
Ch. 8.

Main: for any quiver.
There exists indecomp. in 𝛼
⟺ 𝛼 is a positive root of the corresponding root system (Kac-Moody Lie alg.)

Key:
Whether there exists indecomp. in 𝛼 is indep. of orientation of arrows of 𝑄.
Thus can change to sink/source to do reflection.

Deformed preprojective alg.

Π ≔ ℂ𝑄 / (𝑎∗𝑎 − 𝑎𝑎∗)

 

∈

 − 𝜃 ⋅ 𝐼𝑑 .

where 𝑄 is the double quiver.
The relation is denoted as 𝑟 .
(𝜃 ∈ ℂ .)

Note:
𝑟 consists of cycles (same source and target).

𝑅𝑒𝑝 (Π ) = 𝜇 (𝜃 ⋅ 𝐼𝑑)
where
𝜇:  𝑅𝑒𝑝 (𝑄) ⊕ 𝑅𝑒𝑝 (𝑄 ) → End (𝑄)
is the "moment map"

𝑊(𝑎∗)𝑉(𝑎) − 𝑉(𝑎)𝑊(𝑎∗)

 

∈

.

Moment map for linear action of 𝐺𝐿(𝑛) on 𝑀 ⊕ 𝑀∗ (complex sympl.),
(𝑣, 𝑤) ↦ (𝐴𝑣, 𝑤𝐴 )
is

𝑀 ⊕ 𝑀∗ → 𝔤𝔩∗

(𝜇(𝑣, 𝑤), 𝑋) = 𝑤𝑋𝑣.
𝐺𝐿 acts on (𝑉, 𝑊) ∈ 𝑅𝑒𝑝 (𝑄) ⊕ 𝑅𝑒𝑝 (𝑄 ) by

𝑔 ( )𝑉(𝑎)𝑔 ( ), 𝑔 ( )𝑊(𝑎∗)𝑔 ( ) .

𝔤𝔩 acts by
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𝔤𝔩 acts by

𝑋 ( )𝑉(𝑎) − 𝑉(𝑎)𝑋 ( ), 𝑋 ( )𝑊(𝑎∗) − 𝑊(𝑎∗)𝑋 ( ) .

(𝜇(𝑉, 𝑊), 𝑋) = tr 𝑋 ( )𝑉(𝑎)𝑊(𝑎∗) − 𝑉(𝑎)𝑋 ( )𝑊(𝑎∗)

 

= tr 𝑋 ( )𝑉(𝑎)𝑊(𝑎∗) − 𝑋 ( )𝑊(𝑎∗)𝑉(𝑎)

 

.

Image of

𝜇 = 𝑊(𝑎∗)𝑉(𝑎) − 𝑉(𝑎)𝑊(𝑎∗)

 

∈

has total trace zero.  hence need
𝜃 ⋅ 𝛼 = tr(𝜃 ⋅ Id) = 0
or otherwise Π = ∅.

Recall the exact sequence

0 → 𝐻 → Hom 𝑉(𝑥), 𝑊(𝑥)

 

→ Hom 𝑉(𝑡 ), 𝑊(ℎ )

 

→ 𝐻 → 0.

Put 𝑉 = 𝑊:

0 → End(𝑉) → End (𝑄) Rep (𝑄) → 𝐻 (𝑉) → 0.

(𝛼 = dim 𝑉 .)

Dualizing: (∑ 𝑇𝑟 𝑊(𝑎∗)𝑉(𝑎)  gives Rep (𝑄∗) ≅ Rep (𝑄)
∗
.)

0 → 𝐻 (𝑉)
∗

→ Rep (𝑄∗)
∗

End (𝑄∗) → End(𝑉)
∗

→ 0

Indeed

𝑑∗ = 𝜇(𝑉, −) = (−)(𝑎∗) ⋅ 𝑉(𝑎) − 𝑉(𝑎) ⋅ (−)(𝑎∗)

 

∈

.

Thm. 8.1.3. Lift 𝑄-rep V to Π -rep.
𝜃 ⋅ 𝐼𝑑 ∈ Im(𝑑∗ )  (that is, 𝑉 can be lifted)

⟺ 𝜃 ⋅ dim �⃗� = 0  ∀ indecomp. summand 𝑊 of 𝑉.

Proof.
By exact seq, 

𝜃 ⋅ 𝐼𝑑 ∈ Im 𝑑∗ ⟺ 𝜃 𝑥 ⋅ tr 𝑓

 

= 0 ∀𝑓 ∈ End 𝑉 .
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𝜃 ⋅ 𝐼𝑑 ∈ Im(𝑑∗ ) ⟺ 𝜃(𝑥) ⋅ tr 𝑓

 

= 0 ∀𝑓 ∈ End(𝑉).

→)
consider 𝑓 = 𝜋 ∈ 𝐸𝑛𝑑(𝑉) projection to 𝑊.

tr(𝜃(𝑥) 𝑓 )

 

= 𝜃(𝑥)tr(𝑓 )

 

= 𝜃 ⋅ dim �⃗� = 0.

←)
Let 𝑉 = 𝑊 ⊕ ⋯ ⊕ 𝑊 indecomp.

𝜃 dim 𝑊 = 0 ∀𝑖.

Recall (from Ch.1) that 
∀𝑓 ∈ End(𝑊 ),
𝑓 is spanned by 𝐼𝑑 and nilpotents (Jordan decomp. into gen. eigen-subrep.).

𝜃(𝑥) tr(𝑓 )

 

= 𝜃(𝑥) tr(𝜆 ⋅ 𝐼𝑑)

 

= 𝜆𝜃 ⋅ dim 𝑊 = 0.

For 𝑓 ∈ 𝐸𝑛𝑑(𝑉), write 𝑓 into matrix form 𝑓 ∈ Hom 𝑊 , 𝑊 .

tr(𝜃(𝑥) 𝑓 )

 

= 𝜃(𝑥) tr(𝑓 )

  

= 0.

Cor. 8.1.4.
Suppose 𝛼 is indivisible.
Whether there exists indecomp. in 𝛼 is indep. of orientation of arrows of 𝑄.
Proof.
Let 𝑄, 𝑄 be the same up to orientation.
Then they have the same double 𝑄.
Want:
𝑄 has indecomp. in 𝛼 ⟺ 𝑄 has indecomp. in 𝛼.

Idea:
Lift 𝑄-rep to Π -rep, and then restrict to 𝑄 -rep.

Suppose 𝑉 indecomp. in 𝛼.
Choose 𝜃 ⋅ 𝛼 = 0.
Then by Thm. 8.1.3, 𝑉 can be lifted to Π -rep.
Restrict to 𝑄 -rep. 𝑉′ (with sam dim. 𝛼).  Hope indecomp.
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Restrict to 𝑄 -rep. 𝑉′ (with sam dim. 𝛼).  Hope indecomp.

Again by Thm. 8.1.3,

𝜃 ⋅ dim 𝑊 = 0  ∀ indecomp. summand 𝑊 of 𝑉 .

Claim:

can choose 𝜃 ∈ ⟨𝛼⟩ℂ such that
𝜃 ⋅ 𝛽 = 0 and 𝛽 ∈ ℚ ⇒ 𝛽 ∈ ℚ ⋅ 𝛼.

Since 𝛼 indivisible, this implies dim 𝑊 ∈ ℤ ⋅ 𝛼.
Then the indecomp. 𝑊 can only be 𝑉 .

Proof of claim:

Use irrational 𝜃 in ⟨𝛼⟩ℂ − ⟨𝛼⟩ℚ .

Take basis 𝛾 … 𝛾 of ⟨𝛼⟩ℚ .

Take 𝜃 = ∑ 𝑡 𝛾 where 𝑡 ∈ ℂ/ℚ are lin. indep.

Then 𝜃 ⋅ 𝛽 = ∑ 𝑡 (𝛾 ⋅ 𝛽) = 0
(where 𝛾 ⋅ 𝛽 ∈ ℚ)
implies 𝛾 ⋅ 𝛽 = 0 ∀𝑖, and hence 𝛽 ∈ ℚ ⋅ 𝛼.

Reflections for indecomp.
𝜎 (𝛼) ≔ 𝛼 − (𝛼, 𝜖 ) 𝜖
(Reflection about 𝜖 under the indef. "metric" (−, −)/2)
where

(𝛼, 𝛽) ≔ ⟨𝛼, 𝛽⟩ + ⟨𝛽, 𝛼⟩ = 2 α(𝑥)𝛽(𝑥)

 

− 𝛼(𝑡 )𝛽(ℎ )

 

− 𝛽(𝑡 )𝛼(ℎ )

 

.

𝜎 (𝛼) = 𝛼(𝑥) − 2𝛼(𝑥) − 𝛼(𝑣)

 

 .  
 

= −α(𝑥) + 𝛼(𝑣)

 

   

.

Dually:
𝜎∗(𝜃) ⋅ 𝛼 = 𝜃 ⋅ 𝜎 (𝛼).

𝜎∗(𝜃) = 𝜃(𝑣) − (𝜖 , 𝜖 ) 𝜃(𝑥).

𝜎∗(𝜃) = −𝜃(𝑥).
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Weyl group

𝑊 ≔ ⟨𝜎 : 𝑥 ∈ 𝑄 ⟩ ⊂ 𝐺𝐿 ℤ .

Lem. 8.2.1. Generalizing Thm. 4.3.9 to non-sinks.
𝛼 indivisible.
If has indecomp. 𝑉 in 𝛼, then
for every 𝑥 ∈ 𝑄 ,
has indecomp. rep. in 𝜎 (𝛼)
unless 𝛼 = 𝜖 in which case 𝑉 = 𝑆
(and 𝜎 (𝜖 ) = −𝜖 .)

Proof.
By Cor. 8.1.4,
can change the orientation such that 𝑥 is sink,
and still has indecomp. 𝑉 (rep. of 𝑄 ) in 𝛼.
Then use 𝐶 (𝑉 ) in Thm. 4.3.9
which is still indecomp. (rep of 𝜎 (𝑄 )) of dim. 𝜎 (𝛼)
unless 𝑉 = 𝑆 (in which 𝐶 (𝑆 ) = 0).
Again by Cor. 8.1.4, has indecomp. rep. of the original 𝑄 in 𝜎 (𝛼).

Note:
𝑊 preserves indivisibility: ∀𝑤 ∈ 𝑊,
𝛼 indivisible ⟺ 𝑤 ⋅ 𝛼 indivisible.

Given an indecomp., keep on doing Lem. 8.2.1.  When we encounter 𝜖 and want to 
do 𝜎 ,
we replace 𝜖 by −𝜖 and do 𝜎 (so that we get back 𝜖 ).  Thus we can do this for any 
𝑤 ∈ 𝑊.

Thm. 8.2.2.
Suppose 𝛼 > 0 indivisible.
Have indecomp. rep. of dim. 𝛼
⟺ have indecomp. rep. of dim. ±𝑤(𝛼).
In particular either 𝑤(𝛼) > 0 or −𝑤(𝛼) > 0 if 𝛼 supp. indecomp.

Reflections for Π -mod
𝑍 = (𝑉, 𝑊) ∈ Π − mod.
Fix 𝑥 ∈ 𝑄 .  
take 𝜃(𝑥) ≠ 0.

𝑊 𝑎∗ 𝑉 𝑎 − 𝑉 𝑎 𝑊 𝑎∗

 

= 𝜃 ⋅ 𝐼𝑑.
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𝑊(𝑎∗)𝑉(𝑎) − 𝑉(𝑎)𝑊(𝑎∗)

 

∈

= 𝜃 ⋅ 𝐼𝑑.

In particular
𝑍(𝑖𝑛 ) ⋅ 𝑍(𝑜𝑢𝑡 ) = 𝜃(𝑥) ⋅ 𝐼𝑑 ( )

where
𝑖𝑛 is direct sum of inward arrows;
𝑜𝑢𝑡 is direct sum of outward arrows, corrected by signs:
multiply by -1 if the out arrow comes from 𝑄 .

Hence Ker(𝑖𝑛 ) ≅ coKer(𝑜𝑢𝑡 );
𝑍(𝑖𝑛 ) is surj. and 𝑍(𝑜𝑢𝑡 ) is inj.
(They give isom. 𝑍(𝑥) ≅ Im 𝑍(𝑜𝑢𝑡 ).)

As in Ch.4,

𝜎 (𝑍) ≔ Ker(𝑖𝑛 ) ≅ coKer(𝑜𝑢𝑡 ) (where the isom. is the inclusion)

and remain the same for other vertices.
𝜎 (𝑍)(𝑜𝑢𝑡 ) is the inclusion of kernel,
𝜎 (𝑍)(𝑖𝑛 ) is the quotient map times 𝜆(𝑥).
Remains the same for other arrows.

Lem. 8.2.4.
𝜎 is naturally equiv. to identity, and hence 𝜎 is an equiv.

Root system

In proving Gabriel's ADE case,
we used Coxeter element to get out of first quadrant,
and right before we get simple 𝜖 .

Another way to get to simple:
Suppose 𝛼 supports indecomp. (and hence 𝛼 > 0).
Consider (𝛼, 𝜖 ).
For ADE, (𝛼, 𝛼) > 0, and so
(𝛼, 𝜖 ) > 0 for some 𝑥.
Then reflect at 𝑥.
𝜎 (𝛼) = 𝛼 − (𝛼, 𝜖 ) 𝜖 .
This decreases Σ𝛼 = 𝛼 𝑦  :
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This decreases Σ𝛼 = ∑ 𝛼(𝑦)  :

Σ𝜎 (𝛼) = Σα − (𝛼, 𝜖 ) < Σα.
Keep on doing this,
until 𝛼 is no longer > 0.
Right before still supports indecomp, so must be 𝜖 .

𝑤 ⋅ 𝛼 is no longer > 0.
Right before the last 𝜎 , still supports indecomp, so must be 𝜖 .
Such 𝛼 is called real root.
Note that such 𝛼 must be indivisible.

1.

𝛼 > 0, but (𝛼, 𝜖 ) ≤ 0 ∀𝑥.
Observe that 𝛼 has indecomp. implies 𝛼 has connected support,
meaning there is a connected subquiver only containing

2.

those vertices with 𝛼(𝑥) ≠ 0.
Such 𝛼 is called imaginary root.

In gen. (𝛼, 𝛼) ≯ 0.  So Weyl reflections results in two possibilities.

This motivates the following definition of real and imaginary roots.

Real root: 
𝑤 ⋅ 𝜖 for any 𝑤 ∈ 𝑊, 𝑥 ∈ 𝑄 .

Φ = Φ ∩ ℤ ;

Φ = Φ ∩ ℤ ;

Since 𝑊 preserves indivisibility,
all real roots are indivisible.

Φ = −Φ :
−𝑤 ⋅ 𝜖 = 𝑤 ⋅ (−𝜖 ) = (𝑤 ⋅ 𝜎 ) ⋅ 𝜖 ∈ Φ .

Φ = −Φ :

taking − preserves Φ and switch ℤ and ℤ .

(Positive or negative) imaginary root:  

±𝑤 ⋅ 𝛼 for any 𝑤 ∈ 𝑊, 𝛼 > 0⃗,
(𝛼, 𝜖 ) ≤ 0 ∀𝑥 ∈ 𝑄 , and
there is a connected subquiver only containing
those vertices with 𝛼(𝑥) ≠ 0.

Note that if 𝛼 ∈ Φ , then
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Note that if 𝛼 ∈ Φ , then
𝑘𝛼 ∈ Φ   ∀𝑘 ≠ 0.

Assume no loop at any vertex.  Then
Φ ∩ Φ = ∅:
(𝛼, 𝛼) = (𝜖 , 𝜖 ) = 2 (since no loop) for 𝛼 ∈ Φ ,
but
(𝛼, 𝛼) = ∑ 𝛼(𝑥) ⋅ (𝛼, 𝜖 )  ≤ 0 for 𝛼 ∈ Φ .

The above has proved → of the following:

Thm. 8.3.5.
For 𝛼 indivisible,
𝛼 supports indecomp. rep. ⟺ 𝛼 ∈ Φ .

← is proved below.

Lem. 8.3.1. Indecomp. for positive real root:
There exists (one) indecomp. rep. in every 𝛼 ∈ Φ .

Proof.
By Thm. 8.2.2, have indecomp. rep. in ±𝑤 ⋅ 𝜖 .

which has to lie in ℤ .

Indecomp. rep. for positive imaginary root

First show that if 𝛼 satisfies the above condition, then
it supports indecomp. rep.
Then by Lem. 8.2.1, 
restrict to the case that 𝜶 indivisible,
still has indecomp. in 𝜎 (𝛼) ∀𝑥.
(Note that 𝜎 (𝛼) ≠ 𝜖 since Φ ∩ Φ = ∅.)
Inductively get:

Lem. 8.3.4.
Every indivisible 𝛼 ∈ Φ supports indecomp.
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First the case before taking 𝑤 ∈ 𝑊:
Lem. 8.3.3.
If 𝛼 > 0⃗, (𝛼, 𝜖 ) ≤ 0 ∀𝑥, and
there is a connected subquiver only containing
those vertices with 𝛼(𝑥) ≠ 0,
then has (inf. many) indecomp. rep. in 𝛼.

Proof.
Can shrink 𝑄 to be the connected full subquiver supporting 𝛼.
(Note that (−, −) are the same for 𝛼 supp. on the subquiver.)

Consider all possible decomp. rep., which lies in image of
𝐴 ⋅ (𝑉 ⊕ 𝑊):  𝐺𝐿 × 𝑅𝑒𝑝 (𝑄) × 𝑅𝑒𝑝 (𝑄) → 𝑅𝑒𝑝 (𝑄)

for 0 < 𝛽 < 𝛼.
(The action of 𝐴 is by conjugation at each vertex.)
Want: the image has positive codimension.

If 𝐴 has diagonal block form, then image still lies in 𝑅𝑒𝑝 (𝑄) ⊕ 𝑅𝑒𝑝 (𝑄).

Thus dim. of image is at most

dim 𝑅𝑒𝑝 (𝑄) + dim 𝑅𝑒𝑝 (𝑄) + 𝛼(𝑥) − β(𝑥) − (𝛼 − 𝛽)(𝑥)

 

∈

(the last term comes from anti-diagonal blocks of 𝐴).
Codim. is at least
dim 𝑅𝑒𝑝 (𝑄) − dim 𝑅𝑒𝑝 (𝑄) − dim 𝑅𝑒𝑝 (𝑄)

− 𝛼(𝑥) − β(𝑥) − (𝛼 − 𝛽)(𝑥)

 

∈

.

Recall ⟨𝛼, 𝛼⟩ = dim End − dim 𝑅𝑒𝑝 (𝑄) .
Thus the above equals
−⟨𝛼, 𝛼⟩ + ⟨𝛽, 𝛽⟩ + ⟨𝛼 − 𝛽, 𝛼 − 𝛽⟩ = −(𝛽, 𝛼 − 𝛽).
By the lemma below, this is ≥ 0, and equality holds iff

𝛽 is prop. to 𝛼 and 𝛼, ℤ  = 0.

Done if > 0.

∀𝛾 > 0⃗,
𝛾, 𝛾 = 𝛾, 𝛾 − 𝑚𝛼 = − 𝛾, 𝑚𝛼 − 𝛾

For the case 𝛽 is prop. to 𝛼 and 𝛼, ℤ  = 0 (where 𝛼(𝑥) > 0 ∀𝑥):
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(𝛾, 𝛾) = (𝛾, 𝛾 − 𝑚𝛼) = −(𝛾, 𝑚𝛼 − 𝛾)
where 𝑚 > 0 is taken such that 𝛾 < 𝑚𝛼
(which exists since 𝛼(𝑥) > 0 ∀𝑥.)

Again by lemma below, RHS ≥ 0.

Hence 𝐵(𝛾) ≥ 0 ∀𝛾 ≥ 0⃗.

See Ex. 4.2.5 that this implies 𝑄 is subgraph of extended Dynkin.
𝐵(𝛼) = 0 ⇒ 𝑄 cannot be Dynkin, and hence must be extended Dynkin.

By Lem. 4.2.2, 𝛼 has to be multiple of the unique listed ones. 
(Inf. many) indecomp. rep. in 𝛼 can be explicitly written down.
(ex. think about the Jordan block for 𝐴 .)

Lem. 8.3.2.
If 𝛼 ∈ ℤ  and (𝛼, 𝜖 ) ≤ 0 ∀𝑥, then
(𝛽, 𝛼 − 𝛽) ≤ 0 ∀0 < 𝛽 < 𝛼,

= 0 ⟺ 𝛽 = 𝑐 ⋅ 𝛼 and 𝛼, ℤ  = 0.

Proof:
2(𝛽, 𝛼 − 𝛽) = (𝛼 − 𝛽) + 𝛽, (𝛼 − 𝛽) + 𝛽 − (𝛽, 𝛽) − (𝛼 − 𝛽, 𝛼 − 𝛽).  (∗)

Similarly
2𝛽(𝑥) ⋅ (𝛼 − 𝛽)(𝑥) = 𝛼(𝑥) − 𝛽(𝑥) − (𝛼 − 𝛽)(𝑥) .

Recall

(𝛼, 𝛽) = 2 α(𝑣)𝛽(𝑣)

 

− 𝛼(𝑡 )𝛽(ℎ )

 

− 𝛽(𝑡 )𝛼(ℎ )

 

.

In particular 𝜖 , 𝜖 ≤ 0 for 𝑥 ≠ 𝑦.

(But  (𝜖 , 𝜖 ) can be arbitrary.)

To make use of (𝛼, 𝜖 ) ≤ 0 ∀𝑥, write the first term of (∗):

(𝛼, 𝛼) = 𝛼(𝑥) ⋅ (𝛼, 𝜖 )

 

.

Using the above equality,

𝛼(𝑥) =
2𝛽(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯⎯ ⋅ (𝛼 − 𝛽)(𝑥) +

𝛽(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯⎯+

(𝛼 − 𝛽)(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ≥

𝛽(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯⎯+

(𝛼 − 𝛽)(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯.

Thus

𝛼, 𝛼 ≤
𝛽 𝑥

𝛼 𝑥
𝛼, 𝜖

 

+
𝛼 − 𝛽 𝑥

𝛼 𝑥
𝛼, 𝜖 .
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(𝛼, 𝛼) ≤
𝛽(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯⎯(𝛼, 𝜖 )

 

+
(𝛼 − 𝛽)(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(𝛼, 𝜖 ).

Consider the first term:
𝛽(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯⎯⋅ (𝛼, 𝜖 )

 

− (𝛽, 𝛽)

=
𝛽(𝑥) 𝛼(𝑦)

𝛼(𝑥)
⎯⎯⎯⎯⎯⎯⎯⎯⎯−  𝛽(𝑥)𝛽(𝑦) 𝜖 , 𝜖

 

,

= 𝛼(𝑥)𝛼(𝑦)
𝛽(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯ −

𝛽(𝑥)𝛽(𝑦)

𝛼(𝑥)𝛼(𝑦)
⎯⎯⎯⎯⎯⎯⎯⎯ 𝜖 , 𝜖

 

,

=
𝛼(𝑥)𝛼(𝑦)

2
⎯⎯⎯⎯⎯⎯⎯⎯

𝛽(𝑥)

𝛼(𝑥)
⎯⎯⎯⎯ −

𝛽(𝑦)

𝛼(𝑦)
⎯⎯⎯⎯ 𝜖 , 𝜖

 

,

≤ 0.

Similarly replacing 𝛽 by 𝛼 − 𝛽, we get the comparison for the second term.
Get (𝛽, 𝛼 − 𝛽) ≤ 0.

Equality holds if and only if
( )

( )
⎯⎯⎯ =

( )

( )
⎯⎯⎯  ∀𝑥, 𝑦 and 

( )

( )
⎯⎯⎯⎯ ⋅ (𝛼 − 𝛽)(𝑥) (𝛼, 𝜖 ) = 0.

The first cond. gives 𝛽 = 𝑐𝛼 (𝛽 ≠ 0).
The second cond. implies (𝛼, 𝜖 ) = 0 since 𝛽 ≠ 𝛼.

Quiver over other fields
Can remove indivisible condition by using finite fields.

Reduction mod p:
Prop. 8.4.8.
Has 𝑘 (or inf.) indecomp. in 𝛼 over ℂ
iff has 𝑘 (or inf.) such over 𝔽 for inf. many prime.

𝔽 is union of 𝔽 , 𝑞 = 𝑝 for prime 𝑝.

Advantage of 𝔽 , 𝑞 = 𝑝 for prime 𝑝:
Finite number of rep. classes in 𝛼.

# indecomp. in 𝔽 is (𝑘 → ∞)-limit of

# absolutely indecomp. in 𝔽 defined below.
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For field extension 𝐹 over 𝐹, have "pull-back"
𝐹 ⊗ 𝑉 (rep. over 𝐹 )
for rep. 𝑉 over 𝐹.
(Take 1 ⊗ 𝑉(𝑎) for arrows 𝑎.)

Note:
can still regard 𝐹 ⊗ 𝑉 as rep. over 𝐹, which is isom. to
𝑉⊕

where 𝑑 is deg. of field ext.

Absolutely indecomp.:
𝐹 ⊗ 𝑉 is indecomp.

"Pulling back" is injective:
Lem. 8.4.1.
𝐹 ⊗ 𝑉 ≅ 𝐹 ⊗ 𝑊 over 𝐹 ⟺ 𝑉 ≅ 𝑊 over 𝐹.
Proof.
← is clear.
⇒)
Isom. over 𝐹 is also isom. over 𝐹.
𝑉⊕ ≅ 𝑊⊕

and hence 𝑉 ≅ 𝑊
by Krull-Remak-Schmidt theorem (which holds over any field).
(Same indecomp. summands and same multiplicities.)

Strategy:
𝑎 ≔ #(abs. indecomp. in 𝛼)
is indep. of arrow orientation.
(Don’t need indivisibility of 𝛼 this time.)
Also 𝑎 ⋅ = 𝑎

if 𝑎 ≠ 0 and 𝛼 ≠ 𝜖 .
Then reduce to either 𝜖 (real root) 
or (im. root)
those 𝛼 > 0, but (𝛼, 𝜖 ) ≤ 0 and 𝛼 has conn. supp.
in which case we already know
𝑎 = 1 or ∞ respectively.
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Work over 𝐹 now, 𝑞 = 𝑝 for prime 𝑝.  

# rep. in 𝛼 is indep. of orientation of 𝑄.
First show that

# indecomp. in 𝛼 can be written in terms of 
# rep. in 𝛽 for all 𝛽 ≤ 𝛼, 
and hence also indep. of orientation of 𝑄.

Then show that

# abs. indecomp. in 𝛼 can be expressed in term of
# indecomp. in 𝛼/𝑘 for all 𝑘|𝛼, 
and hence also indep. of orientation of 𝑄.

Finally show that

Lem. 8.4.2.
|𝑉/𝐺| = |𝑉∗/𝐺|
for finite dim. v.s. 𝑉.

Lem. 8.4.3.
|(𝑉 ⊕ 𝑊)/𝐺| = |(𝑉∗ ⊕ 𝑊)/𝐺|.

Lem. 8.4.4.
Number of rep. in 𝛼 does not depend on orientation.

Proof.
Count number of orbits of 𝐺𝐿 (𝐹 ) in 𝑅𝑒𝑝 (𝑄; 𝐹 ).

Reversing arrow: taking 𝐻𝑜𝑚 𝑉 , 𝑉
∗

≅ 𝐻𝑜𝑚 𝑉 , 𝑉 .

Same number of orbits by Lem. 8.4.4.

Lem. 8.4.5.
𝑖 , the number of indecomp. rep. in 𝛼, does not depend on orientation.

Proof.
Take generating function.

1

(1 − 𝑡 )
⎯⎯⎯⎯⎯⎯⎯⎯⎯

 

= 1 + 𝑡 + 𝑡 + ⋯

 

… 1 + 𝑡 + 𝑡 + ⋯

where 𝑖 is the number of distinct indecomp. in 𝛼.
Each term is: product of 𝑡 from each factor, representing 𝑘 copies of certain class 
of indecomp. of dim. 𝛼.
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of indecomp. of dim. 𝛼.
Hence it equals to the generating function of rep.

𝑟  𝑡

 

where 𝑟 is number of distinct rep. in 𝛼.
Thus 𝑖 is determined by 𝑟.
Then follows from Lem. 8.4.4.

Now we need to study relation between
indecomp. and abs. indecomp.
Given indecomp. 𝑉 over 𝐹 , take

𝐹 ⊗ 𝑉 over 𝐹 .  

Let 𝑊 be an indecomp. summand.
Then 𝑊 is defined over 𝐹 for some 𝑑.

So 𝐹 ⊗ 𝑉 has 𝑊 as indecomp. summand,

and 𝐹 ⊗ 𝑉 is abs. indecomp.

This means,
any indecomp. after pulled back to 𝐹 for some 𝑑

has an abs. indecomp. summand.

The following lemma shows that
𝐹 ⊗ 𝑉 = 𝑊 ⊕ Φ(𝑊) ⊕ ⋯ ⊕ Φ (𝑊)

where Φ is the Frob. aut.
Φ: 𝐹 → 𝐹 , 𝑥 ↦ 𝑥 . ( 𝑞 = 𝑝 .)

Fixed set is the subfield 𝐹 in 𝐹 .

Thus the indecomp. 𝑉 over 𝐹

gives 𝑒 abs. indecomp. over 𝐹

(if we take 𝑑 as above).

Lem. 8.4.6.
𝑉: indecomp. over 𝐹 .

Take 𝐹 ⊗ 𝑉.

Let 𝑊 be indecomp. summand (over 𝐹 ).

Then
𝐹 ⊗ 𝑉 = 𝑊 ⊕ Φ 𝑊 ⊕ ⋯ ⊕ Φ 𝑊
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𝐹 ⊗ 𝑉 = 𝑊 ⊕ Φ(𝑊) ⊕ ⋯ ⊕ Φ (𝑊)

(Φ is Frob. aut. on every matrix entry)
where 𝑒 is smallest such that 𝑊 ≅ Φ (𝑊).

Proof.
For rep. 𝑊 over 𝐹 ,

take 𝐹 ⊗ 𝑊 (where 𝑊 is taken over 𝐹 here).

𝐹 ⊗ 𝑊 ≅ 𝑊 ⊕ 𝛷(𝑊) ⊕ ⋯ ⊕ 𝛷 (𝑊):

Vertices:

𝜆 ⊗ 𝑣 ↦ 𝜆 𝑣, 𝛷(𝑣), … , 𝛷 (𝑣) .

Injective and same dim., and hence iso.
Arrows:
1 ⊗ 𝑊(𝑎) is identified with

Diag 𝑊(𝑎), 𝛷 𝑊(𝑎) , … , 𝛷 𝑊(𝑎) .

Note that

𝛷 𝐹 ⊗ 𝑉 = 𝐹 ⊗ 𝑉 since arrow is 1 ⊗ 𝑉(𝑎) defined over 𝐹 .

Thus once 𝑊 is a direct summand, 𝛷 (𝑊) is also a direct summand.

𝐹 ⊗ 𝑊 is then a direct summand of 𝐹 ⊗ 𝑉
⊕

.

Regard these as over 𝐹 for the moment.

Since 𝑉 indecomp., the above implies 𝑊 (over 𝐹 ) is 𝑉⊕ .

Then 𝐹 ⊗ 𝑊 = 𝐹 ⊗ 𝑉
⊕

.

𝐹 ⊗ 𝑊

≅ 𝑊 ⊕ Φ(𝑊) ⊕ ⋯ ⊕ Φ (𝑊) = 𝑊 ⊕ Φ(𝑊) ⊕ ⋯ ⊕ Φ (𝑊)
⊕⎯⎯

.

All Φ (𝑊) are indecomp.  Thus

𝐹 ⊗ 𝑉 = 𝑊 ⊕ Φ(𝑊) ⊕ ⋯ ⊕ Φ (𝑊) .

𝑉 is indecomp.

Consider End 𝐹 ⊗ 𝑉 ≅ 𝐹 ⊗ End(𝑉).

Every element in End(𝑉) is either invertible or nilpotent.
Thus every non-zero element in 𝐹 ⊗ End 𝑉 /𝔫 is invertible.

𝑚 = 1:
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Thus every non-zero element in 𝐹 ⊗ End(𝑉)/𝔫 is invertible.

But this is not true for End(𝑀 ) for 𝑚 ≥ 2.

(
1
0

 
0
0

is neither invertible nor nilpotent.)

Then we get a (better) version of Thm. 8.2.2 over 𝔽 .

Lem. 8.4.7.
𝑎 , the number of abs. indecomp. in 𝛼 over 𝔽 , does not depend on orientation of 

arrows.
(Now don't need indivisibility.)

Proof.
Argue that 𝑎 can be written in terms of 𝑖 ,
which is indep. of arrow orientation.
Given indecomp 𝑉, by Lem. 8.4.6, 
𝐹 ⊗ 𝑉 = 𝑊 ⊕ 𝛷(𝑊) ⊕ ⋯ ⊕ 𝛷 (𝑊)

and 𝑊 is abs. indecomp. for k big enough.
Take min. such 𝑘.  Then 𝑒 = 𝑘.
Thus

𝑖 = 𝑏 , / (𝑞)/𝑘

 

|

where 𝑏 , / is #abs. indecomp. over 𝐹

that does not comes from previous 𝐹 .

Then 

𝑏 , / (𝑞) = 𝑎 / 𝑞 − ⋯

where the later terms involve 𝑎 / 𝑞 for 𝑙|𝑘.

In particular 𝑏 , (𝑞) = 𝑎 (𝑞).

Thus

𝑖 = 𝑏 , / (𝑞)/𝑘

 

|

= 𝑎 (𝑞) + ⋯

where the later terms only involves 𝑎 / ,

which can be written in terms of 𝑖 / by induction.

Thm. 8.4.10.
For 𝛼 > 0 that supports abs. indecomp.,
𝑎 = 𝑎± ( )

where we take the one in ±𝑤 𝛼 that is > 0.
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where we take the one in ±𝑤(𝛼) that is > 0.

Proof.
By Lem. 8.4.7, can make a vertex into sink,
and then do reflection at that vertex.
Unless 𝛼 = 𝜖 , 𝜎 gives one-one for abs. indecomp.
For 𝛼 = 𝜖 , take −𝜎 (𝜖 ) = 𝜖 and do nothing.
This realizes ±𝑤.

Thm. 8.4.11.
Now over ℂ.
𝛼 is pos. real root iff it has exactly one indecomp. (assuming no self loop)
pos. im. root iff it has inf. many indecomp.

Proof.
First consider 𝐹 .

By Thm. 8.4.10,
reduce to either 𝜖 (real case) or 
those 𝛼 > 0, but (𝛼, 𝜖 ) ≤ 0 and 𝛼 has conn. supp. (im. case)
Already known they have one (real) (assuming no self loop)
or inf. many (im.) indecomp.
Then by Prop. 8.4.8. also true for ℂ.
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