
Main Thm 4.4.13: 
Finite representation type (only has finitely many indecomposable 
representations up to iso.)
⟺ the underlying graph is ADE Dynkin diagram.

In such a case, taking dimension vector gives a bijection
{Indecomposable representations} ↔ {Positive roots}.

⇒)
Use Tits quadratic form (on dim. vectors)  (Analog of Killing form)

𝐵(𝛼) ≔ ⟨𝛼, 𝛼⟩ = 𝛼(𝑥)

 

∈

− 𝛼(𝑡 )𝛼(ℎ )

 

∈

= dim End − dim 𝑅𝑒𝑝 (𝑄) .
(Does not depend on arrow directions)

Lemma 4.1.3: 
Finite representation type 
⇒ B(𝛼) ≥ 1 ∀𝛼 ≠ 0 integral positive   (*)
⇒ 𝐵 is positive definite.

Proof. 
𝐺𝐿 acts on 𝑅𝑒𝑝 (𝑄).  
Only finitely many orbits ⇒ one of the orbits is open.
dim(that orbit) = dim 𝑅𝑒𝑝 (𝑄) = dim 𝐺𝐿 − dim stabilizer .
dim stabilizer ≥ 1 since has overall scaling.
Thus 𝐵(𝛼) ≥ 1.

Lemma 4.2.3.
If (*) holds for the quiver, then it holds for any subquiver (extend the dimension 
vector by zero, and 𝐵 (𝛼) ≥ 𝐵 (𝛼)).

Lemma 4.2.1.
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Lemma 4.2.1.
For extended ADE, has explicit 𝛽 with 𝐵(𝛽) = 0.

Thus finite representation type implies cannot contain extended Dynkin quiver.
Then it must be trivalent tree and of ADE type.
------------------------

←) ADE are finite representation type.
Can check directly that 𝐵(𝛼) ≥ 1 ∀𝛼 ≠ 0 integral positive.

`Weyl reflection' on ANY quiver 
to reduce indecomposable representation (positive root) to
simple representation (simple root) over vertices (of the new quiver). 
(Underlying graph remains the same under reflection.)

𝑄 : reverse the adjacent arrows of 𝑥.

Sink: replace the vector space at that vertex by sum of kernels of the 
adjacent arrows.  (And the reversed arrows are the inclusions of 
projections.)

For rep. 𝑉:

Reflection functor 𝐶 : 𝑅𝑒𝑝(𝑄) → 𝑅𝑒𝑝(𝑄 ) at a sink or source vertex 𝑥:
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projections.)
Source: replace by cokernels.

Reflected rep.: 𝑊, 𝑊 .
𝜓(𝑥): 𝑊(𝑥) → 𝑊(𝑥) : restriction of 𝜙 on kernels of adjacent arrows 
(𝜙 maps kernel to kernel').
(Or induced map on cokernels of adjacent arrows.  
𝜙 maps image to image')
For other vertices 𝑦, 𝜓(𝑦) = 𝜙(𝑦).

For morphism 𝜙: 𝑉 → 𝑉 :

Note: taking 𝐶 does not lose any info. if surj. at sink 𝑥 or inj. at source 𝑥.

Split away the simple 𝑆 :
Lem. 4.3.6.
𝑥 sink: 𝑆 is a direct summand of 𝑉 iff the sum of adjacent arrows is not 
surjective.
𝑥 source: 𝑆 is a direct summand of 𝑉 iff the sum of adjacent arrows is not 
injective.

Proof.
Choose a complement of Im ⊂ 𝑉(𝑥) and get 𝑆⊕ .

(or 𝑆⊕ is Ker for source) 
Replacing 𝑉(𝑥) by Im gives 𝑉 .
(or replace by complement of 𝐾𝑒𝑟.)

𝑉 = 𝑉 ⊕ 𝑆⊕ .

Reflection "almost" sends indecomp. to indecomp.:
Thm. 4.3.9. [Bernstein-Gelfand-Ponomarev]
Have natural transformation
(𝑥 sink) 𝐶 → 𝐼𝑑

If 𝑉 indecomposable, 𝐶 (𝑉) is indecomp. and 𝐶 (𝑉) ≅ 𝑉, UNLESS 𝑉 ≅ 𝑆 .1.
𝑉 ≅ 𝑆 ⟺ 𝐶 (𝑉) = 0.2.

(𝑥 source) 𝐼𝑑 → 𝐶 .

In Case 1, 
Lem. 4.3.6 ⇒ adjacent arrows are surj. (for sink) or inj. (for source).
dim. vector becomes

𝜎 𝛼 = 𝛼 𝑦

 

 − 𝛼 𝑥
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𝜎 (𝛼) = 𝛼(𝑦)

 

 .  

 − 𝛼(𝑥)

and remains the same for other vertices.
In Case 2, for the same def. of 𝜎, 𝜎 (𝛼)| = −1.
Hence can tell which case by considering σ (dim 𝑉). 

Proof:

𝐶 (𝑉) equals to 𝑉(𝑖𝑛 )/𝐾𝑒𝑟, and equals to 𝑉(𝑦) on other vertices 𝑦.

Thus have natural morphism 𝐶 (𝑉) → 𝑉
which is the induced map 𝑉(𝑖𝑛 )/𝐾𝑒𝑟 → 𝑉(𝑥) at 𝑥, and Id on other vertices.

𝑥 sink: 

𝐶 (𝑉) equals to image of sum of adjacent arrows.

Thus have natural morphism 𝑉 → 𝐶 (𝑉)
which is the arrow map 𝑉(𝑥) → 𝐼𝑚 at 𝑥.

𝑥 source:

Case 2 𝑉 ≅ 𝑆 is easy computation (of kernel and cokernel).

     If 𝐶 (𝑉) is decomp., so is 𝑉 ≅ 𝐶 (𝑉), a contradiction.
Case 1 𝑉 ≇ 𝑆 : Lem. 4.3.6 ⇒ 𝑉(𝑖𝑛 )/𝐾𝑒𝑟

≅
→ 𝑉(𝑥) (surj) or 𝑉(𝑥)

≅
→ 𝐼𝑚 (inj).

Strategy:
Given an indecomposable, keep on reflecting, until it get to zero.  Then the 
representation right before zero is simple.
Key: need to do it systematically to ensure it get to zero.
Keep track by dimension vectors (which is positive before it gets to zero).
Then Coxeter element should send the dim. vector to neg. (get out of first 
quadrant)

Weyl group
σ : ℤ → ℤ with 𝜎 = 𝐼𝑑.  (𝑥 does not need to be sink nor source.)
𝑊: group generated by 𝜎 , 𝑥 ∈ 𝑄 .
"Root": elements in a 𝑊-orbit of 𝑒 .

Tits form 𝐵 is pos. def. and preserved by 𝑊.1.
𝐵 𝛼 = 1 for root 𝛼.2.

Prop. 4.4.9.  For ADE quiver,
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𝐵(𝛼) = 1 for root 𝛼.2.
Only finitely many roots.3.
𝑊 is finite.4.
For root 𝛼, either 𝛼 ≥ 0 or 𝛼 ≤ 0.5.

Proof.
1 is by direct check.
2 follows from 𝐵 being 𝑊-inv.
3 is by compactness of {𝐵 = 1} ∩ ℤ .
4 is 𝑊 ⊂ Perm(roots).
5: Write 𝛼 = 𝛼 − 𝛼 where 𝛼 (𝑥) = 𝛼(𝑥) if positive, 𝛼 (𝑥) = −𝛼(𝑥) if neg.
1 = 𝐵(𝛼) = 𝐵(𝛼 ) + 𝐵(𝛼 ) − 2⟨𝛼 , 𝛼 ⟩ ≥ 𝐵(𝛼 ) + 𝐵(𝛼 )
since ⟨𝛼 , 𝛼 ⟩ = ∑ α (𝑥)𝛼 (𝑥)  − ∑ 𝛼 (𝑡 )𝛼 (ℎ )  = − ∑ 𝛼 (𝑡 )𝛼 (ℎ )  ≤ 0.
Then either 𝐵(𝛼 ) = 0 or 𝐵(𝛼 ) = 0 since 𝐵 is pos. def. and integral.

Def. 4.4.10. Coxeter element:
𝑐 = 𝜎 … 𝜎 product of all generators from base.  (Choose an order.)

Lem. 4.4.12. Send to negative:
𝑐: ℝ → ℝ has no fixed point other than 0.
Moreover, for any 𝛼 ≠ 0, 𝑐 (𝛼) has neg. coord. for some 𝑘 ≥ 0.

Coxeter functor:
To realize for quiver, need to choose correct order so that vertices involved are 
sinks.
Def. 4.4.1.
Take a seq. of vertices 𝑥 , … , 𝑥 such that 𝑥 is sink in 𝑄 = 𝜎 … 𝜎 (𝑄).

(In particular 𝑥 ≠ 𝑥 .)
𝐶 ≔ 𝐶 … 𝐶 : 𝑅𝑒𝑝(𝑄) → 𝑅𝑒𝑝(𝑄 );

𝐶 ≔ 𝐶 … 𝐶 : 𝑅𝑒𝑝(𝑄 ) → 𝑅𝑒𝑝(𝑄).  (Turn sources back to sinks.)

Lem. 4.4.3.  Coxeter functor for trees.

(Order it with ℎ < 𝑡 .  (1, … , 𝑛) gives such a sequence.)
Have such a sequence of sinks for trees with 𝑚 = |𝑄 |.

   Quiver Page 5    



Lem. 4.4.4.

(Proof by induction.)

Two quivers with the same underlying tree are related by 𝑄 = 𝜎 … 𝜎 (𝑄) for 

some sequence of sinks.

Lem. 4.4.2.
𝐼𝑛𝑑(𝑄): set of indecomposables.

𝑀 ≔ 𝐶 … 𝐶 𝑆 ∈ 𝐼𝑛𝑑(𝑄 ) ∈ 𝑅𝑒𝑝(𝑄): 𝑖 = 1, … , 𝑚 .

𝑀 ≔ 𝐶 … 𝐶 𝑆 ∈ 𝐼𝑛𝑑(𝑄 ) ∈ 𝑅𝑒𝑝(𝑄 ): 𝑖 = 1, … , 𝑚 .

𝐼𝑛𝑑(𝑄) − 𝑀 ≅ 𝐼𝑛𝑑(𝑄 ) − 𝑀 by 𝐶± (inverse to each other).

Immediately follows from Thm. 4.3.9.
𝑀 {0}, 𝑀 {0}.

Ex. 4.4.2.
Let 𝑥 … 𝑥 distinct. 

𝐶 … 𝐶 𝑆 ∈ 𝐼𝑛𝑑(𝑄 ) = ℂ𝑄 ⋅ 𝑒 .

Note that 𝑆 = ℂ𝑄 ⋅ 𝑒 since 𝑥 is sink.

If reflect at adjacent source 𝑦, 𝐶 𝑆 = ℂ𝑄 ⋅ 𝑒 by def. (replacing 0

over 𝑦 by cokernel which is ℂ).
Do induction.

𝐶 … 𝐶 𝑆 ∈ 𝐼𝑛𝑑(𝑄 ) = (𝑒 ⋅ ℂ𝑄 )∗.

Def. 4.4.7. Coxeter functor:
Given a sequence of sinks 𝑥 … 𝑥 where 𝑛 = |𝑄 |.
The corresponding 𝐶 , 𝐶 : 𝑅𝑒𝑝(𝑄) → 𝑅𝑒𝑝(𝑄) are called Coxeter functors.
(each arrow is adjacent to two vertices and hence reversed twice.  Thus 𝑄 = 𝑄.)

By above exercises and Lem. 4.4.2,
𝑀 consists of all proj. indecomp. and 𝑀 consists of all inj. decomp.
Cor. 4.4.8.
𝑉 proj.  ⟺ 𝐶 (𝑉) = 0.
𝑉 inj.  ⟺ 𝐶 (𝑉) = 0.
𝑉 has no proj. summands ⇒ 𝐶 𝐶 (𝑉) ≅ 𝑉.

(Think about indecomposables first)
𝑉 has no inj. summands ⇒ 𝐶 𝐶 (𝑉) ≅ 𝑉.
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(Think about indecomposables first)

Cor. 4.4.11.
If V has no proj. summand,
𝐶 (𝑉) is non-zero rep. with dim. 𝑐(𝛼) (where 𝑐 = 𝜎 … 𝜎 and 𝛼 is dim 𝑉).

Lem. 4.4.6. Independent of order:
𝐶 are naturally equivalent under (admissible) reordering of 𝑥 .

Thm. 4.4.13.
If ADE, then 𝐼𝑛𝑑(𝑄) ≅ {pos. roots} by 𝑉 ↦ dim 𝑉.
In particular finite.

Proof:
For 𝑉 ∈ 𝐼𝑛𝑑(𝑄),
𝑐 (dim 𝑉) is no longer positive for some 𝑘 > 0.
Take min. such 𝑘.

Then 𝐶 (𝑉) ≠ 0.
Also 𝜎 … 𝜎 𝑐 (dim 𝑉) is no longer positive for some 𝑗 > 0,

take min. such 𝑗.

Then 𝐶 … 𝐶 𝐶 (𝑉) ≠ 0 and 𝐶 𝐶 … 𝐶 𝐶 (𝑉) = 0.

Hence 𝐶 … 𝐶 𝐶 (𝑉) = 𝑆 .

𝑉 = 𝐶 𝐶 … 𝐶 𝑆 .

dim 𝑉 = 𝑐 𝜎 … 𝜎 𝑒 which is a positive root by def.

Given pos. root 𝛼, do the same thing to get
𝜎 … 𝜎 𝑐 (α) positive but not 𝜎 … 𝜎 𝑐 (𝛼).

Then 𝜎 … 𝜎 𝑐 (α) = 𝜖 .  

(Recall that for root, coord. either all pos or all neg.)

Taking 𝐶 𝐶 … 𝐶 𝑆 gives an indecomp. rep.
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