Ch. 8.

Main: for any quiver.
There exists indecomp. in α
$\Leftrightarrow \alpha$ is a positive root of the corresponding root system (Kac-Moody Lie alg.)
Key:
Whether there exists indecomp. in α is indep. of orientation of arrows of Q. Thus can change to sink/source to do reflection.

Deformed preprojective alg.

$\Pi_{\theta}:=\mathbb{C} \bar{Q} /\left(\sum_{a \in Q_{1}}\left(a^{*} a-a a^{*}\right)-\theta \cdot I d\right)$.
where \bar{Q} is the double quiver.
The relation is denoted as r_{θ}.
$\left(\theta \in \mathbb{C}^{Q_{0}}\right.$.)
Note:
r_{θ} consists of cycles (same source and target).
$\operatorname{Rep}_{\alpha}\left(\Pi_{\theta}\right)=\mu^{-1}(\theta \cdot I d)$
where
$\mu: \operatorname{Rep}_{\alpha}(Q) \oplus \operatorname{Rep}_{\alpha}\left(Q^{o p}\right) \rightarrow \operatorname{End}_{\alpha}(Q)$
is the "moment map"
$\sum_{\mathrm{a} \in Q_{1}}\left(W\left(a^{*}\right) V(a)-V(a) W\left(a^{*}\right)\right)$.

Moment map for linear action of $G L(n)$ on $M \oplus M^{*}$ (complex sympl.), $(v, w) \mapsto\left(A v, w A^{-1}\right)$
is
$M \oplus M^{*} \rightarrow \mathfrak{g l}^{*}$
$(\mu(v, w), X)=w X v$.
$G L_{\alpha}$ acts on $(V, W) \in \operatorname{Rep} p_{\alpha}(Q) \oplus \operatorname{Rep}_{\alpha}\left(Q^{o p}\right)$ by
$\left(g_{h(a)} V(a) g_{t(a)}^{-1}, g_{t(a)} W\left(a^{*}\right) g_{h(a)}^{-1}\right)$.
gl_{α} acts by

$$
\left(X_{h(a)} V(a)-V(a) X_{t(a)}, X_{t(a)} W\left(a^{*}\right)-W\left(a^{*}\right) X_{h(a)}\right)
$$

$$
(\mu(V, W), X)=\sum_{a} \operatorname{tr}\left(X_{h(a)} V(a) W\left(a^{*}\right)-V(a) X_{t(a)} W\left(a^{*}\right)\right)
$$

$$
=\sum_{a} \operatorname{tr}\left(X_{h(a)} V(a) W\left(a^{*}\right)-X_{t(a)} W\left(a^{*}\right) V(a)\right)
$$

Image of
$\mu=\sum_{\mathrm{a} \in Q_{1}}\left(W\left(a^{*}\right) V(a)-V(a) W\left(a^{*}\right)\right)$
has total trace zero. hence need
$\theta \cdot \alpha=\operatorname{tr}(\theta \cdot$ Id $)=0$
or otherwise $\Pi_{\theta}=\emptyset$.

Recall the exact sequence
$0 \rightarrow H^{0} \rightarrow \bigoplus_{x} \operatorname{Hom}(V(x), W(x)) \rightarrow \bigoplus_{a} \operatorname{Hom}\left(V\left(t_{a}\right), W\left(h_{a}\right)\right) \rightarrow H^{1} \rightarrow 0$.
Put $V=W$:
$0 \rightarrow \operatorname{End}(V) \rightarrow \operatorname{End}_{\alpha}(Q) \xrightarrow{d_{V}} \operatorname{Rep}_{\alpha}(Q) \rightarrow H^{1}(V) \rightarrow 0$.
$(\alpha=\overrightarrow{\operatorname{dim} V}$.)
Dualizing: $\left(\sum_{a} \operatorname{Tr}\left(W\left(a^{*}\right) V(a)\right)\right.$ gives $\operatorname{Rep}_{\alpha}\left(Q^{*}\right) \cong\left(\operatorname{Rep}_{\alpha}(Q)\right)^{*}$.)
$0 \rightarrow\left(H^{1}(V)\right)^{*} \rightarrow \operatorname{Rep}_{\alpha}\left(Q^{*}\right) \xrightarrow{d_{V}^{*}} \operatorname{End}_{\alpha}\left(Q^{*}\right) \rightarrow(\operatorname{End}(V))^{*} \rightarrow 0$
Indeed
$d_{V}^{*}=\mu(V,-)=\sum_{a \in Q_{1}}\left((-)\left(a^{*}\right) \cdot V(a)-V(a) \cdot(-)\left(a^{*}\right)\right)$.

Thm. 8.1.3. Lift Q-rep \boldsymbol{V} to Π_{θ}-rep.

$\theta \cdot \operatorname{Id} \in \operatorname{Im}\left(d_{V}^{*}\right)$ (that is, V can be lifted)
$\Leftrightarrow \theta \cdot \overrightarrow{\operatorname{dim} W}=0 \forall$ indecomp. summand W of V.

Proof.

By exact seq,
$\theta \cdot I d \in \operatorname{Im}\left(d_{V}^{*}\right) \Leftrightarrow \sum_{x} \theta(x) \cdot \operatorname{tr} f_{x}=0 \forall f \in \operatorname{End}(V)$.
\rightarrow)
consider $f=\pi_{W} \in \operatorname{End}(V)$ projection to W.
$\sum_{x} \operatorname{tr}\left(\theta(x) f_{x}\right)=\sum_{x} \theta(x) \operatorname{tr}\left(f_{x}\right)=\theta \cdot \overrightarrow{\operatorname{dim} W}=0$.
$\leftarrow)$
Let $V=W_{1} \oplus \cdots \oplus W_{r}$ indecomp.
$\theta\left(\overrightarrow{\operatorname{dim} W_{i}}\right)=0 \forall i$.
Recall (from Ch.1) that
$\forall f \in \operatorname{End}\left(W_{i}\right)$,
f is spanned by $I d$ and nilpotents (Jordan decomp. into gen. eigen-subrep.).
$\sum_{x} \theta(x) \operatorname{tr}\left(f_{x}\right)=\sum_{x} \theta(x) \operatorname{tr}(\lambda \cdot I d)=\lambda \theta \cdot \overrightarrow{\operatorname{dim} W_{i}}=0$.
For $f \in \operatorname{End}(V)$, write f into matrix form $f_{i j} \in \operatorname{Hom}\left(W_{j}, W_{i}\right)$.
$\sum_{x} \operatorname{tr}\left(\theta(x) f_{x}\right)=\sum_{x} \theta(x) \sum_{i} \operatorname{tr}\left(f_{i i}\right)_{x}=0$.

Cor. 8.1.4.

Suppose α is indivisible.
Whether there exists indecomp. in α is indep. of orientation of arrows of Q.
Proof.
Let Q, Q^{\prime} be the same up to orientation.
Then they have the same double \bar{Q}.
Want:
Q has indecomp. in $\alpha \Leftrightarrow Q^{\prime}$ has indecomp. in α.
Idea:
Lift Q-rep to Π_{θ}-rep, and then restrict to Q^{\prime}-rep.
Suppose V indecomp. in α.
Choose $\theta \cdot \alpha=0$.
Then by Thm. 8.1.3, V can be lifted to Π_{θ}-rep.

Restrict to Q^{\prime}-rep. V^{\prime} (with sam dim. α). Hope indecomp.

Again by Thm. 8.1.3,
$\theta \cdot \overrightarrow{\operatorname{dim} W}=0 \forall$ indecomp. summand W of V^{\prime}.
Claim:
can choose $\theta \in\langle\alpha\rangle_{\mathbb{C}}{ }^{\perp}$ such that
$\theta \cdot \beta=0$ and $\beta \in \mathbb{Q}^{Q_{0}} \Rightarrow \beta \in \mathbb{Q} \cdot \alpha$.
Since α indivisible, this implies $\overline{\operatorname{dim} W} \in \mathbb{Z}_{\geq 0} \cdot \alpha$.
Then the indecomp. W can only be V^{\prime}.
Proof of claim:
Use irrational θ in $\langle\alpha\rangle_{\mathbb{C}}{ }^{\perp}-\langle\alpha\rangle_{\mathbb{Q}}{ }^{\perp}$.
Take basis $\gamma_{1} \ldots \gamma_{n-1}$ of $\langle\alpha\rangle_{\mathbb{Q}}{ }^{\perp}$.
Take $\theta=\sum_{i=1}^{n-1} t_{i} \gamma_{i}$ where $t_{i} \in \mathbb{C} / \mathbb{Q}$ are lin. indep.
Then $\theta \cdot \beta=\sum_{i=1}^{n-1} t_{i}\left(\gamma_{i} \cdot \beta\right)=0$
(where $\gamma_{i} \cdot \beta \in \mathbb{Q}$)
implies $\gamma_{i} \cdot \beta=0 \forall i$, and hence $\beta \in \mathbb{Q} \cdot \alpha$.

Reflections for indecomp.

$\sigma_{x}(\alpha):=\alpha-\left(\alpha, \epsilon_{x}\right) \epsilon_{x}$
(Reflection about ϵ_{x}^{\perp} under the indef. "metric" $\left.(-,-) / 2\right)$ where

$$
\begin{aligned}
& (\alpha, \beta):=\langle\alpha, \beta\rangle+\langle\beta, \alpha\rangle=2 \sum_{v} \alpha(x) \beta(x)-\sum_{a} \alpha\left(t_{a}\right) \beta\left(h_{a}\right)-\sum_{a} \beta\left(t_{a}\right) \alpha\left(h_{a}\right) . \\
& \left.\sigma_{x}(\alpha)\right|_{x}=\alpha(x)-\left(2 \alpha(x)-\sum_{\substack{v \text { conn.to } x \\
\text { by arrow }}} \alpha(v)\right)=-\alpha(x)+\sum_{v \text { adj to } x} \alpha(v) .
\end{aligned}
$$

Dually:
$\sigma_{x}^{*}(\theta) \cdot \alpha=\theta \cdot \sigma_{x}(\alpha)$.
$\left.\sigma_{x}^{*}(\theta)\right|_{v}=\theta(v)-\left(\epsilon_{x}, \epsilon_{v}\right) \theta(x)$.
$\left.\sigma_{x}^{*}(\theta)\right|_{x}=-\theta(x)$.

Weyl group
$W:=\left\langle\sigma_{x}: x \in Q_{0}\right\rangle \subset G L\left(\mathbb{Z}^{Q_{0}}\right)$.
Lem. 8.2.1. Generalizing Thm. 4.3.9 to non-sinks. α indivisible.
If has indecomp. V in α, then
for every $x \in Q_{0}$,
has indecomp. rep. in $\sigma_{x}(\alpha)$
unless $\alpha=\epsilon_{x}$ in which case $V=S_{x}$
(and $\sigma_{x}\left(\epsilon_{x}\right)=-\epsilon_{x}$.)

Proof.

By Cor. 8.1.4,
can change the orientation such that x is sink,
and still has indecomp. V^{\prime} (rep. of Q^{\prime}) in α.
Then use $C_{x}\left(V^{\prime}\right)$ in Thm. 4.3.9
which is still indecomp. (rep of $\sigma_{x}\left(Q^{\prime}\right)$) of dim. $\sigma_{x}(\alpha)$
unless $V=S_{x}$ (in which $C_{x}\left(S_{x}\right)=0$).
Again by Cor. 8.1.4, has indecomp. rep. of the original Q in $\sigma_{x}(\alpha)$.
Note:
W preserves indivisibility: $\forall w \in W$,
α indivisible $\Leftrightarrow w \cdot \alpha$ indivisible.

Given an indecomp., keep on doing Lem. 8.2.1. When we encounter ϵ_{x} and want to do σ_{x},
we replace ϵ_{x} by $-\epsilon_{x}$ and do σ_{x} (so that we get back ϵ_{x}). Thus we can do this for any $w \in W$.

Thm. 8.2.2.

Suppose $\alpha>0$ indivisible.
Have indecomp. rep. of dim. α
\Leftrightarrow have indecomp. rep. of dim. $\pm w(\alpha)$.
In particular either $w(\alpha)>0$ or $-w(\alpha)>0$ if α supp. indecomp.
$\underline{\text { Reflections for } \Pi_{\theta}-\bmod }$
$Z=(V, W) \in \Pi_{\theta}-\bmod$.
Fix $x \in Q_{0}$.
take $\theta(x) \neq 0$.
$\sum_{a \in Q_{1}}\left(W\left(a^{*}\right) V(a)-V(a) W\left(a^{*}\right)\right)=\theta \cdot I d$.
In particular
$Z\left(i n_{x}\right) \cdot Z\left(o u t_{x}\right)=\theta(x) \cdot I d_{Z(x)}$
where
$i n_{x}$ is direct sum of inward arrows;
$o u t_{x}$ is direct sum of outward arrows, corrected by signs:
multiply by -1 if the out arrow comes from $Q_{1}^{o p}$.
Hence $\operatorname{Ker}\left(\right.$ in $\left._{x}\right) \cong \operatorname{coKer}\left(o u t_{x}\right)$;
$Z\left(\right.$ in $\left._{x}\right)$ is surj. and $Z\left(o u t_{x}\right)$ is inj.
(They give isom. $Z(x) \cong \operatorname{Im} Z\left(o u t_{x}\right)$.)
As in Ch.4,
$\left.\sigma_{x}(Z)\right|_{x}:=\operatorname{Ker}\left(i n_{x}\right) \cong \operatorname{coKer}\left(\right.$ out $\left._{x}\right)$ (where the isom. is the inclusion) and remain the same for other vertices.
$\sigma_{x}(Z)\left(o u t_{x}\right)$ is the inclusion of kernel,
$\sigma_{x}(Z)\left(i n_{x}\right)$ is the quotient map times $\lambda(x)$.
Remains the same for other arrows.

Lem. 8.2.4.

σ_{x}^{2} is naturally equiv. to identity, and hence σ_{x} is an equiv.

Root system

In proving Gabriel's ADE case,
we used Coxeter element to get out of first quadrant, and right before we get simple ϵ_{x}.

Another way to get to simple:

Suppose α supports indecomp. (and hence $\alpha>0$).
Consider $\left(\alpha, \epsilon_{\chi}\right)$.
For ADE, $(\alpha, \alpha)>0$, and so
$\left(\alpha, \epsilon_{x}\right)>0$ for some x.
Then reflect at x.
$\sigma_{x}(\alpha)=\alpha-\left(\alpha, \epsilon_{x}\right) \epsilon_{x}$.

This decreases $\Sigma \alpha=\sum_{y} \alpha(y)$:
$\Sigma \sigma_{x}(\alpha)=\Sigma \alpha-\left(\alpha, \epsilon_{x}\right)<\Sigma \alpha$.
Keep on doing this, until α is no longer >0.
Right before still supports indecomp, so must be ϵ_{x}.
In gen. $(\alpha, \alpha) \ngtr 0$. So Weyl reflections results in two possibilities.

1. $w \cdot \alpha$ is no longer >0.

Right before the last σ_{x}, still supports indecomp, so must be ϵ_{x}.
Such α is called real root.
Note that such α must be indivisible.
2. $\alpha>0$, but $\left(\alpha, \epsilon_{x}\right) \leq 0 \forall x$.

Observe that α has indecomp. implies α has connected support, meaning there is a connected subquiver only containing those vertices with $\alpha(x) \neq 0$.
Such α is called imaginary root.

This motivates the following definition of real and imaginary roots.

Real root:

$w \cdot \epsilon_{x}$ for any $w \in W, x \in Q_{0}$.
$\Phi_{r e}^{+}=\Phi_{r e} \cap \mathbb{Z}_{\geq 0}^{Q_{0}} ;$
$\Phi_{r e}^{-}=\Phi_{r e} \cap \mathbb{Z}_{\leq 0}^{Q_{0}} ;$
Since W preserves indivisibility, all real roots are indivisible.
$\Phi_{r e}=-\Phi_{r e}:$
$-w \cdot \epsilon_{x}=w \cdot\left(-\epsilon_{x}\right)=\left(w \cdot \sigma_{x}\right) \cdot \epsilon_{x} \in \Phi_{r e}$.
$\Phi_{r e}^{-}=-\Phi_{r e}^{+}:$
taking - preserves $\Phi_{r e}$ and switch $\mathbb{Z}_{\geq 0}^{Q_{0}}$ and $\mathbb{Z}_{\leq 0}^{Q_{0}}$.

(Positive or negative) imaginary root:

$\pm w \cdot \alpha$ for any $w \in W, \alpha>\overrightarrow{0}$,
$\left(\alpha, \epsilon_{x}\right) \leq 0 \forall x \in Q_{0}$, and
there is a connected subquiver only containing
those vertices with $\alpha(x) \neq 0$.

Note that if $\alpha \in \Phi_{i m}$, then
$k \alpha \in \Phi_{i m} \forall k \neq 0$.
Assume no loop at any vertex. Then
$\Phi_{r e} \cap \Phi_{i m}=\varnothing:$
$(\alpha, \alpha)=\left(\epsilon_{x}, \epsilon_{x}\right)=2$ (since no loop) for $\alpha \in \Phi_{r e}$,
but
$(\alpha, \alpha)=\sum_{x} \alpha(x) \cdot\left(\alpha, \epsilon_{x}\right) \leq 0$ for $\alpha \in \Phi_{i m}$.

The above has proved \rightarrow of the following:
Thm. 8.3.5.
For α indivisible, α supports indecomp. rep. $\Leftrightarrow \alpha \in \Phi^{+}$.
\leftarrow is proved below.
Lem. 8.3.1. Indecomp. for positive real root:
There exists (one) indecomp. rep. in every $\alpha \in \Phi_{r e}^{+}$.

Proof.

By Thm. 8.2.2, have indecomp. rep. in $\pm w \cdot \epsilon_{x}$. which has to lie in $\mathbb{Z}_{\geq 0}^{Q_{0}}$.

Indecomp. rep. for positive imaginary root

First show that if α satisfies the above condition, then it supports indecomp. rep.
Then by Lem. 8.2.1, restrict to the case that α indivisible,
still has indecomp. in $\sigma_{x}(\alpha) \forall x$.
(Note that $\sigma_{x}(\alpha) \neq \epsilon_{x}$ since $\Phi_{r e} \cap \Phi_{i m}=\emptyset$.)
Inductively get:
Lem. 8.3.4.
Every indivisible $\alpha \in \Phi_{i m}^{+}$supports indecomp.

First the case before taking $w \in W$:

Lem. 8.3.3.

If $\alpha>\overrightarrow{0},\left(\alpha, \epsilon_{x}\right) \leq 0 \forall x$, and there is a connected subquiver only containing those vertices with $\alpha(x) \neq 0$, then has (inf. many) indecomp. rep. in α.

Proof.

Can shrink Q to be the connected full subquiver supporting α. (Note that $(-,-)$ are the same for α supp. on the subquiver.)

Consider all possible decomp. rep., which lies in image of
$A \cdot(V \oplus W): G L_{\alpha} \times \operatorname{Rep}_{\beta}(Q) \times \operatorname{Rep}_{\alpha-\beta}(Q) \rightarrow \operatorname{Rep}_{\alpha}(Q)$
for $0<\beta<\alpha$.
(The action of A is by conjugation at each vertex.)
Want: the image has positive codimension.
If A has diagonal block form, then image still lies in $\operatorname{Rep}_{\beta}(Q) \oplus \operatorname{Rep}_{\alpha-\beta}(Q)$. Thus dim. of image is at most

$$
\operatorname{dim} \operatorname{Rep}_{\beta}(Q)+\operatorname{dim} \operatorname{Rep}_{\alpha-\beta}(Q)+\bigoplus_{x \in Q_{0}}\left(\alpha(x)^{2}-\beta(x)^{2}-((\alpha-\beta)(x))^{2}\right)
$$

(the last term comes from anti-diagonal blocks of A).
Codim. is at least
$\operatorname{dim} \operatorname{Rep}_{\alpha}(Q)-\operatorname{dim} \operatorname{Rep}_{\beta}(Q)-\operatorname{dim} \operatorname{Rep}_{\alpha-\beta}(Q)$
$-\bigoplus_{x \in Q_{0}}\left(\alpha(x)^{2}-\beta(x)^{2}-((\alpha-\beta)(x))^{2}\right)$.
$\operatorname{Recall}\langle\alpha, \alpha\rangle=\operatorname{dim} \operatorname{End}_{\alpha}-\operatorname{dim} \operatorname{Rep}_{\alpha}(Q)$.
Thus the above equals
$-\langle\alpha, \alpha\rangle+\langle\beta, \beta\rangle+\langle\alpha-\beta, \alpha-\beta\rangle=-(\beta, \alpha-\beta)$.
By the lemma below, this is ≥ 0, and equality holds iff
β is prop. to α and $\left(\alpha, \mathbb{Z}^{Q_{0}}\right)=0$.

Done if >0.

For the case β is prop. to α and $\left(\alpha, \mathbb{Z}^{Q_{0}}\right)=0$ (where $\left.\alpha(x)>0 \forall x\right)$:

$$
\forall \gamma>\overrightarrow{0}
$$

$(\gamma, \gamma)=(\gamma, \gamma-m \alpha)=-(\gamma, m \alpha-\gamma)$
where $m>0$ is taken such that $\gamma<m \alpha$
(which exists since $\alpha(x)>0 \forall x$.)
Again by lemma below, RHS ≥ 0.
Hence $B(\gamma) \geq 0 \forall \gamma \geq \overrightarrow{0}$.
See Ex. 4.2.5 that this implies Q is subgraph of extended Dynkin. $B(\alpha)=0 \Rightarrow Q$ cannot be Dynkin, and hence must be extended Dynkin.

By Lem. 4.2.2, α has to be multiple of the unique listed ones.
(Inf. many) indecomp. rep. in α can be explicitly written down.
(ex. think about the Jordan block for $\widetilde{A_{0}}$.)

Lem. 8.3.2.

If $\alpha \in \mathbb{Z}_{>0}^{Q_{0}}$ and $\left(\alpha, \epsilon_{x}\right) \leq 0 \forall x$, then
$(\beta, \alpha-\beta) \leq 0 \forall 0<\beta<\alpha$,
$=0 \Leftrightarrow \beta=c \cdot \alpha$ and $\left(\alpha, \mathbb{Z}^{Q_{0}}\right)=0$.

Proof:

$2(\beta, \alpha-\beta)=((\alpha-\beta)+\beta,(\alpha-\beta)+\beta)-(\beta, \beta)-(\alpha-\beta, \alpha-\beta) .(*)$
Similarly
$2 \beta(x) \cdot(\alpha-\beta)(x)=\alpha(x)^{2}-\beta(x)^{2}-(\alpha-\beta)(x)^{2}$.
Recall
$(\alpha, \beta)=2 \sum_{v} \alpha(v) \beta(v)-\sum_{a} \alpha\left(t_{a}\right) \beta\left(h_{a}\right)-\sum_{a} \beta\left(t_{a}\right) \alpha\left(h_{a}\right)$.
In particular $\left(\epsilon_{x}, \epsilon_{y}\right) \leq 0$ for $x \neq y$.
(But ($\epsilon_{x}, \epsilon_{x}$) can be arbitrary.)
To make use of (α, ϵ_{x}) $\leq 0 \forall x$, write the first term of (*):
$(\alpha, \alpha)=\sum_{x} \alpha(x) \cdot\left(\alpha, \epsilon_{x}\right)$.
Using the above equality,
$\alpha(x)=\frac{2 \beta(x)}{\alpha(x)} \cdot(\alpha-\beta)(x)+\frac{\beta(x)^{2}}{\alpha(x)}+\frac{(\alpha-\beta)(x)^{2}}{\alpha(x)} \geq \frac{\beta(x)^{2}}{\alpha(x)}+\frac{(\alpha-\beta)(x)^{2}}{\alpha(x)}$.
Thus

$$
(\alpha, \alpha) \leq \sum_{x} \frac{\beta(x)^{2}}{\alpha(x)}\left(\alpha, \epsilon_{x}\right)+\frac{(\alpha-\beta)(x)^{2}}{\alpha(x)}\left(\alpha, \epsilon_{x}\right)
$$

Consider the first term:
$\sum_{x} \frac{\beta(x)^{2}}{\alpha(x)} \cdot\left(\alpha, \epsilon_{x}\right)-(\beta, \beta)$
$=\sum_{x, y}\left(\frac{\beta(x)^{2} \alpha(y)}{\alpha(x)}-\beta(x) \beta(y)\right)\left(\epsilon_{x}, \epsilon_{y}\right)$
$=\sum_{x, y} \alpha(x) \alpha(y)\left(\left(\frac{\beta(x)}{\alpha(x)}\right)^{2}-\frac{\beta(x) \beta(y)}{\alpha(x) \alpha(y)}\right)\left(\epsilon_{x}, \epsilon_{y}\right)$
$=\sum_{x, y} \frac{\alpha(x) \alpha(y)}{2}\left(\frac{\beta(x)}{\alpha(x)}-\frac{\beta(y)}{\alpha(y)}\right)^{2}\left(\epsilon_{x}, \epsilon_{y}\right) \leq 0$.
Similarly replacing β by $\alpha-\beta$, we get the comparison for the second term.
Get $(\beta, \alpha-\beta) \leq 0$.
Equality holds if and only if
$\frac{\beta(x)}{\alpha(x)}=\frac{\beta(y)}{\alpha(y)} \forall x, y$ and $\frac{2 \beta(x)}{\alpha(x)} \cdot(\alpha-\beta)(x)\left(\alpha, \epsilon_{x}\right)=0$.
The first cond. gives $\beta=c \alpha(\beta \neq 0)$.
The second cond. implies $\left(\alpha, \epsilon_{x}\right)=0$ since $\beta \neq \alpha$.

Quiver over other fields

Can remove indivisible condition by using finite fields.
Reduction mod p:
Prop. 8.4.8.
Has k (or inf.) indecomp. in α over \mathbb{C}
iff has k (or inf.) such over $\overline{\mathbb{F}_{p}}$ for inf. many prime.
$\overline{\mathbb{F}_{p}}$ is union of $\mathbb{F}_{q}, q=p^{k}$ for prime p.
Advantage of $\mathbb{F}_{q}, q=p^{k}$ for prime p :
Finite number of rep. classes in α.
\# indecomp. in $\overline{\mathbb{F}_{p}}$ is $(k \rightarrow \infty)$-limit of
\# absolutely indecomp. in $\mathbb{F}_{p^{k}}$ defined below.

For field extension F^{\prime} over F, have "pull-back"
$F^{\prime} \otimes_{F} V$ (rep. over F^{\prime})
for rep. V over F.
(Take $1 \otimes_{F} V(a)$ for arrows a.)
Note:
can still regard $F^{\prime} \otimes_{F} V$ as rep. over F, which is isom. to $V^{\oplus d}$
where d is deg. of field ext.

Absolutely indecomp.:

$\bar{F} \otimes_{F} V$ is indecomp.
"Pulling back" is injective:
Lem. 8.4.1.
$F^{\prime} \otimes_{F} V \cong F^{\prime} \otimes_{F} W$ over $F^{\prime} \Leftrightarrow V \cong W$ over F.
Proof.
\leftarrow is clear.
$\Rightarrow)$
Isom. over F^{\prime} is also isom. over F.
$V^{\oplus d} \cong W^{\oplus d}$
and hence $V \cong W$
by Krull-Remak-Schmidt theorem (which holds over any field).
(Same indecomp. summands and same multiplicities.)

Strategy:

$a_{\alpha}:=$ \#(abs. indecomp. in α)
is indep. of arrow orientation.
(Don't need indivisibility of α this time.)
Also $a_{\sigma_{x} \cdot \alpha}=a_{\alpha}$
if $a_{\alpha} \neq 0$ and $\alpha \neq \epsilon_{x}$.
Then reduce to either ϵ_{x} (real root)
or (im. root)
those $\alpha>0$, but $\left(\alpha, \epsilon_{x}\right) \leq 0$ and α has conn. supp.
in which case we already know
$a_{\alpha}=1$ or ∞ respectively.

Work over F_{q} now, $q=p^{k}$ for prime p.
First show that
\# rep. in α is indep. of orientation of Q.
Then show that
\# indecomp. in α can be written in terms of
\# rep. in β for all $\beta \leq \alpha$,
and hence also indep. of orientation of Q.
Finally show that
\# abs. indecomp. in α can be expressed in term of
\# indecomp. in α / k for all $k \mid \alpha$,
and hence also indep. of orientation of Q.

Lem. 8.4.2.
$|V / G|=\left|V^{*} / G\right|$
for finite dim. v.s. V.

Lem. 8.4.3.
$|(V \oplus W) / G|=\left|\left(V^{*} \oplus W\right) / G\right|$.

Lem. 8.4.4.

Number of rep. in α does not depend on orientation.

Proof.

Count number of orbits of $G L_{\alpha}\left(F_{q}\right)$ in $\operatorname{Rep} p_{\alpha}\left(Q ; F_{q}\right)$.
Reversing arrow: taking $\left(\operatorname{Hom}\left(V_{h_{a}}, V_{t_{a}}\right)\right)^{*} \cong \operatorname{Hom}\left(V_{t_{a}}, V_{h_{a}}\right)$.
Same number of orbits by Lem. 8.4.4.

Lem. 8.4.5.

i_{α}, the number of indecomp. rep. in α, does not depend on orientation.

Proof.

Take generating function.
$\prod_{\alpha>0} \frac{1}{\left(1-t^{\alpha}\right)^{i_{\alpha}}}=\prod_{\alpha>0}\left(1+t^{\alpha}+t^{2 \alpha}+\cdots\right) \ldots\left(1+t^{\alpha}+t^{2 \alpha}+\cdots\right)$
where i_{α} is the number of distinct indecomp. in α.
Each term is: product of $t^{k \alpha}$ from each factor, representing k copies of certain class
of indecomp. of dim. α.
Hence it equals to the generating function of rep.
$\sum_{\alpha \geq 0} r_{\alpha} t^{\alpha}$
where r_{α} is number of distinct rep. in α.
Thus i is determined by r.
Then follows from Lem. 8.4.4.

Now we need to study relation between indecomp. and abs. indecomp.
Given indecomp. V over F_{q}, take
$\overline{F_{q}} \otimes_{F_{q}} V$ over $\overline{F_{q}}$.
Let W be an indecomp. summand.
Then W is defined over $F_{q^{d}}$ for some d.
So $F_{q^{d}} \otimes_{F_{q}} V$ has W as indecomp. summand,
and $F_{q^{d}} \otimes_{F_{q}} V$ is abs. indecomp.
This means, any indecomp. after pulled back to $F_{q^{d}}$ for some d has an abs. indecomp. summand.

The following lemma shows that
$F_{q^{d}} \otimes_{F_{q}} V=W \oplus \Phi(W) \oplus \cdots \oplus \Phi^{e-1}(W)$
where Φ is the Frob. aut.
$\Phi: F_{q^{d}} \rightarrow F_{q^{d}}, x \mapsto x^{q} .\left(q=p^{k}.\right)$
Fixed set is the subfield F_{q} in $F_{q^{d}}$.
Thus the indecomp. V over F_{q} gives e abs. indecomp. over $F_{q^{d}}$
(if we take d as above).

Lem. 8.4.6.

V : indecomp. over F_{q}.
Take $F_{q^{d}} \otimes_{F_{q}} V$.
Let W be indecomp. summand (over $F_{q^{d}}$).
Then
$F_{q^{d}} \otimes_{F_{q}} V=W \oplus \Phi(W) \oplus \cdots \oplus \Phi^{e-1}(W)$
(Φ is Frob. aut. on every matrix entry)
where e is smallest such that $W \cong \Phi^{e}(W)$.

Proof.

For rep. W over $F_{q^{d}}$,
take $F_{q^{d}} \otimes_{F_{q}} W$ (where W is taken over F_{q} here).
$F_{q^{d}} \otimes_{F_{q}} W \cong W \oplus \Phi(W) \oplus \cdots \oplus \Phi^{d-1}(W):$
Vertices:
$\lambda \otimes v \mapsto \lambda\left(v, \Phi(v), \ldots, \Phi^{d-1}(v)\right)$.
Injective and same dim., and hence iso.
Arrows:
$1 \otimes W(a)$ is identified with
$\operatorname{Diag}\left(W(a), \Phi(W(a)), \ldots, \Phi^{d-1}(W(a))\right)$.
Note that
$\Phi\left(F_{q^{d}} \otimes_{F_{q}} V\right)=F_{q^{d}} \otimes_{F_{q}} V$ since arrow is $1 \otimes V(a)$ defined over F_{q}.
Thus once W is a direct summand, $\Phi^{k}(W)$ is also a direct summand.
$F_{q^{d}} \otimes_{F_{q}} W$ is then a direct summand of $\left(F_{q^{d}} \otimes_{F_{q}} V\right)^{\oplus k}$.
Regard these as over F_{q} for the moment.
Since V indecomp., the above implies W (over F_{q}) is $V^{\oplus l}$.
Then $F_{q^{d}} \otimes_{F_{q}} W=\left(F_{q^{d}} \otimes_{F_{q}} V\right)^{\oplus l}$.
$F_{q^{d}} \otimes_{F_{q}} W$
$\cong W \oplus \Phi(W) \oplus \cdots \oplus \Phi^{d-1}(W)=\left(W \oplus \Phi(W) \oplus \cdots \oplus \Phi^{e-1}(W)\right)^{\oplus_{e}^{e}}$.
All $\Phi^{i}(W)$ are indecomp. Thus
$F_{q^{d}} \otimes_{F_{q}} V=\left(W \oplus \Phi(W) \oplus \cdots \oplus \Phi^{e-1}(W)\right)^{m}$.
$m=1$:
V is indecomp.
Consider End $\left(F_{q^{d}} \otimes_{F_{q}} V\right) \cong F_{q^{d}} \otimes_{F_{q}} \operatorname{End}(V)$.
Every element in $\operatorname{End}(V)$ is either invertible or nilpotent.

Thus every non-zero element in $F_{q^{d}} \bigotimes_{F_{q}} \operatorname{End}(V) / \mathfrak{n}$ is invertible.
But this is not true for $\operatorname{End}\left(M^{m}\right)$ for $m \geq 2$.
$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is neither invertible nor nilpotent.)

Then we get a (better) version of Thm. 8.2.2 over \mathbb{F}_{q}.

Lem. 8.4.7.

a_{α}, the number of abs. indecomp. in α over \mathbb{F}_{q}, does not depend on orientation of arrows.
(Now don't need indivisibility.)

Proof.

Argue that a_{α} can be written in terms of i_{α},
which is indep. of arrow orientation.
Given indecomp V, by Lem. 8.4.6,
$F_{q^{k}} \otimes_{F_{q}} V=W \oplus \Phi(W) \oplus \cdots \oplus \Phi^{e-1}(W)$
and W is abs. indecomp. for k big enough.
Take min. such k. Then $e=k$.
Thus
$i_{\alpha}=\sum_{k \mid \alpha} b_{k, \alpha / k}(q) / k$
where $b_{k, \alpha / k}$ is \#abs. indecomp. over $F_{q^{k}}$
that does not comes from previous F_{q}.
Then
$b_{k, \alpha / k}(q)=a_{\alpha / k}\left(q^{k}\right)-\cdots$
where the later terms involve $a_{\alpha / k}\left(q^{l}\right)$ for $l \mid k$.
In particular $b_{1, \alpha}(q)=a_{\alpha}(q)$.
Thus
$i_{\alpha}=\sum_{k \mid \alpha} b_{k, \alpha / k}(q) / k=a_{\alpha}(q)+\cdots$
where the later terms only involves $a_{\alpha / k}$,
which can be written in terms of $i_{\alpha / k}$ by induction.

Thm. 8.4.10.

For $\alpha>0$ that supports abs. indecomp.,
$a_{\alpha}=a_{ \pm w(\alpha)}$
where we take the one in $\pm w(\alpha)$ that is >0.

Proof.

By Lem. 8.4.7, can make a vertex into sink, and then do reflection at that vertex.
Unless $\alpha=\epsilon_{x}, \sigma_{x}$ gives one-one for abs. indecomp.
For $\alpha=\epsilon_{x}$, take $-\sigma_{x}\left(\epsilon_{x}\right)=\epsilon_{x}$ and do nothing.
This realizes $\pm w$.

Thm. 8.4.11.

Now over \mathbb{C}.
α is pos. real root iff it has exactly one indecomp. (assuming no self loop) pos. im. root iff it has inf. many indecomp.

Proof.

First consider $\overline{F_{p}}$.
By Thm 8.4.10,
reduce to either ϵ_{x} (real case) or
those $\alpha>0$, but (α, ϵ_{x}) ≤ 0 and α has conn. supp. (im. case)
Already known they have one (real) (assuming no self loop)
or inf. many (im.) indecomp.
Then by Prop. 8.4.8. also true for \mathbb{C}.

