Abstract root system

Thursday, March 22, 2018 1:44 PM

Root system $R \subset E$:

- 1. R spans E.
- 2. For $\alpha \in R$, $\pm \alpha$ are the only multiples of α which belong to R.
- 3. $s_{\alpha} \cdot \beta \in R$ for $\alpha, \beta \in R$.

4.
$$\frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$$
.

Weyl group: the group generated by s_{α} .

Can be identified as a subgroup of the permutation group of R (and hence is finite if R is finite).

If $R \subset E$ and $S \subset F$ are root systems, then so is $R \cup S \subset E \oplus F$.

Morphism of root system:

linear map A with $A(R) \subset S$ and commute with Weyl action:

$$A(s_{\alpha} \cdot \beta) = s_{A\alpha} \cdot (A\beta).$$

Note that it may not preserve metric. (Allow scaling. Otherwise too many non-isomorphic root systems.)

Prop. let α , β be linearly independent roots.

WLOG let $|\alpha| \ge |\beta|$. Then either

- 1. $\langle \alpha, \beta \rangle = 0$.
- 2. $\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle$ and the angle between the two lines is $\frac{\pi}{3}$.
- 3. $\langle \alpha, \alpha \rangle = 2 \langle \beta, \beta \rangle$ and the angle between the two lines is $\frac{\pi}{4}$.
- 4. $\langle \alpha, \alpha \rangle = 3 \langle \beta, \beta \rangle$ and the angle between the two lines is $\frac{\hat{\pi}}{6}$.

Proof:

$$m_1 = \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z} \text{ and } m_2 = \frac{2\langle \alpha, \beta \rangle}{\langle \beta, \beta \rangle} \in \mathbb{Z}.$$

$$m_1 m_2 = 4 \cos^2 \theta .$$

Hence $0 \le m_1 m_2 \le 4$.

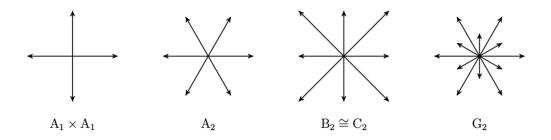
Five cases: $m_1m_2=0,1,2,3,4$. Remaining is plane geometry. QED

Cor:

Angle between roots α and β is strictly obtuse $=> \alpha + \beta$ is root. strictly acute $=> \alpha - \beta$ and $\beta - \alpha$ are roots.

Proof:

Consider $s_{\alpha} \cdot \beta$ which is a root. QED



 \mathbf{R}^{\vee} : set of all coroots $H_{\alpha} = \frac{2\alpha}{\langle \alpha, \alpha \rangle}$.

Prop. R^{\vee} is also a root system and it has the same Weyl group. $(R^{\vee})^{\vee} = R$.

Proof:

Condition 1 and 2 for root system are obvious.

Direct check that

$$\frac{2H_{\alpha}}{\langle H_{\alpha}, H_{\alpha} \rangle} = \alpha.$$

$$(\text{Hence } (R^{\vee})^{\vee} = R.)$$

$$\frac{2\langle H_{\alpha}, H_{\beta} \rangle}{\langle H_{\alpha}, H_{\alpha} \rangle} = \langle \alpha, H_{\beta} \rangle = \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}.$$

$$s_{H_{\alpha}} \cdot H_{\beta} = s_{\alpha} \cdot H_{\beta} = \frac{2}{\langle \beta, \beta \rangle} s_{\alpha} \cdot \beta = \frac{2}{\langle s_{\alpha} \cdot \beta, s_{\alpha} \cdot \beta \rangle} s_{\alpha} \cdot \beta = H_{s_{\alpha} \cdot \beta}.$$
QED

Base Δ (set of all positive simple roots): a subset of R which is a basis of E, and every root is an integer combination in Δ with coefficients of the same sign.

Any two vectors in Δ have right or obtuse angle:

Otherwise $\alpha - \beta$ would be a root, contradicting that all coefficients are the same sign.

Construction of a base:

Take a hyperplane not containing any root of R (take H not in any α^{\perp} , and take H^{\perp}).

Take R^+ to be the roots in one side.

Prop. The set Δ of indecomposible elements of R^+ is a base. (Indecomposible means $\alpha \neq \beta + \gamma$ for any $\beta, \gamma \in R^+$.) **Proof**:

Any roots in R^+ is an integer combination of Δ with positive coefficients:

Keep on splitting $\alpha = \beta + \gamma$ for $\beta, \gamma \in \mathbb{R}^+$. Must terminate in finite steps: the distance of α from H^{\perp} is strictly decreasing.

Any other roots are $-\alpha$ for $\alpha \in R^+$. Hence **any root is an integer combination of** Δ **with coefficients of the same sign**.

Δ is linearly independent:

Suppose $\sum_{\alpha} c_{\alpha} \alpha = \sum_{\beta} d_{\beta} \beta$ where the coefficients are all positive (and the sums are over disjoint subsets of Δ). Consider its norm squared: $\sum c_{\alpha} d_{\beta} \langle \alpha, \beta \rangle$.

 $\langle \alpha, \beta \rangle \leq 0$ for any distict $\alpha, \beta \in \Delta$, and so the above has to be zero: Otherwise $\alpha - \beta$ and $\beta - \alpha$ would be roots, and one of them belongs to R^+ , contradicting that coefficients have the same sign.

Thus $\sum_{\alpha} c_{\alpha} \alpha = \sum_{\beta} d_{\beta} \beta = 0$ and all coefficients are positive. But all α and β are in one side of H, and so this is impossible. QED

Any base must arise in this way, namely, there is a hyperplane not containing any roots such that the base is the set of indecomposible elements in one side of the hyperplane:

Take an element h in the dual cone $\{h \in E^*: (h, \alpha) > 0 \ \forall \alpha \in \Delta\}$. Then Δ and R^+ is contained in one side of h^{\perp} . R^- is contained in the other side.

Taking the indecomposable roots in the positive side of h^{\perp} gives a base. This is Δ : both are base and hence have the same number of elements. $\alpha \in \Delta$ is indecomposable: suppose $\alpha = \beta + \gamma$ for $\beta, \gamma \in R^+$. Expressing as positive combinations of the base Δ , it forces β, γ are along the same direction of α and hence can only be α itself, impossible.

Prop. If Δ is a base for R, then Δ^{\vee} is a base for R^{\vee} .

Proof: From above Δ arises as indecomposible roots on one side of a hyperplane. α^{\vee} for $\alpha \in R^+$ lie on the same side, and that for $\alpha \in R^-$ lie on the other side. Thus indecomposible coroots on the positive side gives rise to a base Δ_0^{\vee} for R^{\vee} .

 $\Delta^{\vee} = \Delta_0^{\vee}$: they have the same number of elements.

 $H_{\alpha} \in \Delta^{\vee}$ is indecomposible: suppose $H_{\alpha} = H_{\beta} + H_{\gamma}$ for $\beta, \gamma \in \mathbb{R}^+$.

Expressing as positive combinations of the base $\Delta \ni \alpha$, it forces β , γ are along the same direction of α and hence can only be α itself, impossible.

Weyl chambers:

Connected components of $E - \bigcup_{\alpha} \alpha^{\perp}$.

Dominant (or fundamental) chamber C (relative to Δ):

 $\langle \alpha, H \rangle > 0$ any $H \in C$ and $\alpha \in \Delta$.

{Base Δ } <-> {Weyl chamber C}:

-> take the dominant chamber relative to Δ .

It is the **dual cone** $\{H \in E^*: (\alpha, H) > 0 \ \forall \alpha \in \Delta\}$ which is a Weyl chamber since $(\alpha, H) \neq 0$ for any $\alpha \in R$.

<- Take any $H \in C$. H^{\perp} does not contain any root and hence the indecomposible roots on the side $(\alpha, H) > 0$ define a base.

For all other elements $H' \in C$, since H' and H are in the same connected component of $E - \bigcup_{\alpha} \alpha^{\perp}$, (α, H_t) can never be zero and

hence cannot change sign for a path H_t connecting them.

Prop. Given a root, there exists a base containing it.

Proof: A base corresponds to a chamber. Given a root α , there is a chamber which has a facet given by α^{\perp} (and $(H,\alpha) > 0$ for H inside the chamber). $H^{>0}$ produces a base. α is indecomposible: We can take H very close to the hyperplane α^{\perp} such that (H,α) is minimal among all positive roots. QED

Prop. The Weyl group W is generated by s_{α} where $\alpha \in \Delta$. It acts faithfully and transitively on the set of Weyl chambers. (Hence as sets, $W \cong \{\text{Weyl chambers}\} \cong \{\text{Bases}\}$.)

Proof:

Let $W' \subset W$ be generated by s_{α} for $\alpha \in \Delta$.

Let *C* be the dominant chamber.

Want: for H' in any chamber, there is $w \in W'$ such that $w \cdot H' \in C$. Suppose H' not in C. So there is a wall in between: there exists $\alpha \in \Delta$ such that $(\alpha, H') < 0$.

Reflection along this wall decreases the distance: Fix $H \in C$.

$$|H'-H|^2-|s_\alpha\cdot H'-H|^2=-\frac{4\langle\alpha,H'\rangle}{\langle\alpha,\alpha\rangle}\langle\alpha,H\rangle>0.$$

Keep on doing this, gradually H' is reflected into C since W' is finite. Hence W', and hence W, acts on Weyl chambers transitively. Faithfulness is obvious.

For any root $\beta \in R$, $\beta \in \Delta_{C'}$ for some chamber C'. By above there exists some $w \in W'$ such that $w \cdot C' = C$. Then $w \cdot \beta \in \Delta$. $s_{\beta} = w^{-1} \cdot s_{w \cdot \beta} \cdot w \in W'$. Hence W = W'. QED

Minimal expression: Write $w \in W$ in a minimal product of reflections associated to elements in Δ .

Prop. Two distinct elements in \overline{C} cannot lie in the same orbit of W.

Proof: Want to say $H' \neq w \cdot H$ for any w. Induction on length of minimal expression.

Let $1 \neq w = s_{\alpha_1} \dots s_{\alpha_k}$ be a minimal expression $(\alpha_i \in \Delta)$.

Then C and $w \cdot C$ are on different sides of α_1^{\perp} :

Again use induction. Suppose C and $s_{\alpha_1} \dots s_{\alpha_k} \cdot C$ are on the same side. So $s_{\alpha_1} \dots s_{\alpha_{k-1}} \cdot C$ is on another side by inductive assumption. Then $s_{\alpha_k} \cdot C$ and C are on different sides of $(u^{-1} \cdot \alpha_1)^{\perp}$ where $u = s_{\alpha_1} \dots s_{\alpha_{k-1}}$. But then $(u^{-1} \cdot \alpha_1)^{\perp} = \alpha_k^{\perp}$ and so $s_{\alpha_k} = s_{u^{-1} \cdot \alpha_1} = u^{-1} s_{\alpha_1} u$. Then $w = u \cdot s_{\alpha_k} = s_{\alpha_1} u = s_{\alpha_2} \dots s_{\alpha_{k-1}}$, contradicting the minimality.

Suppose $H' = w \cdot H$. Then $H' \in \alpha_1^{\perp}$. Thus $H' = s_{\alpha_2} \dots s_{\alpha_k} \cdot H$, contradicting the inductive assumption. QED

Prop: For $\alpha \in \Delta$, s_{α} preserves $R^+ - \{\alpha\}$.

Proof: Consider $\beta \in R^+ - \{\alpha\}$ and express it in terms of the base. It must involve an element γ in the base which is not α . $s_{\alpha} \cdot \beta = \beta - k\alpha$ and so it does not change the coefficient of γ , which is positive. Hence $s_{\alpha} \cdot \beta$ is still positive. QED

Dynkin diagram:

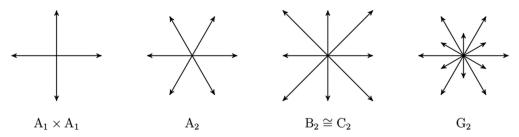
Vertices are base roots.

Number of edges between two vertices α , β is $\frac{\langle \alpha, \alpha \rangle}{\langle \beta, \beta \rangle}$ (WLOG $|\alpha| \ge |\beta|$)

which is either 0,1,2,3. (**Recall that it determines the angle, which must be obtuse.**)

Direction of edge is from longer to shorter.

(Choice of base does not matter: any two are related by reflection.)



Morphism of Dynkin diagram:

map between vertex sets preserving the numbers and directions of arrows between any two vertices.

R is irreducible <=> Dynkin diagram is connected:

 $\langle R = R_1 \cup R_2$, then $\Delta = \Delta_1 \cup \Delta_2$ which are orthogonal to each other. Then obviously the Dynkin diagram is disconnected.

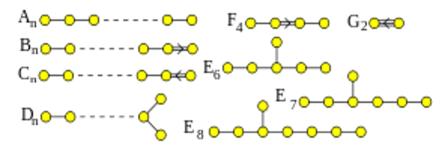
=> If Dynkin disconnected, then $\Delta = \Delta_1 \cup \Delta_2$ which are orthogonal to each other. All roots are obtained from base by Weyl action. Since orthogonal the Weyl action preserves $E_i = \operatorname{Span}(\Delta_i)$. Hence any root is either in E_1 or E_2 .

R_1 and R_2 are isomorphic <=> Dynkin diagrams are isomorphic: WLOG assume irreducible.

=> Take base of R_1 , mapping to a base of R_2 . Then the isomorphism is an isometry up to scaling.

<= We have map between base roots, which is isometry up to scaling. Then it certainly respects Weyl group actions.

Classification:



Integral structure:

 $E_{\mathbb{Z}}^* = \mathbb{Z} \cdot \{H_{\alpha} \in E^* \text{ for } \alpha \in \Delta\}$ gives the integral structure (which is a lattice in $E^* = \mathfrak{h}_{\mathbb{R}}$).

The dual is $E_{\mathbb{Z}} = \{ \mu \in E : (\mu, H_{\alpha}) \in \mathbb{Z} \} = \operatorname{Hom}(E_{\mathbb{Z}}^*, \mathbb{Z})$. Recall $(\mu, H_{\alpha}) = \frac{2\langle \mu, \alpha \rangle}{\langle \alpha, \alpha \rangle}$.

So $R \subset E_{\mathbb{Z}}$.

The dual basis $\{H_{\alpha}^*\} \subset E_{\mathbb{Z}}$ of $\{H_{\alpha}\} \subset E_{\mathbb{Z}}^*$ is called the fundamental weights. It is characterized by

$$H_{\alpha}^{*}, H_{\beta} \neq \frac{2\langle H_{\alpha}^{*}, \beta \rangle}{\langle \beta, \beta \rangle} = \delta_{\alpha\beta}.$$

A special element:

$$\delta \coloneqq \frac{1}{2} \sum_{\alpha \in R^+} \alpha$$
.

 $(\delta, H_{\alpha}) = 1$ for all $\alpha \in \Delta$ (and hence $\delta \in E_{\mathbb{Z},+} = E_{\mathbb{Z}} \cap C$):

$$\frac{1}{2}(\alpha,H_{\alpha})=1.$$

For other $\beta \in R^+$, $s_\alpha \cdot \beta \in R^+$. If $\beta \perp \alpha$, then $\langle \beta, H_\alpha \rangle = 0$; if not, then $\beta \neq s_\alpha \cdot \beta$ and $\langle \beta + s_\alpha \cdot \beta, H_\alpha \rangle = 0$. Hence their contribution sum up to zero.

Partial ordering:

Like $\mathfrak{sl}(3,\mathbb{C})$, have partial ordering on E:

$$\mu \geq \lambda \text{ if } \mu - \lambda \in \mathbb{R}_{\geq 0} \cdot \Delta.$$

It has the following properties (proof skipped):

If
$$\mu \in \overline{C}$$
, then $\mu \ge 0$. $w \cdot \mu \le \mu \ \forall w \in W$. $\lambda \in \text{Conv}(W \cdot \mu)$ if and only if $W \cdot \lambda \le \mu$.

If
$$\mu \in E_{\mathbb{Z},+} = E_{\mathbb{Z}} \cap C$$
, then $\mu \geq \delta$.

Exercises. (Section 8.12)

- 1. Let $\alpha, \beta \in R$ be linearly independent. If $\alpha + k\beta \in R$ for $k \in \mathbb{Z}_+$, then $\alpha + l\beta \in R$ for l = 0, ..., k.
- 7. Suppose *A* is an isomorphism between two irreducible root systems. Show that it is a constant multiple of an isometry.

9.
$$P(H) := \prod_{\alpha \in R^+} \langle \alpha, H \rangle$$
.

Show that $P(w \cdot H) = \det(w) P(H)$ for all $w \in W$ and $H \in E$.

10. Show that if $-I \notin W$, then the Dynkin diagram must have a non-trivial automorphism.