
Section 9 and
[King]

Affine group action
𝐺: aff. alg. gp.  
(ex. 𝐺𝐿.  {𝐴: det 𝐴 ≠ 0} = {(𝐴, 𝑦): 𝑦 det 𝐴 = 1}.)
𝑋: aff. var.
𝐺 acts on 𝑋.
Action 𝐺 × 𝑋 → 𝑋 gives homo.

Let 𝜇∗(𝑓) = ∑ ℎ௜ ⊗ 𝑓௜
 
  .  Then by def.

(𝑔 ⋅ 𝑓) = ෍ ℎ௜(𝑔ିଵ) 𝑓௜

 

 

.

𝜇∗: ℂ[𝑋] → ℂ[𝐺] ⊗ ℂ[𝑋].

Lem. 9.1.13.
𝑊 ⊂ ℂ[𝑋] f.d. subspace.
𝐺 ⋅ 𝑊 ≔ Span{𝑔 ⋅ 𝑤} is f.d. 𝐺-rep.

Proof.
𝜇∗(𝑊) is f.d. and hence contained in some f.d. 𝐴 ⊗ 𝐵.
Then 𝐺 ⋅ 𝑊 ⊂ 𝐵 and hence f.d.

Prop. 9.1.15: Put 𝑋 in a rep.
Have rep. 𝑉 and 𝐺-equiv. closed immersion (iso. to its image which is a 
subvar.) 
𝜙: 𝑋 → 𝑉.

Proof.
Key: take 𝑊 ⊂ ℂ[𝑋] f.d. subspace that gen. ℂ[𝑋].
𝑉 ≔ (𝐺 ⋅ 𝑊)∗.
Then ℂ[𝑉] = ℂ[𝑧ଵ, … , 𝑧௡]
where 𝑧ଵ, … , 𝑧௡ is a basis of 𝐺 ⋅ 𝑊 ⊂ ℂ[𝑋].
Have ℂ[𝑉] = ℂ[𝑧ଵ, … , 𝑧௡] → ℂ[𝑋]
which is surj. since 𝐺 ⋅ 𝑊 gen. ℂ[𝑋].
This gives 𝑋 → 𝑉 which is 𝐺-equiv.

Apply to 𝑋 = 𝐺, get 𝐺-equiv. 𝜙: 𝐺 ⊂ 𝑉.
𝐺 → 𝐺𝐿 𝑉 is injective.  (If acts as 𝐼𝑑 on 𝑉, then 𝐼𝑑 on 𝐺.)
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𝐺 → 𝐺𝐿(𝑉) is injective.  (If acts as 𝐼𝑑 on 𝑉, then 𝐼𝑑 on 𝐺.)
Thus aff. alg. group must be lin.

Alg. framework for integration
Def. 9.2.1. Reynolds operator:

𝑅: ℂ[𝐺]
୪୧୬
ሱሮ ℂ with

𝑅(1) = 1;
𝑅(ℎ ⋅ 𝑓) = 𝑅(𝑓) ∀ℎ, 𝑓.
Linear reductive if such 𝑅 exists.

(Recall `reductive' means complexification of compact Lie group.)

Main example: 𝐺𝐿(𝑛, ℂ).

𝑅(𝑓) ≔ න 𝑓ቚ
௎(௡)

 𝑑𝜇
 

௎(௡)

.

𝑅(ℎ ⋅ 𝑓) = 𝑅(𝑓) for ℎ ∈ 𝑈(𝑛).

(𝕊ଵ)௡ ⊂ (ℂ×)௡ is Zariski dense.  
(Restrict to one variable, polynomial only have finitely many roots.)
Have singular value decomp. 𝐺𝐿 = 𝑈ଵ𝐷𝑈ଶ

ିଵ.
Thus 𝑈(𝑛) = 𝑈(𝑛) ⋅ (𝕊ଵ)௡ ⋅ 𝑈(𝑛) is Zariski dense.

𝑈(𝑛) ⊂ 𝐺𝐿(𝑛, ℂ) is Zariski dense:

𝑅(ℎ ⋅ 𝑓) − 𝑅(𝑓) is polynomial on ℎ ∈ 𝐺𝐿(𝑛, ℂ).  Thus
𝑅(ℎ ⋅ 𝑓) = 𝑅(𝑓) for ℎ ∈ 𝑈(𝑛) implies for ℎ ∈ 𝐺𝐿(𝑛, ℂ).

Averaging for 𝑓 ∈ ℂ[𝑋] where 𝐺 acts on 𝑋: Analog of 

𝑓̅(𝑥) ≔ න 𝑓(ℎ ⋅ 𝑥)
 

௄

𝑑𝜇.

(𝑓 is poly. implies invariance under 𝐾 gives invariance under 𝐺.)
𝑅௑: ℂ[𝑋] → ℂ[𝑋]ீ which is composition of

ℂ[𝑋]
ఓ∗

→ℂ[𝐺] ⊗ ℂ[𝑋]
ோ⊗ଵ
ሱ⎯ሮ ℂ[𝑋].

The following is direct verification:

𝑅௑(ℂ[𝑋]) ⊂ ℂ[𝑋]ீ.1.
𝑅௑(𝑓) = 𝑓 for 𝑓 ∈ ℂ[𝑋]ீ.2.
𝑅௑ is ℂ[𝑋]ீ-mod. homo.3.
For 𝑊 ⊂ ℂ 𝑋 G inv., 𝑅௑ 𝑊 = 𝑊ீ.4.

Lem. 9.2.4.
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For 𝑊 ⊂ ℂ[𝑋] G inv., 𝑅௑(𝑊) = 𝑊ீ.4.

Aff. reductive implies semi-simple
(A more alg. way avoiding inv. metric)
Lem. 9.2.9.
Restriction of pairing to 𝑉ீ × (𝑉∗)ீ → ℂ is non-deg.

(Note that (𝑉∗)ீ is different from ൫𝑉ீ൯
∗
.)

Proof.
For 𝑣 ≠ 0 ∈ 𝑉ீ ⊂ 𝑉, take 𝑓 ∈ 𝑉∗ with 𝑓(𝑣) = 1.
𝑅௏(𝑓) ∈ (𝑉∗)ீ and 𝑅௏(𝑓)(𝑣) = 1 since 𝑣 is 𝐺-inv.
(Van. ideal of {𝑣} is 𝐺-inv.)

Prop. 9.2.11.
Every rep. of aff. reductive group is a direct sum of irred.

Proof.
Let 𝑊 ⊂ 𝑉 irred. subrep.
Natural pairing
Hom(𝑉, 𝑊) × Hom(𝑊, 𝑉) → ℂ
given by 𝑡𝑟ௐ(𝜓𝜙).  Restrict to non-deg.
Hom(𝑉, 𝑊)ீ × Hom(𝑊, 𝑉)ீ → ℂ
by Lem. 9.2.9.
Let 𝜄 ∈ Hom(𝑊, 𝑉)ீ be the inclusion.
There is 𝜓 ∈ Hom(𝑉, 𝑊)ீ such that 𝑡𝑟(𝜓𝜄) ≠ 0.
0 ≠ 𝜓𝜄 ∈ Hom(𝑊, 𝑊)ீ = ℂ ⋅ 𝐼𝑑 (Schurs).
Then 𝑉 = 𝑊 ⊕ Ker(𝜓).

Quotient is finitely generated
First consider 𝐺-rep. 𝑋 = 𝑉.

𝑉//𝐺 ≔ MaxSpec൫ℂ[𝑉]ீ൯ with Zar. top.

𝑓 ∈ ℂ[𝑉]ீ is called an "invariant".

Thm. 9.2.6. Hilbert's Finiteness Theorem.
ℂ[𝑉]ீ is finitely generated as alg.

Proof.
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Proof.
Since 𝐺 acts linearly,

ℂ[𝑉]ௗ is preserved by 𝐺, and hence 𝑅௏(ℂ[𝑉]ௗ) = ℂ[𝑉]ௗ
ீ

.
Since ℂ[𝑉] is Noetherian, any ideal is fin. gen.

Take 𝔪 ≔ ⨁ ℂ[𝑉]ௗ
ீ 

ௗ ⊂ ℂ[𝑉]ீ  max ideal.
𝐼 ≔ ℂ[𝑉] ⋅ 𝔪 ⊂ ℂ[𝑉] ideal.
Let 𝑓ଵ … 𝑓௥ ∈ 𝔪 homog. gen. of 𝐼.

Any ℎ = ∑ 𝑎௜𝑓௜
 
  for 𝑎௜ ∈ ℂ[𝑉].

ℎ = 𝑅௏(ℎ) = ෍ 𝑅௏(𝑎௜) 𝑓௜

 

 

where 𝑅௏(𝑎௜) ∈ ℂ[𝑉]ீ.

𝑓ଵ … 𝑓௥ gen. ideal 𝔪 ⊂ ℂ[𝑉]ீ:

By the following Prop. 9.2.5,
𝑓ଵ … 𝑓௥ gen. ℂ[𝑉]ீ.

Cor. 9.2.8.
For aff. 𝑋 acted by 𝐺, ℂ[𝑋]ீ is finitely generated.

Proof.
Put 𝑋 ⊂ 𝑉 equivariantly by Prop. 9.1.15.  Thus

ℂ[𝑋]ீ = ι∗൫ℂ[𝑉]ீ൯ is fin. gen.

Prop. 9.2.5.
𝑅 graded. comm. alg.

𝔪 = ໄ 𝑅ௗ

 

ௗஹଵ

.

If homog. 𝑓ଵ … 𝑓௥ ∈ 𝔪 gen. 𝔪 as ideal, then
𝑓ଵ … 𝑓௥ gen. 𝑅. as alg.  (meaning only taking sums and products of 𝑓௜.)

Proof.
Any ℎ ∈ 𝑅ௗ can be generated:
Induction on 𝑑.

ℎ = ෍ 𝑎௜𝑓௜

 

 

 for 𝑎௜ ∈ 𝑅.

𝑓௜ homog. implies can take 𝑎௜ homog. with lower deg.
𝑎௜ gen. by 𝑓௜ by induction.
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𝑎௜ gen. by 𝑓௜ by induction.

GIT quotient for affine case with trivial character:
𝑋//𝐺 ≔ MaxSpec൫ℂ[𝑋]ீ൯.

Have 𝜋: 𝑋 → 𝑋//𝐺 from ℂ[𝑋]ீ → ℂ[𝑋].

Main:
𝜋ିଵ({𝜋(𝑥)}) is a union of the orbits whose closure intersect with 𝐺 ⋅ 𝑥തതതതതത.

Lem. 9.3.1. 
For closed inv. 𝐴ଵ, 𝐴ଶ ⊂ 𝑋,

𝜋(𝐴ଵ)തതതതതതതത ∩ 𝜋(𝐴ଶ)തതതതതതതത = 𝜋(𝐴ଵ ∩ 𝐴ଶ)തതതതതതതതതതതതതത.

Proof.
𝜋(𝐴௜)തതതതതതത corr. to 𝐽௜ ∩ ℂ[𝑋]ீ = 𝑅௑(𝐽௜) where 𝐽௜ is van. ideal of 𝐴௜.

𝜋(𝐴ଵ)തതതതതതതത ∩ 𝜋(𝐴ଶ)തതതതതതതത corr. to
𝑅௑(𝐽ଵ) + 𝑅௑(𝐽ଶ) = 𝑅௑(𝐽ଵ + 𝐽ଶ) = (𝐽ଵ + 𝐽ଶ) ∩ ℂ[𝑋]ீ

which corr. to 𝜋(𝐴ଵ ∩ 𝐴ଶ)തതതതതതതതതതതതതത.

Lem. 9.3.2.
𝜋: 𝑋 → 𝑋//𝐺 is surj.
For closed inv. 𝐴 ⊂ 𝑋, 𝜋(𝐴) is closed.  Thus Lem. 9.3.1 simplifies to
𝜋(𝐴ଵ) ∩ 𝜋(𝐴ଶ) = 𝜋(𝐴ଵ ∩ 𝐴ଶ) for closed inv. 𝐴ଵ, 𝐴ଶ ⊂ 𝑋.

Proof.

For max. ideal 𝐼 ⊂ ℂ[𝑋]ீ, take ideal 𝐽 = ℂ[𝑋] ⋅ 𝐼 ⊂ ℂ[𝑋].

For ℎ = ∑ 𝑎௜𝑓௜
 
  in LHS,

ℎ = 𝑅௑(ℎ) = ෍ 𝑅௑(𝑎௜)

 

 

 𝑓௜ ∈ 𝐼.

𝐽 ∩ ℂ[𝑋]ீ = 𝐼:

𝐽 is contained in some max. ideal 𝔪, and 𝔪 ∩ ℂ[𝑋]ீ = 𝐼.

Surjective:

𝜋(𝐴) is closed:

Supposed not closed.  Have 𝑦 ∈ 𝜋(𝐴)തതതതതത − 𝜋(𝐴).
𝐵 ≔ 𝜋ିଵ(𝑦) ≠ ∅ is closed inv.

𝑦 ∈ 𝜋 𝐴 ∩ 𝜋 𝐵 = 𝜋 𝐴 ∩ 𝐵 = ∅ !
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𝑦 ∈ 𝜋(𝐴)തതതതതത ∩ 𝜋(𝐵)തതതതതതത = 𝜋(𝐴 ∩ 𝐵)തതതതതതതതതതതത = ∅ !

Prop.
𝐺 ⋅ 𝑥 and 𝐺 ⋅ 𝑥ᇱ sit in the same fiber of 𝜋 iff 𝐺 ⋅ 𝑥തതതതതത ∩ 𝐺 ⋅ 𝑥ᇱതതതതതതത ≠ ∅.

Proof.
First, fiber of 𝜋 is closed, and hence contains a whole orbit closure.

𝜋൫𝐺 ⋅ 𝑥തതതതതത൯ ∩ 𝜋൫𝐺 ⋅ 𝑥ᇱതതതതതതത൯ = 𝜋൫𝐺 ⋅ 𝑥തതതതതത ∩ 𝐺 ⋅ 𝑥ᇱതതതതതതത൯.

Thus whether the two image points are the same are determined by 
whether 𝐺 ⋅ 𝑥തതതതതത ∩ 𝐺 ⋅ 𝑥ᇱതതതതതതത ≠ ∅ or not.

Cor. 9.3.3.
𝜋ିଵ(𝑦) contains a unique closed orbit.

Proof.

For 𝑧 ∈ 𝜋ିଵ(𝑦), if 𝐺 ⋅ 𝑧തതതതതത ≠ 𝐺 ⋅ 𝑧, take
𝑧ଵ ∈ 𝐺 ⋅ 𝑧തതതതതത − 𝐺 ⋅ 𝑧 ⊂ 𝜋ିଵ(𝑦).
Keep on doing this, get
𝑧ଵ, 𝑧ଶ …
and
𝐺 ⋅ 𝑧ଵ
തതതതതതത ⊂ 𝐺 ⋅ 𝑧തതതതതത, 𝐺 ⋅ 𝑧ଶ

തതതതതതത ⊂ 𝐺 ⋅ 𝑧ଵ
തതതതതതത …

Since Noetherian, gradually stabilizes and
𝐺 ⋅ 𝑧௞
തതതതതതത = 𝐺 ⋅ 𝑧௞.

Exist:

Suppose have two distinct closed 𝐺 ⋅ 𝑧௜ for 𝑖 = 1,2.
By Lem. 9.3.2,
𝑦 ∈ 𝜋(𝐺 ⋅ 𝑧ଵ) ∩ 𝜋(𝐺 ⋅ 𝑧ଶ) = 𝜋(𝐺 ⋅ 𝑧ଵ ∩ 𝐺 ⋅ 𝑧ଶ) = ∅ !

Unique:

For linear 𝑉//𝐺, Hilbert nullcone: 
𝑁 ≔ 𝜋ିଵ{𝜋(0)}.

𝑁 = ൛𝑣: 𝐺 ⋅ 𝑣തതതതതത ∋ 0ൟ: immediate from the above prop.

GIT quotient for general case

𝐿: equivariant ample line bundle over 𝑋.

𝑅 = Γ 𝑋, 𝐿⊗௡

 

.

General 𝑋 quasi-proj:
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𝑅 = ໄ Γ൫𝑋, 𝐿⊗௡൯

 

௡ஹ଴

.

𝑋௦௦ ≔ 𝑋 − Zero൫𝑅ା
ீ൯ =∪௦  𝑈௦

where 𝑈௦ = {𝑠 ≠ 0} for 𝑠 ∈ Γ൫𝑋, 𝐿⊗௡வ଴൯
ீ

.

(ss stands for "semi-stable".)

𝑋//௅𝐺 is glued from 𝑈௦//௅𝐺 = Spec൫𝐴௦
ீ൯ where 𝑈௦ = Spec(𝐴௦).

When 𝑋 = Proj 𝑅,
𝑋//𝐺 = Proj 𝑅ீ.
𝜋: 𝑋௦௦ → 𝑋//𝐺
is the glued version of the affine case before.  Still have Lem. 9.3.2:
𝐴 ⊂ 𝑋//𝐺 closed iff 𝐴 ⊂ 𝑋௦௦ closed.

𝑋௦ ≔ {𝑥 ∈ 𝑋௦௦: 𝐺 ⋅ 𝑥 is closed in 𝑋௦௦ and finite stabilizer} is open.
𝜋|௑ೞ coincides with set-theoretic quotient.

𝐿 = 𝑂(1) with trivial action.
𝑅 = ℂ[𝑉];

Zero൫𝑅ା
ீ൯ = 𝑁;

𝑉௦௦ = 𝑉 − 𝑁;
𝑋௦௦ = ℙ(𝑉௦௦);
𝑋//𝐺 = Proj 𝑅ீ = ℙ(𝑉//𝐺).
𝜋: 𝑋௦௦ → 𝑋//𝐺
descended from 𝑉௦௦ → 𝑉//𝐺.

ex. 𝑋 = ℙ(𝑉) with trivial char.:

GIT quotient for linear action with character:
(Section 2 of [King])

𝑓 ∈ ℂ[𝑉], 𝜒: 𝐺
୦୭୫୭
ሱ⎯⎯ሮ ℂ× such that

𝑔 ⋅ 𝑓 = 𝜒(𝑔) 𝑓  ∀𝑔.
𝑓 is called a semi-invariant of weight 𝜒.

𝜒 can be understood as 𝐺-equiv. trivial line bundle

𝐿ିଵ = 𝑉 × ℂ, 𝑔 ⋅ (𝑥, 𝑧) = ൫𝑔 ⋅ 𝑥, 𝑧 ⋅ 𝜒ିଵ(𝑔)൯.

deg = 𝑛 invariant section (thought as 𝐿⊗௡): 
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deg = 𝑛 invariant section (thought as 𝐿⊗௡): 
𝑓(𝑥)𝑧௡ ∈ ℂ[𝑉 × ℂ] where 𝑓(𝑔 ⋅ 𝑥) = 𝜒௡(𝑔) 𝑓(𝑥).

Def.

𝑉//ఞ𝐺 ≔ Proj ቌໄ ℂ[𝑉]ீ,ఞ೙

 

௡ஹ଴

ቍ

which is proj. over 𝑉//𝐺 = Spec൫ℂ[𝑉]ீ൯.

Geom. description:
𝑉//ఞ𝐺 = 𝑉ఞି௦௦/~ where

𝑥~𝑥ᇱ iff 𝐺 ⋅ 𝑥തതതതതത ∩ 𝐺 ⋅ 𝑥ᇱതതതതതതത ≠ ∅
(where the closure is taken in 𝑉ఞି௦௦)

iff 𝐺 ⋅ (𝑥, 1)തതതതതതതതതതത ∩ 𝐺 ⋅ (𝑥ᇱ, 1)തതതതതതതതതതതത ≠ ∅
(where closure is taken in 𝑉 × ℂ)

Semi-stable 𝑥 ∈ 𝑉: ∃𝑓 ∈ ℂ[𝑋]ீ,஧೙
for 𝑛 ≥ 1 such that 𝑓(𝑥) ≠ 0.

(Orbit closure of (𝑥, 1) ∈ 𝑉 × ℂ is disjoint from zero-section.)

Stable: furthermore, Stab(௫,ଵ)/𝐾𝑒𝑟 is finite (iff dim 𝐺 ⋅ 𝑥 = dim 𝐺/𝐾𝑒𝑟) 

and 𝐺-action on {𝑢 ∈ 𝑉: 𝑓(𝑢) ≠ 0} for the 𝑓 above has closed orbits.
(𝐺 ⋅ (𝑥, 1) is closed in 𝑉 × ℂ iff 𝐺 ⋅ 𝑥 is closed in 𝑉ఞି௦௦)
(Ker is the kernel of the linear 𝐺-action on 𝑉.  Assume 𝜒(Ker) = 1.)

Reason for geom. description:
disjoint closed 𝐺-sets can be distinguished by 𝐺-inv. functions.

Hilbert-Mumford numerical criterion:

lim
௧→଴

𝜆(𝑡) ⋅ (𝑥, 1) ∉ 𝑉 × {0}

iff
lim
௧→଴

𝜆(𝑡) ⋅ 𝑥  exists ⇒ (𝜒, 𝜆) ≥ 0.

𝑥 is s.s. iff for all one-parameter subgroups 𝜆 ⊂ 𝐺,

lim
௧→଴

𝜆(𝑡) ⋅ (𝑥, 1)  exists ⇒ 𝜆 ⊂ Δ

iff 

stable iff 
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iff 
lim
௧→଴

𝜆(𝑡) ⋅ 𝑥  exists ⇒ (𝜒, 𝜆) > 0 or 𝜆 ⊂ Δ.

𝜒൫𝜆(𝑡)൯ = 𝑡(ఞ,ఒ): ℂ× → ℂ×.   𝜆(𝑡) ⋅ (𝑥, 1) = ቀ𝜆(𝑡) ⋅ 𝑥, 𝜒൫𝜆(𝑡)൯
ିଵ

ቁ.

(𝜒, 𝜆) is defined by

lim
௧→଴

𝜆(𝑡) ⋅ 𝑥  exists and (𝜒, 𝜆) = 0 ⇒ lim
௧→଴

𝜆(𝑡) ⋅ 𝑥 ∈ 𝐺 ⋅ 𝑥.

In such case lim௧→଴ 𝜆(𝑡) ⋅ 𝑥 is fixed by 𝜆.
If further 𝑥 has finite stabilizer, so does lim௧→଴ 𝜆(𝑡) ⋅ 𝑥.  Then 𝜆 ⊂ Δ.

Note: for 𝑥 s.s., 𝐺 ⋅ (𝑥, 1) is closed iff

For 𝑥, 𝑦 ∈ 𝑉ఞି௦௦,  𝒙~𝒚 iff
∃λଵ, λଶ with 𝜒(λଵ) = 𝜒(λଶ) = 0 such that
lim௧→଴ λଵ(𝑡) ⋅ 𝑥 and lim௧→଴ λଶ(𝑡) ⋅ 𝑦 belong to the same closed 𝐺-orbit.

Principle:
If a closed 𝐺-set 𝐴 intersects 𝐺 ⋅ 𝑥തതതതതത, then 𝐴 intersects 𝜆 ⋅ 𝑥തതതതതത for some one 
parameter 𝜆.

For the last statement for 𝑥~𝑦, 𝐺 ⋅ (𝑥, 1)തതതതതതതതതതത ∩ 𝐺 ⋅ (𝑦, 1)തതതതതതതതതതത is a closed 𝐺-set 
which must contains a closed 𝐺-orbit.

𝜒-semi-invariants form a subspace ℂ[𝑋]ఞ.

Form a ring 𝑆𝐼 ≔ ⨁ ℂ[𝑋]ఞ
 
ఞ .

Lem. 9.4.1.
𝑆𝐼 = ℂ[𝑉][ீ,ீ].
(𝐺 reductive, [𝐺, 𝐺] gen. by 𝑔ℎ𝑔ିଵℎିଵ.)

Lem. 9.4.2. (Sato-Kimura)
If 𝑉 has a dense open orbit, Then 𝑆𝐼 is poly. ring.

Quotient for quiver representations
𝜃 ∈ ൫ℤ௏బ൯

∗
.  (Called weight.)

Rep. 𝑉 is 𝜃-s.s. if 𝜃 ቀdim 𝑉ሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ = 0 and 𝜃 ቀdim 𝑉ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ ≥ 0 for 𝑉ᇱ ⊂ 𝑉.

𝜃-stable if further 𝜃 dim 𝑉ᇱ = 0 ⇒ 𝑉ᇱ = 𝑉 or 0.
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𝜃-stable if further 𝜃 ቀdim 𝑉ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ = 0 ⇒ 𝑉ᇱ = 𝑉 or 0.

Want to identify with GIT stability.
Define

𝜒ఏ: 𝐺𝐿(dim 𝑉ሬሬሬሬሬሬሬሬሬሬሬ⃗ ) → ℂ×, 𝜒ఏ(𝑔) = ෑ det(𝑔௩)ఏೡ

 

௩∈ொబ

.

𝜒ఏ(𝑐 ⋅ 𝐼) = 𝑐
ቀఏ,ୢ୧୫ ௏ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ

= 1.

Note: Δ = ℂ× ∈ 𝐺𝐿(dim 𝑉ሬሬሬሬሬሬሬሬሬሬሬ⃗ ) acts trivially.

One parameter 𝜆: ℂ× → 𝐺𝐿(dim 𝑉ሬሬሬሬሬሬሬሬሬሬሬ⃗ ) that has lim௧→଴ 𝜆 (𝑡) ⋅ 𝑉

Weight decomposition

𝑉௫ = ໄ 𝑉௫
(௡)

 

௡∈ℤ

where λ(𝑡) acts on 𝑉௫
(௡)

as multi. by 𝑡௡.

Arrow: matrix 𝑉௔ = ቀ𝑉௔
(௠,௡)

: 𝑉௧ೌ

(௡)
→ 𝑉௛ೌ

(௠)
ቁ .

𝜆(𝑡) acts on 𝑉௔
(௠,௡)

as multi. by 𝑡௠ି௡.

Has lim
௧→଴

iff 𝑉௔
(௠,௡)

= 0 for 𝑚 < 𝑛, that is,

𝑉௔ preserves 𝑉௫
ஹ௡  ∀𝑛, meaning

𝑉ஹ௡ forms subrepresentations.
⋯ ⊃ 𝑉ஹ௡ ⊃ 𝑉ஹ௡ାଵ ⊃ ⋯

gives a filtration:

lim
௧→଴

𝜆 (𝑡) ⋅ 𝑉 = ໄ 𝑉ஹ௡/𝑉ஹ௡ାଵ

 

௡∈ℤ

.

Converse: a filtration always arise in this way (although such 𝜆 is not 
unique).

λ(𝑡) acts on 𝑉௫ as 𝑡௡ ⋅ 𝐼𝑑 (and same 𝑛 for all 𝑥)
meaning 𝜆 ⊂ Δ.

The filtration is trivial (meaning 𝑉ஹ௡ are either 0 or 𝑉) implies 

Prop. 𝑉 is GIT 𝜒ఏ-semistable  iff 𝜃-semistable.  (Similar for stable.)
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Proof. 
Recall the numerical criterion: 
𝜒ఏ-semistable iff
lim
௧→଴

𝜆(𝑡) ⋅ 𝑥  exists ⇒ (𝜒ఏ, 𝜆) ≥ 0.

⟨𝜒ఏ, 𝜆⟩ (𝑡-power of 𝜒ఏ൫𝜆(𝑡)൯: ℂ× → ℂ×) in terms of filtration 𝑉ஹ௡:

⟨𝜒ఏ, 𝜆⟩ = ෍ 𝜃(𝑥) ෍ 𝑛 dim 𝑉௫
(௡)

 

௡

 

௫

= ෍ 𝑛

 

௡

 𝜃 ቀdim 𝑉ஹ௡/𝑉ஹ௡ାଵሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ

a finite sum since 𝜃 ቀdim 𝑉ሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ = 0 (and 𝑉ஹ௡ = 𝑉 ∀𝑛 ≪ 0).

= ෍ 𝜃 ቀdim 𝑉ஹ௡ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ

 

௡

𝜃-s.s.:

𝜃 ቀdim 𝑉ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ ≥ 0 ∀𝑉ᇱ ⊂ 𝑉.

⟨𝜒ఏ, 𝜆⟩ = ෍ 𝜃 ቀdim 𝑉ஹ௡ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ

 

௡

≥ 0.

𝜃-s.s. ⇒ GIT 𝜒ఏ-s.s.:

⟨𝜒ఏ, 𝜆⟩ = 0

⇒ 𝜃 ቀdim 𝑉ஹ௡ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ = 0  ∀𝑛

⇒ 𝑉ஹ௡ = 𝑉 or 0 ∀𝑛
⇒ 𝜆 ∈ Δ.

𝜃-stable ⇒ GIT 𝜒ఏ-stable:

For 𝑉ᇱ ⊂ 𝑉, take the filtration
𝑉 ⊃ 𝑉ᇱ ⊃ 0
and a corresponding one parameter 𝜆.
GIT s.s. implies 

⟨𝜒ఏ, 𝜆⟩ = 𝜃 ቀ𝑑𝑖𝑚 𝑉ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ + 𝜃 ቀ𝑑𝑖𝑚 𝑉ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ = 𝜃 ቀ𝑑𝑖𝑚 𝑉ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ ≥ 0.

GIT 𝜒ఏ-s.s. ⇒ 𝜃-s.s.:

If 𝜃 ቀ𝑑𝑖𝑚 𝑉ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ = 0,

𝜒ఏ, 𝜆 = 0 and hence 𝜆 ⊂ Δ.

GIT 𝜒ఏ-stable ⇒ 𝜃-stable:

   Quiver Page 11    



⟨𝜒ఏ, 𝜆⟩ = 0 and hence 𝜆 ⊂ Δ.
Thus the filtration is trivial and 𝑉ᇱ = 0 or 𝑉.

lim
௧→଴

𝜆(𝑡) ⋅ 𝑉  exists and (𝜒, 𝜆) = 0 ⇒ lim
௧→଴

𝜆(𝑡) ⋅ 𝑉 ∈ 𝐺 ⋅ 𝑉.

(𝜒, 𝜆) = ∑ 𝜃 ቀdim 𝑉ஹ௡ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ 
௡ = 0 iff 

each 𝑉ஹ௡ has 𝜃 = 0, and hence s.s.
(Sub-rep. of 𝑉ஹ௡ is sub-rep. of 𝑉 and hence has 𝜃 ≥ 0.)
𝑉 is isom. to

lim
௧→଴

𝜆(𝑡) ⋅ 𝑉 = ໄ 𝑉ஹ௡/𝑉ஹ௡ାଵ

 

௡

.

Jordan-Holder filtration (for Abel. cat. of s.s. rep.) exists, 
where the graded pieces
𝑉ஹ௡/𝑉ஹ௡ାଵ are simple s.stable objects.

→)

If 𝑉ᇱ ⊂ 𝑉 has 𝜃 ቀ𝑑𝑖𝑚 𝑉ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ = 0, then 𝑉ᇱ is also s.s. and hence = 𝑉 or 0 

since simple.
←)

For 𝑉ᇱ ⊂ 𝑉 s.s., 𝜃 ቀ𝑑𝑖𝑚 𝑉ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ቁ = 0 and by stable 𝑉ᇱ = 𝑉 or 0.

Simple s.s. ⟺ stable:

Recall: for 𝑉 GIT s.s., 𝐺𝐿 ⋅ 𝑉 is closed iff

Thus we obtain:
Prop.
𝐺𝐿 ⋅ 𝑉 is closed in s.s. iff 𝑉 is direct sum of stables.

(Direct sum of stables have direct sum of 𝑐 ⋅ 𝐼𝑑 as stabilizers.)

∃𝜆ଵ, 𝜆ଶ with 𝜒(𝜆ଵ) = 𝜒(𝜆ଶ) = 0 such that
lim௧→଴ λଵ(𝑡) ⋅ 𝑉 and lim௧→଴ λଶ(𝑡) ⋅ 𝑊 belong to the same closed 𝐺-
orbit.
By above prop., lim௧→଴ λଵ(𝑡) ⋅ 𝑉 and lim௧→଴ λଶ(𝑡) ⋅ 𝑊 are direct sums 
of the same stables.
Thus:

Recall: GIT equiv. for s.s. objects 𝑉~𝑊:

Prop.
s.s. 𝑉 ~

ீூ்
 𝑊 iff 𝑉 and 𝑊 have the same graded pieces in Jordan-Holder 
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s.s. 𝑉 ~
ீூ்

 𝑊 iff 𝑉 and 𝑊 have the same graded pieces in Jordan-Holder 
filtration.  (Called S-equiv.)

Finite dim. algebra

Take a decomposition 𝐴 = 𝑃ଵ
⊕௠భ ⊕ ⋯ ⊕ 𝑃௡

⊕௠೙.

Take 𝑃 = 𝑃ଵ ⊕ ⋯ ⊕ 𝑃௡.
𝐵 = End஺(𝑃)௢௣ is a basic alg. Morita equiv. to 𝐴 (Ch. 3), 
that is,
𝐵/rad(𝐵) ≅ ℂ௡ as algebra.
Define ℂ௡-bimod
𝑀 ≔ rad(𝐵)/rad(𝐵)ଶ

which corr. to a quiver 𝑄:
vertex set is the standard basis of ℂ௡

(which are indecomp. proj. mod. 𝑃௜ of 𝐴);
arrow set is a basis of 𝑒௜ ⋅ 𝑀 ⋅ 𝑒௝.

Has surjective ℂ𝑄 → 𝐵 whose kernel is
admissible ideal 𝐽.

Corr. to quiver 𝑄 with relations:

𝐴-mod can be understood as subcat. of ℂ𝑄-mod

the functor 𝐻𝑜𝑚஺(−, 𝑀) restricted to cat. of proj. 𝐴-mod. 
corr. to ℂ𝑄-mod.  (Morita equiv.)
𝑀 = 𝐻𝑜𝑚஺(𝐴, 𝑀) is reconstructed from this functor.

(that satisfies the relations):

Vertices of 𝑄 corr. to simple 𝐴-mod.
𝐾଴(𝐴-mod) is the free Abel. group gen. by 𝑄଴

(by Jordan-Holder thm.).
Char. 𝜃 for 𝐴-mod is element of ℤொబ.  

Using the above identification, get:

Thm. 4.1.
The GIT quotient 𝑀஺(𝛼, 𝜃) gives the moduli space of 𝜃-semistable 𝐴-mod. 
of dim. 𝛼.  The points correspond to 𝑆-equiv. classes of 𝜃-semistable 𝐴-
mod.

Prop. 4.3.
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Prop. 4.3.
𝑀஺(𝛼, 𝜃) is projective.

Proof.
𝑀஺(𝛼, 𝜃) is projective over 𝑉஺(𝛼)//𝐺𝐿(𝛼) (character zero case).
For character zero,
all points are semi-stable.
For any point, the orbit closure must contain a closed orbit.
(If 𝐺 ⋅ 𝑝 not closed, has 𝑝ᇱ ∈ 𝐺 ⋅ 𝑝തതതതതത − 𝐺 ⋅ 𝑝.  Keep on doing this until getting 
a point with closed orbit.)
By prop. above, has closed orbit iff direct sum of stables, which are 
simple objects.
Thus the orbit closure must contain a semi-simple object, which is the 
unique direct sum of simple rep. over the vertices (in given 𝛼).
Thus all points in 𝑉஺(𝛼) are equiv. (when 𝜃 = 0) and hence
𝑉஺(𝛼)//𝐺𝐿(𝛼) is just a point.

Moduli space

It is pretty tautological that 𝑀஺(𝛼, 𝜃) is a course moduli, namely
for a family of 𝜃-s.stable 𝐴-mod over 𝐵, has a canonical map
𝐵 → 𝑀஺(𝛼, 𝜃)
(choose trivialization of the vector bundles at vertices, and then have 
map to 𝑅𝑒𝑝ఈ).

Prop. 5.3.
If 𝛼 is indivisible, then 𝑀஺

௦(𝛼, 𝜃) is a fine mod. of 𝜃-stable 𝐴-mod.

Proof.
Want a taut. bundle over 𝑀஺

௦(𝛼, 𝜃) whose fiber over [𝑉] is 𝑉 (equipped 
with 𝐴 → 𝐸𝑛𝑑(𝑉)).
Take Repఈ

௦ × 𝑉௫ for each vertex 𝑥, and take quotient by 𝐺𝐿ఈ.
(Just usual quotient for stable points.)
TROUBLE:
Δ ⊂ 𝐺𝐿ఈ acts trivially on Repఈ

௦ , but acts on 𝑉௫ by scaling!
Then (Repఈ

௦ × 𝑉௫)/𝐺𝐿ఈ → Repఈ
௦ /𝐺𝐿ఈ is problematic!

Remedy:
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Remedy:
Modify the 𝐺𝐿ఈ-action on the second factor such that
Δ acts trivially.
Take (𝑔 ⋅ 𝑝, 𝜒(𝑔) ⋅ 𝑔 ⋅ 𝑣) ∈ Repఈ

௦ × 𝑉௫

where 𝜒: 𝐺 → ℂ× such that 𝜒(𝑐 ⋅ Id௫) = 𝑐ିଵ.
Character takes the form

𝜒(−) = ෑ det(−)టೣ

 

௫

.

Then need ∑ 𝜓௫𝛼(𝑥) 
  = −1

which exists iff 𝛼 is indivisible.
Then done.

Rmk. 5.4.
For 𝛼 indivisible, 𝑀஺(𝛼, 𝜃) = 𝑀஺

௦(𝛼, 𝜃) for generic 𝜃.
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