Basis:

\[
H_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix},
H_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},
\]

\[
X_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
X_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},
X_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

Then \([H_1, H_2] = 0, [H_1, X_1] = 2X_1, [H_1, X_2] = -X_2, [H_1, X_3] = X_3, [H_2, X_1] = -X_1, [H_2, X_3] = X_3, [H_2, Y_1] = -2Y_1,\) and so on;

\([X_1, Y_1] = H_1, [X_2, Y_2] = H_2, [X_3, Y_3] = H_1 + H_2, [X_1, X_2] = X_3, [Y_1, Y_2] = -Y_3\) and so on.

Given a representation \(\pi\), consider simultaneous eigenspaces of \(\pi(H_i)\): first take an eigenspace \(U\) of \(\pi(H_1)\); since \([\pi(H_1), \pi(H_2)] = 0\), \(\pi(H_2)\) preserves \(U\) and has an eigenspace in \(U\).

Given a simultaneous eigenvector \(v\), have eigenvalues \(m_i\) of \(\pi(H_i)\).

\(\mu = (m_1, m_2) \in \mathfrak{h}^*\) is called a \textbf{weight} for \(\pi\), where \(\mathfrak{h} = \text{Span}(H_1, H_2)\).

The space of all such simultaneous eigenvectors is called the \(\mu\)-\textbf{weight space}. Its dimension is called to be the multiplicity of \(\mu\).

\(m_i\) \textbf{are integers}: restrict the representation to \(\langle H_i, X_i, Y_i \rangle \cong \mathfrak{sl}(2, \mathbb{C})\).

Now apply the above concept to the adjoint representation. The corresponding non-zero weights are called \textbf{roots}; elements in a weight space are called \textbf{root vectors}.

For \(\mathfrak{sl}(2, \mathbb{C})\) the root vectors and roots are

<table>
<thead>
<tr>
<th>(X)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>-2</td>
</tr>
</tbody>
</table>

For \(\mathfrak{sl}(3, \mathbb{C})\) the root vectors and roots are

\(X_1\)	\(\alpha_1 = (2, -1)\)
\(X_2\)	\(\alpha_2 = (-1, 2)\)
\(X_3\)	\((1, 1)\)
\(v\)	\((-2, 1)\)
\begin{tabular}{ |l|l| }
\hline
X_3 & (1,1) \\
Y_1 & (-2,1) \\
Y_2 & (1,-2) \\
Y_3 & (-1,-1) \\
\hline
\end{tabular}

\[\alpha_i\] are called positive simple roots. All other roots are linear combinations of them with coefficients either all non-negative or all non-positive.

Prop: Let Z_α be a root vector. For a representation of $\mathfrak{sl}(3, \mathbb{C})$, $\pi(Z_\alpha)$ sends μ-weight space to $(\mu + \alpha)$-weight space.

Proof: let $0 \neq \nu \in \mu = (m_1, m_2)$-weight space of π. \(\alpha = (a_1, a_2) \).

\[
\pi(H_i) \cdot \pi(Z_\alpha) \nu = \pi(Z_\alpha) \cdot \pi(H_i) \nu + \pi([H_i, Z_\alpha]) \nu = m_i \pi(Z_\alpha) \nu + a_i \pi(Z_\alpha) \nu = (m_i + a_i) \pi(Z_\alpha) \nu.
\]

QED

Def: The weights μ_1 is **higher** than μ_2 if $\mu_1 - \mu_2 = a \alpha_1 + b \alpha_2$ for some $a, b \in \mathbb{R}_+$. It gives a partial ordering. (α_1 is neither higher nor lower than $\alpha_2.$)

Highest weight representation with weight μ: There exists a weight vector $\nu \neq 0$ corresponding to μ such that $\pi^{(j)}(\nu) = 0$ for all j, and ν is cyclic (that is $V = g \cdot \nu$).

By definition μ is really the highest weight and it has multiplicity one: By keep on taking Y_i on ν, get an invariant subspace which must be V.

it is invariant: A product of operations can always be expressed in terms of $\pi(Y_1)^{p_1} \pi(Y_2)^{p_2} \pi(Y_3)^{p_3} \pi(H_1)^{q_1} \pi(H_2)^{q_2} \pi(H_3)^{q_3} \pi(X_1)^{r_1} \pi(X_2)^{r_2} \pi(X_3)^{r_3}$. Acting on ν, it becomes scaling of $\pi(Y_1)^{p_1} \pi(Y_2)^{p_2} \pi(Y_3)^{p_3}.$

Y_i decrease the weight. Hence μ is the unique highest weight, and the μ-weight space is one-dimensional: $\mathbb{C} \cdot \nu$.

CAUTION: V is cyclic does not imply it is irreducible: For instance take $V_2 \oplus V_3$ of $\mathfrak{sl}(2, \mathbb{C})$. Then $\nu_2 + \nu_3$ is cyclic (where ν_i are highest weight vector of V_i).

Indeed irreducible \iff every non-zero vector is cyclic.

Irreducible \iff highest weight representation.

Proof.
Irreducible V is a direct sum of weight spaces:
There exists a μ-weight space V_μ over \mathbb{C}. Z_α sends V_μ to $V_{\mu+\alpha}$ (and H_i preserve V_μ). Then keep on taking Z_α, get an invariant subspace which is V itself. $V_{\mu_1} \cap V_{\mu_2} = \{0\}$ if $\mu_1 \neq \mu_2$.

Since V is finite-dimensional, there must be a highest weight. A corresponding weight vector v must have $\mathfrak{h}(v) v = 0$. v is cyclic since V is irreducible. Hence V is a highest weight representation.

\[\leq \]
Any finite dimensional representation of $\mathfrak{sl}(3,\mathbb{C})$ corresponds to that of $SU(3)$ which is simply connected and compact. Hence it must be completely reducible. Each irreducible part is a direct sum of weight spaces. Hence the highest weight space, which has dimension one, must belong to one irreducible part. But it is cyclic, and hence the whole V is that part.

QED.

Theorem:
Irreducible representation V of $\mathfrak{sl}(3,\mathbb{C}) \leftrightarrow (m_1, m_2) \in \mathbb{Z}_{\geq 0}^2$ where the correspondence is given by taking the highest weight.

Proof:

\rightarrow

Take the highest weight.
m_i are non-negative:
Restrict to $\langle H_i, X_i, Y_i \rangle \cong \mathfrak{sl}(2,\mathbb{C})$.

This is injective:
Suppose V and W have the same highest weight with weight vectors v and w. Consider the subspace U generated by $(v, w) \in V \oplus W$. (v, w) is a weight vector (since v and w have the same weight) which is highest cyclic. Hence U is irreducible. The projection maps $U \to V$ and $U \to W$ are morphisms and non-zero, and hence are isomorphisms by Schur's Lemma.

This is surjective:
Standard representation $V = \mathbb{C}^3$: since
\[H_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad H_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \]

the standard basic vectors are weight vectors with \(\mu = (1,0), (-1,1), (0,-1) \). Recall \(\alpha_1 = (2, -1), \alpha_2 = (-1,2) \). Hence (1,0) is the highest weight and \(e_1 \) is a highest weight vector which is cyclic.

Dual of standard representation \(V^* \). The action is right multiplication by \(-X\) on row vectors. The standard row vectors have weights \(\mu = (-1,0), (1, -1), (0,1) \). (0,1) is the highest weight and \(e_3^* \) is a highest weight vector.

Then consider \(V \otimes^{m_1} \otimes (V^*) \otimes^{m_2} \).

\(\nu_{m_1,m_2} = e_1^{\otimes m_1} \otimes (e_3^*)^{\otimes m_2} \) has weight \((m_1, m_2) \).

Take the invariant subspace generated by \(\nu_{m_1,m_2} \). Then it is a highest weight representation with highest weight \((m_1, m_2) \). Hence it is irreducible.

QED

Exercises. (Section 6.9)

6. Find the weights and multiplicities of the (2,0)-highest weight representation of \(sl(3, \mathbb{C}) \).

8. Show that the space of homogeneous polynomials of degree \(m \) in three variables is the (0,m)-highest weight representation of \(sl(3, \mathbb{C}) \).