Projective A-mod P : (cover)

$\Leftrightarrow \operatorname{Hom}_{A}(P,-)$ exact

Injective I: (contain)

$\Leftrightarrow \operatorname{Hom}_{A}(-, I)$ exact
Crucial to compute cohomology.
Projectives are so important that gradually you will use them even without remembering the def.! Just like the notion of "derivative".

Any exact $0 \rightarrow N \rightarrow M \rightarrow P \rightarrow 0$ or
$0 \rightarrow I \rightarrow M \rightarrow N \rightarrow 0$ split.
(Lift Id: $P \rightarrow P$ to $P \rightarrow M$.)
M projective $\Leftrightarrow M^{*}$ (dual v.s.) injective (as $\left.A^{o p}-\bmod \right)$.
$P^{\prime} \oplus P^{\prime \prime}$ is projective.
Summand of P is projective.
If A is finite dimensional, A itself is a f.d. A-module.
$\operatorname{Hom}_{A}(A,-)=I d$ and hence exact.
Thus A is projective.

Lemma 2.1.5.

P is a projective A-module $\Rightarrow P$ is a direct summand of $A^{\oplus r}$. (Similar for injective I)

In particular if P indecomp and A is f.d., then P is a direct summand of A.

Proof.

Take generators of P.
Then have $A^{\oplus r} \rightarrow P$ surjective, and hence split. QED

Now $A:=\mathbb{C} Q$.
$P_{x}:=A \cdot e_{x} .\left(I_{x}=\left(e_{x} \cdot A\right)^{*}.\right)$
$A=\bigoplus_{x} P_{x}$.
Thus P_{x} are projective.
P_{x} as representation: $P_{x}(y)=e_{y} \cdot A \cdot e_{x}$.
Prop. 2.2.2.
$\operatorname{Hom}_{Q}\left(P_{x}, V\right) \cong V(x) . \operatorname{Hom}_{Q}\left(V, I_{x}\right) \cong V(x)^{*}$.
$\phi \mapsto \phi\left(e_{x}\right)=: v$.
ϕ is determined by its image: $\phi\left(p \cdot e_{x}\right)=V(p) \cdot v$.

Prop. 2.2.3.

Assume Q acyclic. (No directed cycle.)
P_{x} are all the indecomp. projectives.
I_{x} are all the indecomp. injectives.

Proof.

By previous prop,
$\operatorname{Hom}_{\mathrm{Q}}\left(P_{x}, P_{x}\right) \cong P_{x}(x) \cong \mathbb{C} \cdot e_{x}$ (acyclic).
Hence P_{x} indecomp.
Suppose P proj.
Lemma 2.1.5 $\Rightarrow P$ is direct summand of $A^{\oplus r}=\oplus_{x} P_{x}^{\oplus r}$. P indecomp. forces $P=P_{x}$.
S_{x} : simple module over vertex x.
Proj. resolution:
$0 \rightarrow \bigoplus_{a: t_{a}=x} P_{h_{a}} \xrightarrow{a} P_{x} \rightarrow S_{x} \rightarrow 0$.
Inj. resolution:
$0 \rightarrow S_{x} \rightarrow I_{x} \rightarrow \bigoplus_{a: h_{a}=x} I_{t_{a}} \rightarrow 0$.

Given any module V, proj. resolution:
$0 \rightarrow \bigoplus_{a} V\left(t_{a}\right) \otimes P_{h_{a}} \xrightarrow{d} \bigoplus_{x} V(x) \otimes P_{x} \rightarrow V \rightarrow 0$.
where $d(v \otimes p)_{a}=((a \cdot v) \otimes p)_{h_{a}}-(v \otimes p \cdot a)_{t_{a}}$.
Obvious that it is a complex.
Exact:
Surjectivity of last map is obvious.
Injectivity of the first map:
Suppose non-zero and d to 0 .
Consider the terms $(v \otimes p)_{a}$ that has the longest p.
After d, have $-(v \otimes p \cdot a)_{t_{a}}$ that cannot cancel with any other term.
Contradiction.
Ker $\subset \operatorname{Im}$ for the middle piece:
Fix each x. If

$\sum_{h_{p}=x} v_{t(p)} \otimes p$ has $0=\sum_{p} p \cdot v_{t(p)}=c v_{x}+\sum_{p \neq e_{x}} p \cdot v_{t(p)}$,
Then
$\sum_{p} v_{t(p)} \otimes p=c v_{x} \otimes e_{x}+\sum_{p \neq e_{x}} v_{t(p)} \otimes p$
$=-\sum_{p \neq e_{x}} p \cdot v_{t(p)} \otimes e_{x}+\sum_{p \neq e_{x}} v_{t(p)} \otimes p$
which belongs to the image of d
(by moving the arrows in p one by one).

Remark:

Injectivity above fails for quiver with relations.

Cohomology $H^{i}(V, W)$

Take the above projective resolution of V (or injective resolution of W)
$0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0$.
Get complex
$0 \rightarrow \operatorname{Hom}_{Q}\left(P_{0}, W\right) \rightarrow \operatorname{Hom}_{Q}\left(P_{1}, W\right) \rightarrow 0$.
$\left(\right.$ or $0 \rightarrow \operatorname{Hom}_{Q}\left(V, I^{0}\right) \rightarrow \operatorname{Hom}_{Q}\left(V, I^{1}\right) \rightarrow 0$.)
Take coho. of the complex, get $H^{i}(V, W)$ for $i=0,1$.

Recall the resolution of V is
$0 \rightarrow \bigoplus_{a} V\left(t_{a}\right) \otimes P_{h_{a}} \xrightarrow{d} \bigoplus_{x} V(x) \otimes P_{x} \rightarrow 0$
where
$d(v \otimes p)_{a}=((a \cdot v) \otimes p)_{h_{a}}-(v \otimes p \cdot a)_{t_{a}}$.

Take $\operatorname{Hom}_{Q}(-, W)$.
For any v.s. U,
$\operatorname{Hom}_{Q}\left(U \otimes P_{x}, W\right)=\operatorname{Hom}(U, W(x))$. (Prop. 2.2.2)
$C^{0}=\operatorname{Hom}_{Q}\left(P_{0}, W\right)=\bigoplus_{x} \operatorname{Hom}(V(x), W(x))$
$C^{1}=\operatorname{Hom}_{Q}\left(P_{1}, W\right)=\bigoplus_{a} \operatorname{Hom}\left(V\left(t_{a}\right), W\left(h_{a}\right)\right)$
$0 \rightarrow C^{0} \rightarrow C^{1} \rightarrow 0$.

For $\phi \in \operatorname{Hom}_{Q}\left(P_{0}, W\right), v \in V\left(t_{a}\right)$,
$(d \phi)\left(\left(v \otimes e_{h_{a}}\right)_{a}\right)=\phi\left(d\left(\left(v \otimes e_{h_{a}}\right)_{a}\right)\right)$
$=\phi\left((V(a) \cdot v) \otimes e_{h_{a}}\right)_{h_{a}}-\phi(v \otimes a)_{t_{a}}$
which is identified as $\phi\left(h_{a}\right) V(a) \cdot v-W(a) \phi\left(t_{a}\right)(v)$.
Thus $d \phi=\phi\left(h_{a}\right) V(a)-W(a) \phi\left(t_{a}\right)$
which is defined previously (measuring commutativity).
$H^{0}=\operatorname{Ker}(d)=\operatorname{Hom}_{Q}(V, W)$.
$H^{1}=\operatorname{coKer}(d):$
Given $\psi \in C^{1}(V, W)$, define a corresponding rep. $E=E_{\psi}$,
$E(x)=V(x) \oplus W(x)$;
$E(a)=\left(\begin{array}{ll}V(a) & 0 \\ \psi(a) & W(a)\end{array}\right)$.
Have exact sequence
$0 \rightarrow W \rightarrow E_{\psi} \rightarrow V \rightarrow 0$.
(called extension of V by W)
Any extension must be of this form (vector space is classified by its dimension).

Suppose $\psi-\psi^{\prime}=d \phi$.
Then have
$0 \rightarrow W \rightarrow E_{\psi} \rightarrow V \rightarrow 0$
JJd $\downarrow \downarrow$ IId
$0 \rightarrow W \rightarrow E_{\psi^{\prime}} \rightarrow V \rightarrow 0$.
Middle arrow (called equivalence of extensions) is
$\left(\begin{array}{cc}I d & 0 \\ -\phi(x) & I d\end{array}\right)$.
$\psi-\psi^{\prime}=\mathrm{d} \phi \Leftrightarrow$ commutative diagram.
Thus cokernel is set of extensions up to equivalence.

Prop. 2.5.2.
Euler char.
$\chi(V, W)=\langle\alpha, \beta\rangle:=\sum_{x} \alpha(x) \beta(x)-\sum_{a} \alpha\left(t_{a}\right) \beta\left(h_{a}\right)$
where α, β are dim. vectors of V, W.

Proof.

Exact:
$0 \rightarrow H^{0} \rightarrow \bigoplus_{x} \operatorname{Hom}(V(x), W(x)) \rightarrow \bigoplus_{a} \operatorname{Hom}\left(V\left(t_{a}\right), W\left(h_{a}\right)\right)$
$\rightarrow H^{1} \rightarrow 0$.
Euler matrix
$E_{i, j}=\delta_{i j}-\mid$ arrows from i to $j \mid$.

Hereditary algebra:
Submod. of projective module is projective.
(Always true for summand)

Thm. 2.3.2.
$\mathbb{C} Q$ is hereditary (where Q acyclic).

Proof.

Let $M \subset P$. Get exact $0 \rightarrow M \rightarrow P \rightarrow V \rightarrow 0$.
By above have proj. resol.
$0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow V \rightarrow 0$.
The following prop. implies that M is proj. QED
Prop. 2.3.3.

Given two exact sequences as above (where P, P_{0}, P_{1} are proj.), $P \oplus P_{1} \cong P_{0} \oplus M$.

Proof.

$P \rightarrow V$ can be lifted to $P \rightarrow P_{0}$. Then get the chain map:
$0 \rightarrow M \rightarrow P \rightarrow V \rightarrow 0$
$0 \rightarrow \stackrel{\downarrow f_{1}}{P_{1}} \rightarrow \stackrel{\mid f_{0}}{P_{0}} \rightarrow \stackrel{\downarrow \text { Id }}{V} \rightarrow 0$
Can use the first square to define a complex
$0 \rightarrow M \rightarrow P \oplus P_{1} \rightarrow P_{0} \rightarrow 0$.
First map is injective: trivial.
Last map is surjective by diagram chasing.
Dimension count implies this is exact.
Since P_{0} projective, the sequence splits.

