Quiver:

a directed graph where multiple edges and loops are allowed.

Quiver rep.:

attach each vertex x a vector space $V(x)$ and
each arrow a a linear map $V(a): V\left(t_{a}\right) \rightarrow V\left(h_{a}\right)$.
Why are we interested?

- Start with simple linear algebra
- Have applications in other branches of sciences
- Deeply related with Lie theory
- Moduli theory involves interesting geometric constructions
- Also has interesting category and homological algebras
- Give a class of (comm. or non-comm.) geometries
- Efficient way to understand local CY geometries
- Arises in mirror symmetry and DT theory

Morphism $\phi: V \rightarrow W$:
a linear map $\phi: V(x) \rightarrow W(x)$ for each $x \in Q_{0}$ such that commuting with $V(a)$ and $W(a)$.

In other words,
$\phi \in C^{0}(V, W)=\oplus_{x} \operatorname{Hom}(V(x), W(x))$ with $d \phi=0$, where

$$
\begin{aligned}
& d: C^{0}(V, W) \rightarrow C^{1}(V, W):=\bigoplus_{a \in Q_{1}} \operatorname{Hom}\left(V\left(t_{a}\right), W\left(h_{a}\right)\right), \\
& d \phi=\left(\phi\left(h_{a}\right) V(a)-W(a) \phi\left(t_{a}\right)\right) .
\end{aligned}
$$

After fixing basis of V and W, an isom. $\in G L_{\alpha}$. Auto. is stabilizer of V under $G L_{\alpha}$.

Have subrepresentations, kernel, cokernel, direct sum.
Representation space with dim. vector α :
$\operatorname{Rep}_{\alpha}(Q):=\prod_{a \in Q_{1}} \operatorname{Mat}_{\alpha\left(h_{a}\right), \alpha\left(t_{a}\right)}$.
$\phi \in G L_{\alpha}:=\prod_{x \in Q_{0}} G L(\alpha(x))$
acts on $\operatorname{Rep} p_{\alpha}(Q)$ by
$(\phi \cdot V)(a)=\phi\left(h_{a}\right) \cdot V(a) \cdot \phi\left(t_{a}\right)^{-1}$.
Take $\operatorname{Rep}_{\alpha}(Q) / G L_{\alpha}$.
Indecomposable and irreducible (same as simple) representations.
ex. Quiver with one vertex and one arrow.
Indecomposables are Jordan blocks.
Path algebra $\mathbb{C} Q$.
Quiver representations are equiv. to (left) $\mathbb{C} Q$-modules:
Module M gives rep. $V(x)=e_{x} M$;
Rep. V gives module $M=\oplus_{x} V(x)$.
($e_{y} \cdot V(x)=0$ if $x \neq y$.)
Path algebra as "free algebra" $\mathbb{C} Q=T M$: (T means tensor)
From the $\mathbb{C}-\operatorname{bimod} M=\mathbb{C}^{l}$,
have free algebra (or tensor algebra) $T M$.
$T M=\mathbb{C} Q$ where Q is the quiver with one vertex and l arrows.

General quiver Q can be considered to be generalization of this: Take the algebra \mathbb{C}^{n} defined by
$\left(a_{1}, \ldots, a_{n}\right) \cdot\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)$.
For $\mathbb{C}^{n}-\operatorname{bimod} M$,
$M=\bigoplus_{i, j} e_{j} M e_{i}$
where $e_{i}=(0, \ldots 1, \ldots, 0)$.
Take these to be vertices.
Choose a \mathbb{C}-basis of $e_{j} M e_{i}$ and define it to be arrows from i to j. Get a quiver with $\mathbb{C} Q=T M$.

Krull-Remak-Schmidt Theorem:

Every f.d. quiver rep. is direct sum of indecomposables, unique up to permutations.

Existence is trivial.
Uniqueness needs a "version of Schur's Lemma" below.

Jordan decomposition for endo. $\phi: V \rightarrow V$ of quiver rep.:
$V=\bigoplus_{\lambda \in \mathbb{C}} V_{\lambda}$
where V_{λ} is subrepresentation of generalized λ-eigenspaces.
$V_{\lambda}:=\left\{v \in V:(\phi-\lambda I)^{N}(v)=0\right.$ for some $\left.N\right\}$.
(Arrows preserve λ-generalized eigenspaces over vertices.)

Cor. 1.7.1.
If V indecomp., then exists unqiue λ such that
($\phi-\lambda \mathrm{I}$) is nilpotent.

Now consider $\operatorname{End}_{Q}(V)$, a ring.
Cor. 1.7.2. (analog of Schur's Lemma)
If V indecomp.,
$\phi \in \operatorname{End}_{Q}(V)$ is either invertible or nilpotent.
$\mathfrak{m}:=\{\phi$ not invertible $\} \subset \operatorname{End}_{Q}(V)$
is the unique maximal ideal.
$\operatorname{End}_{Q}(V) / \mathfrak{m} \cong \mathbb{C}$.

Proof:

There exists unique λ such that ($\phi-\lambda I$) is nilpotent.
If $\lambda=0: \phi$ nilpotent;
if $\lambda \neq 0: \phi=\lambda I+(\phi-\lambda I)$ invertible.
\mathfrak{m} is the unique maximal ideal:
if $\phi \in J-\mathfrak{m}$, since ϕ is invertible, $J=\operatorname{Hom}_{Q}(V, V)$.
$\operatorname{End}_{Q}(V) / \mathrm{m} \xrightarrow{\cong} \mathbb{C}$ by
$\phi \mapsto \lambda$ where λ is the unique number such that
($\phi-\lambda I$) is nilpotent.
Proof of uniqueness of decomposition:
Suppose $V_{1} \oplus \cdots \oplus V_{p} \cong W_{1} \oplus \cdots \oplus W_{r}$ by ϕ, and let ψ be the inverse.

Write in block form:
$\sum_{i} \psi_{p, i} \phi_{i, p}=I_{V_{p}} \notin \mathfrak{m}_{p} \subset \operatorname{End}_{Q}\left(V_{p}\right)$.
Then $\psi_{p, i} \phi_{i, p} \notin \mathfrak{m}_{p}$ for some i, say $i=r$.
$\psi_{p, r} \phi_{r, p}$ is invertible. So
$\phi_{r, p}$ is inj. and $\psi_{p, r}$ is surj.
$\phi_{r, p} \psi_{p, r}$ cannot be nilpotent, and hence is also invertible:
otherwise $\left(\psi_{p, r} \phi_{r, p}\right)^{N}=0$.
Thus $\phi_{r, p}$ is iso. $V_{p} \cong W_{r}$.
Then ϕ gives an isomorphism
$V_{1} \oplus \cdots \oplus V_{p-1} \cong W_{1} \oplus \cdots \oplus W_{r-1}:$
Write ϕ in 2×2 matrix where one of the diagonal blocks is $\phi_{r, p}$.
Since $\phi_{r, p}$ is iso.,
can do row and column operations (left and right multiply by invertibles) to reduce to block diagonal matrix (which is still invertible since ϕ is).
Done by induction.

