# Weyl group of SU(3)

Sunday, March 11, 2018 12

 $\mathfrak{h}_{\mathbb{Z}} \coloneqq \mathbb{Z} \cdot \{H_1, H_2\} \subset i \cdot \mathfrak{su}(3) = \mathfrak{su}(3) \otimes \mathbb{C}.$  Killing form  $tr(X_1X_2)$  restricts to be metric on  $i \cdot \mathfrak{su}(3)$ . Use the metric to identify Cartan subalgebra  $\mathfrak{h}_{\mathbb{R}} \cong \mathfrak{h}_{\mathbb{R}}^*$ . Standardize the metric (rather than the lattice) of  $\mathfrak{h}_{\mathbb{R}}^*$ .





 $H \longleftrightarrow 2H^* = d$ 

 $H' \cdot H' = \frac{H}{2} \cdot \frac{H}{2} = \frac{1}{2}$ 

 $a \cdot H' = 1$ 

Direct computation gives:  $H_i \cdot H_i = 2$ ,  $H_1 \cdot H_2 = -1$ .  $H_1 \leftrightarrow 2H_1^* - H_2^* = \alpha_1$ ,  $H_2 \leftrightarrow 2H_2^* - H_1^* = \alpha_2$ .  $H_1^* \leftrightarrow \frac{2H_1 + H_2}{3}$ ,  $H_2^* \leftrightarrow \frac{2H_2 + H_1}{3}$ .  $\angle (H_1^*, H_2^*) = \frac{\pi}{3}$ . Moreover  $\alpha_i \cdot H_i^* = \delta_{ij}$ .

SU(3) has adjoint action on  $\mathfrak{su}(3)$  and hence  $\mathfrak{sI}(3,\mathbb{C})$ .

N: subgroup of SU(3) preserving  $\mathfrak{h}$ . Z: subgroup of SU(3) that fixes every element of  $\mathfrak{h}$ . Z is a normal subgroup of N.  $W \coloneqq N/Z$ : the Weyl group for SU(3).

Theorem: For any representation, the set of weights has W-symmetry. Namely,

if  $\lambda \in \mathfrak{h}^*$  is a weight, then  $w \cdot \lambda$  is also a weight with the same multiplicity.

### **Proof:**

For  $v \in V_{\lambda}$ :  $\lambda$ -weight space,  $H \cdot v = (\lambda, H) \ v \ \forall H \in \mathfrak{h}$ . w = [g] for  $g \in N \subset SU(3)$ . w acts on  $\mathfrak{h}^*$  by  $(w \cdot \lambda, H) = \lambda (Ad_g^{-1} \cdot H) (\lambda, g^{-1}Hg)$ .

Replace H by  $g^{-1}Hg \in \mathfrak{h}$ ,  $g^{-1}Hg \cdot v = (\lambda, g^{-1}Hg) \ v = (w \cdot \lambda, H) \ v$ . Thus  $H \cdot (g \cdot v) = (w \cdot \lambda, H)(g \cdot v)$ . (Here we have integrated the action of  $\mathfrak{su}(3)$  to SU(3)).

Prop: W is the permutation group on three elements (namely the three weights of the standard representation).

Then  $g \cdot V_{\lambda}$  is the  $(w \cdot \lambda)$ -weight space.

#### **Proof:**

Recall the standard representation  $\mathbb{C}^3$  of SU(3) has weight spaces  $\mathbb{C} \cdot e_i$  for i=1,2,3. W permutes the weight spaces. This gives  $W \to S_3$ .

## **Surjective:**

Given any permutation, we can realize it by a permutation matrix U which permutes the basic vectors. (It lies in SU(3) since it preserves metric. Take a basic vector e to -e if necessary to keep orientation).  $[U] \in W$ : if H is diagonal,  $UHU^{-1}$  is still diagonal since  $U^{-1}e_i$  is a basic vector and hence H acts by scaling. Thus U preserves  $\mathfrak{h}$ .

### Injective:

If  $[U] \mapsto \mathrm{Id}$ , then U is diagonal. Then  $UHU^{-1} = H$  for any  $H \in \mathfrak{h}$ , and hence  $[U] = 1 \in W$ . QED



standard representation

Conclusion:  $W \cong S_3$  is the symmetry group of the equilateral triangle, which acts by reflections about  $\alpha_i^{\perp}$ .

## **Integral structure**:

 $\mathfrak{h}_{\mathbb{Z}} = \mathbb{Z} \cdot \{H_1, H_2\} \subset \mathfrak{h}_{\mathbb{R}}. \ \mathfrak{h}_{\mathbb{Z}}^* = \operatorname{Hom}(\mathfrak{h}_{\mathbb{Z}}, \mathbb{Z}) \subset \mathfrak{h}_{\mathbb{R}}^*.$ 

**Dominant structure:** 

 $\mathfrak{h}_{\mathbb{Z},+} = \mathbb{Z}_{\geq 0} \cdot \{H_1, H_2\}. \ \mathfrak{h}_{\mathbb{Z},+}^* = \operatorname{Hom}(\mathfrak{h}_{\mathbb{Z},+}, \mathbb{Z}_{\geq 0}).$ 



#### **Theorem:**

For the highest weight representation  $V_{\mu}$ ,

 $\lambda \in \mathfrak{h}_{\mathbb{Z}}^*$  is a weight (with non-zero multiplicity) if and only if  $\lambda \in (\mu + \mathbb{Z} \cdot \langle \alpha_1, \alpha_2 \rangle) \cap \text{Conv}(W \cdot \mu)$ .



Fig. 5.4. Highest weight (1,2)



**Fig. 5.5.** Highest weight (2,2)

### Proof:

=>)

 $V_{\mu}$  is spanned by  $Y_{k_1} \dots Y_{k_j} \cdot v$  where v is the highest weight vector.

These are weight vectors with weights  $\lambda \in \mu - \mathbb{Z} \cdot \langle \alpha_1, \alpha_2 \rangle$ .

 $w \cdot \lambda \in \mathfrak{h}_{\mathbb{Z},+}^*$  for some  $w \in W$ . Also  $w \cdot \lambda \leq \mu$  since it is still a weight.

Hence it belongs to the shaded quadrilateral.

 $w_{\alpha_i}$  acts as reflection about  $\alpha_i^{\perp}$ . Hence the vertices of the quadrilateral are  $0, \mu, \frac{w_{\alpha_1} \cdot \mu + \mu}{2}, \frac{w_2 \cdot \mu + \mu}{2}$ 

11 11 1 1 2 2747

of the quadrilateral are 0,  $\mu$ ,  $\frac{w_{\alpha_1} \cdot \mu + \mu}{2}$ ,  $\frac{w_2 \cdot \mu + \mu}{2}$  which all belong to  $Conv(W \cdot \mu)$ .

<=) (no hole in between)





**Fig. 5.4.** Highest weight (1,2)

First each element w in  $(\mu - \mathbb{Z}_{\geq 0} \cdot \alpha_i) \cap \text{Conv}(W \cdot \mu)$  (for i=1,2) is a weight by restricting to  $\langle H_i, X_i, Y_i \rangle \cong \mathfrak{sl}(2, \mathbb{C})$ .

Then each element in  $W(-\mathbb{Z}_{\geq 0} \cdot \alpha_j f)$  Conv $(W \cdot \mu)$  (for j = 1,2,3) is a weight by restrictly to  $\langle H_j, X_j, Y_j \rangle \cong \mathfrak{sl}(2, \mathbb{C})$  (where  $H_3 = H_1 + H_2$ ). This covers all the elements in  $(\mu + \mathbb{Z} \cdot \langle \alpha_1, \alpha_2 \rangle) \cap \text{Conv}(W \cdot \mu)$ .

# Exercises. (Section 6.9)

- 10. Classify the irreducible representations of  $\mathfrak{sl}(3,\mathbb{C})$  whose sets of weights are invariant under  $-\mathrm{Id}$  on  $\mathfrak{h}_{\mathbb{R}}^*$ .
- 11. For the highest weight representation  $V_{\lambda}$ , show that the  $(\mu \alpha_1 \alpha_2)$ -weight space has multiplicity at most two, and it is spanned by

 $Y_1 \cdot Y_2 \cdot v_0$  and  $Y_2 \cdot Y_1 \cdot v_0$ where  $v_0$  is a highest weight vector.