!
Suppose $m$ is even. Want to say $S U(2) \rightarrow G L\left(V_{m+1}\right)$ has kernel containing $\pm I d$, and hence descends to $\mathrm{SO}(3) \rightarrow \mathrm{GL}\left(\mathrm{V}_{\mathrm{m}+1}\right) .-\operatorname{Id}_{\mathrm{SU}(2)}=e^{2 \pi E_{1}}$ has eigenvalue 1 on $v_{j}$ for all j , and hence acts as $\operatorname{Id}_{\mathrm{GL}\left(\mathrm{V}_{\mathrm{m}+1}\right)}$.

## Exercises. (Section 4.9)

2. Show that the adjoint representation and the standard representation of $\mathfrak{s p}(3)$ are isomorphic.
3. Let $\pi$ be a representation of $\mathfrak{s l}(2, \mathbb{C})$. Show that the eigenvalues of $\pi(H)$ for $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ are integers (by using $\left.e^{2 \pi i H}=I d \in S U(2)\right)$.
