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Monday, December 30,2019  9:47 AM Section 9 and
[King]

Affine group action

G: aff. alg. gp.

(ex.GL. {A:detA + 0} ={(4,y):ydetA = 1}.)

X: aff. var.

G acts on X.

Action G X X — X gives homo.
u*: C[X] - C[G] ® C[X].
Let u*(f) = X h; Q f;. Then by def.

(9-H) = hilg™ fi.

Lem. 9.1.13.
W c C[X] f.d. subspace.
G - W = Span{g - w}is f.d. G-rep.

Proof.
u*(W) is f.d. and hence contained in some f.d. A Q B.
Then G - W < B and hence f.d.

Prop. 9.1.15: Put X in a rep.
Have rep. V and G-equiv. closed immersion (iso. to its image which is a

subvar.)
Q:X->V.

Proof.

Key: take W c C[X] f.d. subspace that gen. C[X].
V=G -W)".

Then C[V] = C[zy, ..., z,]

where 74, ..., z,, isa basis of G - W < C[X].

Have C[V] = C[zy, ..., z,] = C[X]

which is surj. since G - W gen. C[X].

This gives X — V which is G-equiv.

Apply to X = G, get G-equiv. p:G C V.

Quiver Page 1



G — GL(V) is injective. (IfactsasId onV,thenId onG.)
Thus aff. alg. group must be lin.

Alg. frameworKk for integration
Def. 9.2.1. Reynolds operator:

R: C[G] 5 C with
R(1) = 1;
R(Ch-f) =R(f)Vhf.

Linear reductive if such R exists.
(Recall ‘reductive’' means complexification of compact Lie group.)

Main example: GL(n, C).
R(f) J;mﬂmmd“'
R(h-f) = R(f) for h € U(n).
U(n) c GL(n, C) is Zariski dense:
(SH™ c (CX)™ is Zariski dense.
(Restrict to one variable, polynomial only have finitely many roots.)
Have singular value decomp. GL = U;DU; L.
Thus U(n) = U(n) - (SY™ - U(n) is Zariski dense.
R(h- f) — R(f) is polynomial on h € GL(n,C). Thus
R(h- f) = R(f) for h € U(n) implies for h € GL(n, C).

Averaging for f € C[X] where G acts on X: Analog of
Fo = [ £ du
K

(f is poly. implies invariance under K gives invariance under G.)
Ry: C[X] = C[X]¢ which is composition of

cix1% ci6] @ cx1 2 cpx.

The following is direct verification:
Lem. 9.2.4.

1. Ry (C[X]) c C[Xx]°.

2. Rx(f) = f for f € C[X]C.

3. Ry is C[X]%-mod. homo.
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4. For W c C[X] Ginv., Ry(W) = W€,

Aff. reductive implies semi-simple
(A more alg. way avoiding inv. metric)

Lem. 9.2.9.
Restriction of pairing to V¢ x (V*)¢ - C is non-deg.
(Note that (V*)€ is different from (V¢)".)

Proof.

Forv=+0€V%cV,take f € V*with f(v) = 1.
Ry(f) € (V") and Ry (f)(v) = 1 since v is G-inv.
(Van. ideal of {v} is G-inv.)

Prop.9.2.11.
Every rep. of aff. reductive group is a direct sum of irred.

Proof.

Let W c V irred. subrep.

Natural pairing

Hom(V,W) x Hom(W,V) —» C

given by try, (¥¢). Restrict to non-deg.
Hom(V,W)%¢ x Hom(W, V)¢ - C

by Lem. 9.2.9.

Lett € Hom(W, V)¢ be the inclusion.
There is ¥ € Hom(V, W)€ such that tr(y:) # 0.
0 # Yt € Hom(W,W)% = C - Id (Schurs).
ThenV =W @ Ker(y).

Quotient is finitely generated

First consider G-rep. X = V.
V//G == MaxSpec(C[V]%) with Zar. top.
f € C[V]¢ is called an "invariant".

Thm. 9.2.6. Hilbert's Finiteness Theorem.
C[V]¢ is finitely generated as alg.
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Proof.
Since G acts linearly,
C[V], is preserved by G, and hence R, (C[V],) = C[V]dG.
Since C[V] is Noetherian, any ideal is fin. gen.
Take m := @, C[V]dG c C[V]® max ideal.
[ := C[V]-m c C[V] ideal
Let f; ... f € mhomog. gen. of I.
fi ... f gen. ideal m c C[V]C:
Any h = ), q;f; for a; € C[V].

h=Ry() = ) Ry(ap f,

where Ry, (q;) € C[V]C.
By the following Prop. 9.2.5,
fi ... f~ gen. C[V]C.

Cor. 9.2.8.
For aff. X acted by G, C[X]C is finitely generated.

Proof.
Put X c V equivariantly by Prop. 9.1.15. Thus

C[X]¢ = *(C[V]9) is fin. gen.

Prop. 9.2.5.
R graded. comm. alg.

m:@Rd

d=1
If homog. f; ... f € m gen. m as ideal, then

f1 - fr gen. R. as alg. (meaning only taking sums and products of f;.)

Proof.
Any h € R; can be generated:
Induction on d.

h=Zaifi fora; € R.

f; homog. implies can take a; homog. with lower deg.
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a; gen. by f; by induction.

GIT quotient for affine case with trivial character:
X//G == MaxSpec(C[X]%).
Havem: X - X//G from C[X]¢ - C[X].

Main:
- ({m(x)}) is a union of the orbits whose closure intersect with G - x.

Lem. 9.3.1.
For closed inv. 4,4, C X,

n(A1) N1(Az) = (A1 N Ay).

Proof.

m(A;) corr.to J; N C[X]¢ = Rx(J;) where J; is van. ideal of 4;.
m(A;) N m(A,) corr. to

Rx(1) + Rx(2) = Rx(1 +J2) = (J1 +J2) N C[X]°

which corr. to m(4; N 4,).

Lem. 9.3.2.

m: X = X//G is surij.

For closed inv. A c X, m(A) is closed. Thus Lem. 9.3.1 simplifies to
m(A;) Nnm(A4,) = (A, N A,) for closed inv. 4;, 4, C X.

Proof.
Surjective:
For max. ideal I ¢ C[X]%, take ideal ] = C[X] - I < C[X].
InC[X]¢ =1
For h = ), a;f; in LHS,

h=Re(h) = ) Re(a) fi€l.

] is contained in some max. ideal m, and m N C[X]¢ = I.

m(A) is closed:
Supposed not closed. Have y € m(4) — m(A).
B :=n"1(y) # @ is closed inv.
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yem(A)nn(B)=n(ANB)=0!

Prop.
G -x and G - x' sitin the same fiberof 7 iff G - x N G - x" # Q.

Proof.

First, fiber of 7 is closed, and hence contains a whole orbit closure.
(G- x)nn(G-x")=n(G-xnG-x").

Thus whether the two image points are the same are determined by
whether G - x N G - x' # @ or not.

Cor. 9.3.3.
m~1(y) contains a unique closed orbit.

Proof.
Exist:
Forzen1(y),ifG -z # G - z, take
Z1€EG-z—G-zcna (y).
Keep on doing this, get
Z1,Z
and
G-z, CG -z G-z,CG-2z ..
Since Noetherian, gradually stabilizes and
G'—Zk =G - Zi-
Unique:
Suppose have two distinct closed G - z; fori = 1,2.
By Lem. 9.3.2,
yeEn(G-z)Nm(G-z)) =n(G-z2,NG-2,) =0

For linear V//G, Hilbert nullcone:
N = Y{n(0)}.
N = {v: G-v>3 O}: immediate from the above prop.

GIT quotient for general case
General X quasi-proj:

L: equivariant ample line bundle over X.
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€X.

R= @ r(x,Lem).

n=0

X35 =X — Zero(Rﬁ) =U, Ug

where Ug = {s # 0} for s € I'(X, L®”>0)G.

(ss stands for "semi-stable".)

X//.G is glued from U,/ /G = Spec(Ag) where U = Spec(Ay).
When X = Proj R,

X//G = Proj RC.

m: X% - X//G

is the glued version of the affine case before. Still have Lem. 9.3.2:
A c X//G closed iff A c X* closed.

X5 :={x € X5%:G - x is closed in X*° and finite stabilizer} is open.
1| xs coincides with set-theoretic quotient.

X = P(V) with trivial char.:
L = 0(1) with trivial action.
R = C[V];

Zero(R$) = N;

Vs =V —N;

XSS = P(VSS);

X//G = Proj RS = P(V//G).
m X% - X//G

descended from V*° - V//G.

GIT quotient for linear action with character:
(Section 2 of [King])

homo
f € C[V], y: G — C* such that
g .

f=x@)f vg.

f is called a semi-invariant of weight y.

x can be understood as G-equiv. trivial line bundle

L=V xC(, g -(x,2)=(9 %2z xg)
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deg = n invariant section (thought as L®"):
f(x)z™ € C[V x C] where f(g - x) = x"(g) f(x).

Def. | &

e 1t ! © s.$

n r ﬂC‘
V1146 = Proj| @D civie f
nz0 ¢
5 - 5 sokle

which is proj. over V//G = Spec(C[V]). d c\:‘
Geom. description: C f
V//,G = VX" [~ where "
x~x"iffG-xNG-x"#0 \_/_
(where the closure is taken in VAX~55) 4

iff G- (x, DNG-(x",1) =@
(where closure is taken in IV X C)

Semi-stable x € V: 3f € C[X]6X" for n = 1 such that f(x) + 0.
(Orbit closure of (x,1) € V X C is disjoint from zero-section.)

Stable: furthermore, Stab, ;y/Ker is finite (iff dim G - x = dim G /Ker)

and G-action on {u € V: f(u) # 0} for the f above has closed orbits.
(G- (x,1)isclosedin V x Ciff G - x is closed in VX75%)
(Ker is the kernel of the linear G-action on V. Assume y(Ker) = 1.)

Reason for geom. description:

disjoint closed G-sets can be distinguished by G-inv. functions.

Hilbert-Mumford numerical criterion:
x is s.s. iff for all one-parameter subgroups A C G,

lim A() - (x, 1) € V x {0} (X.A)=0 W @ 0.

iff $

limA(t) - x exists = (y,4) = 0. S: x x ‘

>0 _( ) G 4) : ° ( - | (x ()
stable iff \ |

lim At) - (x,1) exists > A c A -+ ;r > - >

iff
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iff
lim A(t) - x exists = (y,1) > 0orA c A

t-0

(x, 1) is defined by
X(A(B) = LoD €% 5 ¢ A - (0, 1) = (A1) - 1, x(AD) ).

Note: for x s.s., G - (x, 1) is closed iff

}:ir% A(t) - x existsand (y,1) =0 = lirré A(t) - x €G- x.

In such case lim;_,y A(t) - x is fixed by A.
If further x has finite stabilizer, so does lim;_,y A(t) - x. Then A c A.

Forx,y € VX735, x~y iff
A, A, with y(A;) = y(A,) = 0 such that
lim;_oA;(t) - x and lim;_,y A, (t) - y belong to the same closed G-orbit.

Principle:

If a closed G-set A intersects G - x, then A intersects A - x for some one
parameter A.

For the last statement for x~y, G - (x,1) N G - (y,1) is a closed G-set
which must contains a closed G-orbit.

Quotient for quiver representations
6 € (Z%)". (Called weight.)

Rep.V is f-s.s.if 6 (m) = 0and @ (dim V’) >0forV' cV.

Quiver Page 9



@-stable if further 6 (dim V’) =0=>V'=Vor0.

Want to identify with GIT stability.
Define

Xo: GLEAMV) - €, xo(q) = | | det(an)®.
VEQo
Note: A = C* € GL(dim V) acts trivially.

xelc 1) = c(e’dim V) = 1.

One parameter 1: C* —» GL(dim V) that has lim; o A (t) - V
gives a filtration:

Weight decomposition
-
nez

where A(t) acts on Vx(n) as multi. by t™.
Arrow: matrix V, = (Va(m'n): Vtin) - Vfgln)).
A(t) acts on Va(m’n) as multi. by t™ ™",

Has ll_r)% iff Va(m’n) = 0 for m < n, thatis,

V, preserves V2" Vn, meaning

V=" forms subrepresentations.
O 3EN 5 V2n+1 S5 ...

limA (D) -V = @ pan el

nez
Converse: a filtration always arise in this way (although such 1 is not

unique).

The filtration is trivial (meaning V=™ are either 0 or V) implies
A(t) actson V, as t™ - Id (and same n for all x)
meaning A C A.

Prop. V is GIT yg-semistable iff -semistable. (Similar for stable.)
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Proof.

Recall the numerical criterion:
Xg-semistable iff

lti_r)r(} A(t) - x exists = (xg,1) = 0.

(xo, 1) (t-power of xg(A(t)): C* - €*) in terms of filtration V=":
(o, A) = Z 6(x) Z ndim V™ = Z n 6 (dim VZn/V2n+1)
X n n

= o(dimv=r)

n

a finite sum since 6 (dim V) =0 (and V=" =V vn « 0).

0-s.s.:
9 (dim V') >0vV cV.

0-s.s. = GIT yg-s.s.:
(X0, ) = Z 6 (dimV=") 2 0.

0-stable = GI'TII‘ Xp-stable:
(Xe,A) =0
= 6 (dimV=") = 0 vn
> V= =Vor0Vn
= A EA.

GIT yg-s.s. = 0-s.s.:
For V' c V, take the filtration
VoV o0
and a corresponding one parameter A.
GIT s.s. implies

(xe, 1) =0 (dimV) + 6 (dimV’) = 6 (dimV’) = 0.
GIT yg-stable = 0-stable:
If O (W) =0,
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(xe,4) = 0 and hence A c A.
Thus the filtration is trivial and V' = 0 or V.

Recall: for V GIT s.s., GL - V is closed iff
limA(t) -V existsand (y,A) = 0= }:ir% A(t) - VEG-V.

t—0

L) =36 (dim VZ”) = 0 iff

each V=" has & = 0, and hence s.s.

(Sub-rep. of V=™ is sub-rep. of V and hence has 6 > 0.)
V is isom. to

lim A(t) - V = @ pan jyEntl
n

t—0

Jordan-Holder filtration (for Abel. cat. of s.s. rep.) exists,
where the graded pieces
V2" /7 2"*1 gre simple s.stable objects.
Simple s.s. & stable:
=)
IfV' <V has @ (dim V’) = 0, then V' is also s.s. and hence =V or 0

since simple.
<)

ForV' cVs.s., 0 (dim V’) = 0 and by stable V' =V or 0.

Thus we obtain:
Prop.
GL -V is closed in s.s. iff IV is direct sum of stables.

(Direct sum of stables have direct sum of ¢ - Id as stabilizers.)

Recall: GIT equiv. for s.s. objects V~W/:
A4, A, with y(1,) = x(4,) = 0 such that
lim;_,y A;(t) - V and lim;_,5 A, (t) - W belong to the same closed G-
orbit.
By above prop., lim;_oA;(t) - V and lim;_,y A, (t) - W are direct sums
of the same stables.
Thus:

Prop.
GIT
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s.s.V “~ W iff V and W have the same graded pieces in Jordan-Holder
filtration. (Called S-equiv.)

Finite dim. algebra
Corr. to quiver Q with relations:
Take a decomposition A = Pme1 D - P Pn@m”.
Take P = P, @ --- @ B,.
B = End,(P)°P is a basic alg. Morita equiv. to A (Ch. 3),
that is,
B/rad(B) = C" as algebra.
Define C™*-bimod
M := rad(B) /rad(B)?
which corr. to a quiver Q:
vertex set is the standard basis of C™
(which are indecomp. proj. mod. P; of A);
arrow set is a basisofe; - M - e;.
Has surjective CQ — B whose kernel is
admissible ideal J.

A-mod can be understood as subcat. of CQ-mod

(that satisfies the relations):
the functor Homy,(—, M) restricted to cat. of proj. A-mod.
corr. to CQ-mod. (Morita equiv.)
M = Hom,(A, M) is reconstructed from this functor.

Vertices of Q corr. to simple A-mod.
K,(A-mod) is the free Abel. group gen. by Q,
(by Jordan-Holder thm.).

Char. 6 for A-mod is element of Z%,

Using the above identification, get:

Thm. 4.1.

The GIT quotient M, (a, ) gives the moduli space of 8-semistable A-mod.
of dim. a. The points correspond to S-equiv. classes of 8-semistable A-
mod.
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Prop. 4.3.
M, (a, 0) is projective.

Proof.

M, (a, 0) is projective over V,(a)//GL(a) (character zero case).

For character zero,

all points are semi-stable.

For any point, the orbit closure must contain a closed orbit.

(If G - p not closed, hasp’ € G - p — G - p. Keep on doing this until getting
a point with closed orbit.)

By prop. above, has closed orbit iff direct sum of stables, which are
simple objects.

Thus the orbit closure must contain a semi-simple object, which is the
unique direct sum of simple rep. over the vertices (in given ).

Thus all points in V,(a) are equiv. (when 8 = 0) and hence
V4(a)//GL(@) is just a point.

Moduli space

It is pretty tautological that M, («, 8) is a course moduli, namely

for a family of 8-s.stable A-mod over B, has a canonical map

B - My(a,6)

(choose trivialization of the vector bundles at vertices, and then have
map to Rep,).

Prop. 5.3.
If « is indivisible, then M} (a, 6) is a fine mod. of §-stable A-mod.

Proof.

Want a taut. bundle over M; (a, 8) whose fiber over [V] is V (equipped
with A - End(V)).

Take Rep;, X V, for each vertex x, and take quotient by GL,.

(Just usual quotient for stable points.)

TROUBLE:

A c GL, acts trivially on Rep}, but acts on V, by scaling!

Then (Rep}, X V,)/GL, — Rep; /GL, is problematic!
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Remedy:
Modify the G L,-action on the second factor such that
A acts trivially.

Take (g - p,x(g9) - g - v) € Repg X Vy
where y: G - C* such that y(c -1d,) = ¢~ L.
Character takes the form

1) = | [ detcw=.

X
Then need ) Y, a(x) = —1
which exists iff « is indivisible.
Then done.

Rmk. 5.4.
For « indivisible, M4 (a, 8) = M; (a, ) for generic 6.
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