Quiver:

a directed graph where multiple edges and loops are allowed.

Quiver rep.:

attach each vertex *x* a vector space V(x) and each arrow *a* a linear map V(a): $V(t_a) \rightarrow V(h_a)$.

Why are we interested?

- Start with simple linear algebra
- Have applications in other branches of sciences
- Deeply related with Lie theory
- Moduli theory involves interesting geometric constructions
- $\circ\,$ Also has interesting category and homological algebras
- Give a class of (comm. or non-comm.) geometries
- $\circ\,$ Efficient way to understand local CY geometries
- Arises in mirror symmetry and DT theory

Morphism ϕ : $V \rightarrow W$:

a linear map $\phi: V(x) \to W(x)$ for each $x \in Q_0$ such that commuting with V(a) and W(a).

In other words,

$$\phi \in C^0(V, W) = \bigoplus_x \operatorname{Hom}(V(x), W(x))$$
 with
 $d\phi = 0$, where
 $d: C^0(V, W) \to C^1(V, W) \coloneqq \bigoplus_{a \in Q_1} \operatorname{Hom}(V(t_a), W(h_a))$,
 $d\phi = (\phi(h_a)V(a) - W(a)\phi(t_a)).$

After fixing basis of *V* and *W*, an isom. $\in GL_{\alpha}$. Auto. is stabilizer of *V* under GL_{α} .

Have subrepresentations, kernel, cokernel, direct sum.

Representation space with dim. vector α :

$$\begin{aligned} \operatorname{Rep}_{\alpha}(Q) &\coloneqq \prod_{a \in Q_{1}} \operatorname{Mat}_{\alpha(h_{a}),\alpha(t_{a})} \cdot \\ \phi \in \operatorname{GL}_{\alpha} &\coloneqq \prod_{x \in Q_{0}} \operatorname{GL}(\alpha(x)) \\ \operatorname{acts} \operatorname{on} \operatorname{Rep}_{\alpha}(Q) \operatorname{by} \\ (\phi \cdot V)(a) &= \phi(h_{a}) \cdot V(a) \cdot \phi(t_{a})^{-1}. \\ \operatorname{Take} \operatorname{Rep}_{\alpha}(Q)/\operatorname{GL}_{\alpha}. \end{aligned}$$

Indecomposable and irreducible (same as simple) representations.

ex. Quiver with one vertex and one arrow. Indecomposables are Jordan blocks.

Path algebra $\mathbb{C}Q$.

Quiver representations are equiv. to (left) $\mathbb{C}Q$ -modules: Module M gives rep. $V(x) = e_x M$; Rep. V gives module $M = \bigoplus_x V(x)$. $(e_y \cdot V(x) = 0 \text{ if } x \neq y.)$

Path algebra as "free algebra" $\mathbb{C}Q = TM$: (*T* means tensor) From the \mathbb{C} – bimod $M = \mathbb{C}^l$, have free algebra (or tensor algebra) *TM*. $TM = \mathbb{C}Q$ where *Q* is the quiver with one vertex and *l* arrows. General quiver Q can be considered to be generalization of this: Take the algebra \mathbb{C}^n defined by

 $(a_1, \dots, a_n) \cdot (b_1, \dots, b_n) = (a_1b_1, \dots, a_nb_n).$ For \mathbb{C}^n – bimod M,

$$M = \bigoplus_{i,j} e_j M e_i$$

where $e_i = (0, ..., 1, ..., 0)$.

Take these to be vertices.

Choose a \mathbb{C} -basis of $e_j M e_i$ and define it to be arrows from i to j. Get a quiver with $\mathbb{C}Q = TM$.

Krull-Remak-Schmidt Theorem:

Every f.d. quiver rep. is direct sum of indecomposables, unique up to permutations.

Existence is trivial.

Uniqueness needs a "version of Schur's Lemma" below.

Jordan decomposition for endo. $\phi: V \to V$ of quiver rep.:

 $V = \bigoplus_{\lambda \in \mathbb{C}} V_{\lambda}$

where V_{λ} is subrepresentation of generalized λ -eigenspaces. $V_{\lambda} \coloneqq \{v \in V: (\phi - \lambda I)^N(v) = 0 \text{ for some } N\}.$ (Arrows preserve λ -generalized eigenspaces over vertices.)

Cor. 1.7.1. If *V* indecomp., then exists unqiue λ such that $(\phi - \lambda I)$ is nilpotent.

Now consider $\operatorname{End}_Q(V)$, a ring.

Cor. 1.7.2. (analog of Schur's Lemma) If *V* indecomp.,

 $\phi \in \operatorname{End}_{O}(V)$ is either invertible or nilpotent.

 $\mathfrak{m} \coloneqq \{\phi \text{ not invertible}\} \subset \operatorname{End}_Q(V)$ is the unique maximal ideal.

 $\operatorname{End}_Q(V)/\mathfrak{m} \cong \mathbb{C}.$

Proof:

There exists unique λ such that $(\phi - \lambda I)$ is nilpotent. If $\lambda = 0$: ϕ nilpotent; if $\lambda \neq 0$: $\phi = \lambda I + (\phi - \lambda I)$ invertible.

m is the unique maximal ideal: if $\phi \in J - m$, since ϕ is invertible, $J = \text{Hom}_O(V, V)$.

End_{*Q*}(*V*)/m $\stackrel{\cong}{\to} \mathbb{C}$ by $\phi \mapsto \lambda$ where λ is the unique number such that $(\phi - \lambda I)$ is nilpotent.

Proof of uniqueness of decomposition:

Suppose $V_1 \oplus \cdots \oplus V_p \cong W_1 \oplus \cdots \oplus W_r$ by ϕ , and let ψ be the inverse.

Write in block form:

$$\sum_{i} \psi_{p,i} \phi_{i,p} = I_{V_p} \notin \mathfrak{m}_p \subset \operatorname{End}_Q(V_p).$$

Then $\psi_{p,i} \phi_{i,p} \notin \mathfrak{m}_p$ for some *i*, say $i = r$.
 $\psi_{p,r} \phi_{r,p}$ is invertible. So
 $\phi_{r,p}$ is inj. and $\psi_{p,r}$ is surj.

 $\phi_{r,p}\psi_{p,r}$ cannot be nilpotent, and hence is also invertible: otherwise $(\psi_{p,r} \phi_{r,p})^N = 0.$

Thus $\phi_{r,p}$ is iso. $V_p \cong W_r$.

Then ϕ gives an isomorphism $V_1 \oplus \cdots \oplus V_{p-1} \cong W_1 \oplus \cdots \oplus W_{r-1}$: Write ϕ in 2 × 2 matrix where one of the diagonal blocks is $\phi_{r,p}$. Since $\phi_{r,p}$ is iso., can do row and column operations (left and right multiply by invertibles) to reduce to block diagonal matrix (which is still invertible since ϕ is).

Done by induction.