$$
\begin{aligned}
H^{\circ}\left(X_{\varepsilon} \cdot U(D)\right)= & \bigoplus_{\mu \in H} H^{\circ}(X \cdot O(D))_{\mu} \\
& =\left\{\begin{array}{ll}
\mathbb{C} \cdot z^{\mu} & \text { if } \mu \in P_{D} \\
0 & \text { othemise }
\end{array}\left\{: z^{\mu}(\mid)=\infty\right\}\right.
\end{aligned}
$$

$$
A(\mu)=\left\{v \in|\Sigma|: \mu(v)>u_{0}(v)\right\} \subset|\Sigma| .
$$

$T h_{m}: H^{i}(x . U(D))=\bigoplus_{\mu \in M} H_{C}^{i}(|\Sigma| . A(\mu))$.
Cor.: $H^{D \prime}(X, \cup(D))=0$ if $O(D)$ is gltally gon. and
$|\Sigma|$ cannex.
$P f: u_{D}$ cover $\Rightarrow u_{D}-\mu$ corar \forall_{μ}

$$
\Rightarrow A_{\mu}=\left\{u_{0}-\mu<0\right\} \quad \text { cmax } \forall \mu .
$$

$$
\therefore h_{c}^{\prime \prime}| | \mid . A(\mu)=0 .
$$

$$
\mu_{c}^{\prime \prime(R, \phi)}= \begin{cases}0 & \cdots \\ c & i=1\end{cases}
$$

eg.

$$
H_{c}^{\prime}\left(R_{1}, R_{R_{0}}\right)=0 .
$$

Why thm. hadds: compute by Cech coho. for toric darts.

$$
\text { Nhe : } H_{c}^{>0}\left(\left|\sigma_{n} n \ldots \sigma_{p}\right|, \frac{\left.A(\mu) n\left|\sigma_{0} n \ldots \sigma_{p}\right|\right)}{\text { Gowes ince }\left.u_{0}\right|_{\sigma_{0} n \ldots r_{p} \mid} \text { is lin. }}=0\right.
$$

$$
\therefore \quad \chi(O(D))=h^{0}(O(D))=\left|P_{D} \cap M\right| .
$$

Riemann-Roch thm.:

$$
\begin{aligned}
& \chi(O(D))=(\underbrace{\operatorname{Ch}(O(D))}_{\exp (D)} \cdot \underbrace{T d_{x}}_{\prod_{i=1}^{m}}) \\
& \text { pordy corbinational. }
\end{aligned}
$$

corr. to $U\left(k D_{3}\right)$.

$$
D_{1}=D_{2}=D_{3}=D .
$$

ar. Conte $\left|P_{n} D\right|$, hee $P \subset P_{\text {igr }}^{\subset R^{2}}$ is def. by

$$
\begin{array}{ll}
y & x \geqslant 0 ; \\
y \geqslant 0 ; \\
y \leqslant 1000 ; & P \\
x+2 y \leqslant 1000 .
\end{array}
$$

$$
\begin{aligned}
& \check{C}^{p}(X . \cup(D))=\bigoplus_{\sigma_{0} \ldots \sigma_{p}} H^{0}\left(U_{\sigma_{0} \cap \ldots, \sigma_{p}} O(D)\right) \\
& H_{C}^{i}\left(\mathbb{R}, R-(a)= \begin{cases}0 & i=0 \\
\mathbb{C} & i=1\end{cases} \right.
\end{aligned}
$$

Charatentitic classes local frame: $d \log z_{1} \ldots d \log z_{k}, d z_{k x} \ldots d z_{n}$ around $D_{1} n \ldots \cap D_{k}-\bigcup_{i=k+1}^{m} D_{i}$

$$
\begin{aligned}
\sum_{i} f_{i} d_{i} \longmapsto & \sum_{i=1}^{k}\left(z_{i} f_{i}\right) d \log z_{i} z_{i} \\
& +\sum_{i=1} f_{i} d z_{i}
\end{aligned}
$$

Hence $c\left(\Omega_{x}^{1}\right)=\prod_{i=1}^{m} \underbrace{c\left(O_{D_{i}}\right)^{-1}}_{1-D_{i}}\binom{0 \rightarrow O(-D) \rightarrow 0 \rightarrow U_{D} \rightarrow 0}{\Rightarrow c\left(O_{D}\right)^{-1}=\left(1-D_{i}\right)}$.

$$
\begin{aligned}
& c\left(T_{x}\right)=\prod_{i=1}^{m}\left(1+D_{i}\right) \quad\left(c_{i}\left(E^{*}\right)=(-1)^{i} c_{i}(E) \text { by using chem not }\right) \\
&=\sum_{\sigma \in \Sigma} V_{\sigma} . \\
& T d\left(\Omega_{x}^{1}\right)=\prod_{i=1}^{m} \underbrace{}_{d}\left(U_{D_{i}}\right)^{-1} \\
& T d\left(U\left(-D_{i}\right)\right) \\
& T_{d}\left(T_{x}\right)=\prod_{i=1}^{m} \operatorname{Td}\left(U\left(D_{i}\right)\right)=\prod_{i=1}^{m} \frac{D_{i}}{1-a p\left(-D_{i}\right)} .
\end{aligned}
$$

