
Why representation? 
Represent a group by matrices.  Linear actions are the simplest symmetry.
Physics: force (principle bundle) and matter (section of vector bundle).

Complex representation: Π: → where	 is	a	complex	vector	space.
For	Lie	algebras,	π: → .
Recall	group	homomorphism	induces	algebra	homomorphism	 and	vice	versa	if	 is	simply	connected .		

Thus	 gives	 .		Also		 ∘ Ad Ad ∘ Π ⋅ ⋅ Π .

Examples:	standard	representations	of	matrix	groups;	adjoint	representations.

Faithful:	the	homomorphism	is	injective.
Irreducible:	V	has	no	non‐trivial	invariant	subspace.
Unitary:	there	is	a	Hermitian	metric	on	 such	that	Π: → .		 Then	can	take	 of	invariant	subspace
Morphism between	representation:	 → which	commutes	with	the	action	 intertwining .

Suppose	G	is	connected.

is	irreducible	if	and	only	if	 is:1.
⊂ invariant	under	 	invariant	under	 .

If	 is	invariant	under	 ,	then	it	is	invariant	under
exp ∈ .		But	any	element	in	 can	be	written	as	product	of	these.

≅ if	and	only	if	 ≅ :2.
	is	obvious	since	 → intertwines	with	the	group	actions	implies	it	intertwines	with	the	algebra	actions.
	 → intertwines	with	π ,	and	hence	exp π Π exp ,	and	hence	Π for	arbitrary	g.

Given	 . 	 : → <‐>  : → :3.
‐ 	we	already	have	π: → .		It	is	obvious	that	the	image	is	contained	in	 .
‐ Π exp	 exp ∈ .		Any	 ∈ is	a	product	of	exp	 .

Most	important	example:

2 → ,	and	hence	 →
∗

.		Explicitly

⋅ ∗ ⋅ .

Induces	 2 →
∗

.

⋅ ⋅ ⋅ ⋅ .

Complexify:  ⊗ any	complex	matrix	is	a	sum	of	Hermitian	and	skew‐Hermitian	matrices.

Have	 , →
∗

defined	by	the	same	formula.

Suppose	 .		 	 .

Let	 0 1
0 0

, 	 0 0
1 0

, 1 0
0 1

.
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⋅ 	 .
⋅ 	 .
⋅ 	 .

Eigenspace	decomposition	of	H:
∗

⊕ ⋅ with	eigenvalues	 .

∗
is	an	irreducible	representation	of	 , :

Suppose	W	is	an	invariant	subspace	and	0 ∈ .		Apply	X	enough	times,	it	becomes	zero.		
0 ⋅ ∈ ⋅ for	some	 .		Hence	W	contains	 ⋅ .  Now take  , then W contains everything.

Classification	of	irreducible	representations	of		 , :

it	must	be	isomorphic	to	
∗
.

Proof:
Have	the	basis	 , , .
For	 ,	there	is	an	eigenvalue	 and	a	non‐zero	eigenvector	 .
⋅ is	an	eigenvector	of	 with	eigenvalue	 2:
⋅ ⋅ ⋅ ⋅ 2	 ⋅ 2 	 ⋅ .

Similarly	 ⋅ is	an	eigenvector	of	 with	eigenvalue	 2:

Since	finite‐dimensional,	 ≔ ⋅ 0 but	 ⋅ 0.		 Such	 is	called	to	be	a	highest‐weight	vector.		
Its	H‐eigenvalue	λ is	called	to	be	the	highest	weight.
Take	 which	are	eigenvectors	of	H	with	distinct	eigenvalues	λ 2 .
⋅ 0.
⋅ ⋅ ⋅ ⋅ λ .
⋅ ⋅ ⋅ ⋅ 2λ 2 .
⋅ λ 2 1 ⋯ 1 λ 1 .

For	certain	k,	 0 but	 0.		 ⋅ 0 and	so	 λ .
Up	to	this	point,	have	not	used	irreducible.

Span , … , is	invariant.		Hence	it	must	be	the	whole.		It	is	isomorphic	to	
∗
.

All	eigenvalues	of	H	are	integers.		If	an	H‐eigenvector	v	has	 ⋅ 0,	then	the	eigenvalue	is	non‐negative.1.
π , π are	nilpotent.2.
If	 is	an	H‐eigenvalue,	so	are	 | |, … , | |.3.

Can	conclude	the	following	for	not	necessarily	irreducible	representations	of	 , :

Since	 2 ≅ 3 ,	these	are	all	the	irreducible	representations	of	 3 .		These	are	all	the	irreducible	
representations	of	SU 2 	which	is	simply	connected.		But	SO 3 	is	not!
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Prop:	 integrates	to	a	representation	of	SO(3) if	and	only	if	 is	even.
Proof:	 0 is	the	trivial	representation.
Recall	 : 2 ≅ 3 which	sends	

0
0

, 0
0
, 0 1

1 0
to

0 0 0
0 0 1
0 1 0

,
0 0 1
0 0 0
1 0 0

,
0 1 0
1 0 0
0 0 0

.

Span ,… , , are	H‐eigenvectors	with	eigenvalues	 2 .

has	eigenvalue	 m‐2j i/2.

If	m	is	odd,	 has	eigenvalue	‐1.		But	 Id!	Contradiction!

Suppose	m	is	even.		Want	to	say	SU 2 → GL V has	kernel	containing	 Id,	and	hence	descends	to	
SO 3 → GL V .		 Id has	eigenvalue	1	on	 for	all	j,	and	hence	acts	as	Id .

Show that the adjoint representation and the standard representation of  3 are	isomorphic.2.

Let	 be	a	representation	of	 2, .		Show	that	the	eigenvalues	of	π for	 1 0
0 1

are	integers	 by	

using	 ∈ 2 .

13.

Exercises.		(Section	4.9)
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