
Section 9 and
[King]

Affine group action
𝐺: aff. alg. gp.  
(ex. 𝐺𝐿.  {𝐴: det 𝐴 ≠ 0} = {(𝐴, 𝑦): 𝑦 det 𝐴 = 1}.)
𝑋: aff. var.
𝐺 acts on 𝑋.
Action 𝐺 × 𝑋 → 𝑋 gives homo.

Let 𝜇∗(𝑓) = ∑ ℎ ⊗ 𝑓 
  .  Then by def.

(𝑔 ⋅ 𝑓) = ℎ (𝑔 ) 𝑓

 

 

.

𝜇∗: ℂ[𝑋] → ℂ[𝐺] ⊗ ℂ[𝑋].

Lem. 9.1.13.
𝑊 ⊂ ℂ[𝑋] f.d. subspace.
𝐺 ⋅ 𝑊 ≔ Span{𝑔 ⋅ 𝑤} is f.d. 𝐺-rep.

Proof.
𝜇∗(𝑊) is f.d. and hence contained in some f.d. 𝐴 ⊗ 𝐵.
Then 𝐺 ⋅ 𝑊 ⊂ 𝐵 and hence f.d.

Prop. 9.1.15: Put 𝑋 in a rep.
Have rep. 𝑉 and 𝐺-equiv. closed immersion (iso. to its image which is a 
subvar.) 
𝜙: 𝑋 → 𝑉.

Proof.
Key: take 𝑊 ⊂ ℂ[𝑋] f.d. subspace that gen. ℂ[𝑋].
𝑉 ≔ (𝐺 ⋅ 𝑊)∗.
Then ℂ[𝑉] = ℂ[𝑧 , … , 𝑧 ]
where 𝑧 , … , 𝑧 is a basis of 𝐺 ⋅ 𝑊 ⊂ ℂ[𝑋].
Have ℂ[𝑉] = ℂ[𝑧 , … , 𝑧 ] → ℂ[𝑋]
which is surj. since 𝐺 ⋅ 𝑊 gen. ℂ[𝑋].
This gives 𝑋 → 𝑉 which is 𝐺-equiv.

Apply to 𝑋 = 𝐺, get 𝐺-equiv. 𝜙: 𝐺 ⊂ 𝑉.
𝐺 → 𝐺𝐿 𝑉 is injective.  (If acts as 𝐼𝑑 on 𝑉, then 𝐼𝑑 on 𝐺.)
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𝐺 → 𝐺𝐿(𝑉) is injective.  (If acts as 𝐼𝑑 on 𝑉, then 𝐼𝑑 on 𝐺.)
Thus aff. alg. group must be lin.

Alg. framework for integration
Def. 9.2.1. Reynolds operator:

𝑅: ℂ[𝐺] ℂ with
𝑅(1) = 1;
𝑅(ℎ ⋅ 𝑓) = 𝑅(𝑓) ∀ℎ, 𝑓.
Linear reductive if such 𝑅 exists.

(Recall `reductive' means complexification of compact Lie group.)

Main example: 𝐺𝐿(𝑛, ℂ).

𝑅(𝑓) ≔ 𝑓
( )

 𝑑𝜇
 

( )

.

𝑅(ℎ ⋅ 𝑓) = 𝑅(𝑓) for ℎ ∈ 𝑈(𝑛).

(𝕊 ) ⊂ (ℂ×) is Zariski dense.  
(Restrict to one variable, polynomial only have finitely many roots.)
Have singular value decomp. 𝐺𝐿 = 𝑈 𝐷𝑈 .
Thus 𝑈(𝑛) = 𝑈(𝑛) ⋅ (𝕊 ) ⋅ 𝑈(𝑛) is Zariski dense.

𝑈(𝑛) ⊂ 𝐺𝐿(𝑛, ℂ) is Zariski dense:

𝑅(ℎ ⋅ 𝑓) − 𝑅(𝑓) is polynomial on ℎ ∈ 𝐺𝐿(𝑛, ℂ).  Thus
𝑅(ℎ ⋅ 𝑓) = 𝑅(𝑓) for ℎ ∈ 𝑈(𝑛) implies for ℎ ∈ 𝐺𝐿(𝑛, ℂ).

Averaging for 𝑓 ∈ ℂ[𝑋] where 𝐺 acts on 𝑋: Analog of 

𝑓̅(𝑥) ≔ 𝑓(ℎ ⋅ 𝑥)
 

𝑑𝜇.

(𝑓 is poly. implies invariance under 𝐾 gives invariance under 𝐺.)
𝑅 : ℂ[𝑋] → ℂ[𝑋] which is composition of

ℂ[𝑋]
∗

→ℂ[𝐺] ⊗ ℂ[𝑋]
⊗
⎯ ℂ[𝑋].

The following is direct verification:

𝑅 (ℂ[𝑋]) ⊂ ℂ[𝑋] .1.
𝑅 (𝑓) = 𝑓 for 𝑓 ∈ ℂ[𝑋] .2.
𝑅 is ℂ[𝑋] -mod. homo.3.
For 𝑊 ⊂ ℂ 𝑋 G inv., 𝑅 𝑊 = 𝑊 .4.

Lem. 9.2.4.
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For 𝑊 ⊂ ℂ[𝑋] G inv., 𝑅 (𝑊) = 𝑊 .4.

Aff. reductive implies semi-simple
(A more alg. way avoiding inv. metric)
Lem. 9.2.9.
Restriction of pairing to 𝑉 × (𝑉∗) → ℂ is non-deg.

(Note that (𝑉∗) is different from 𝑉
∗
.)

Proof.
For 𝑣 ≠ 0 ∈ 𝑉 ⊂ 𝑉, take 𝑓 ∈ 𝑉∗ with 𝑓(𝑣) = 1.
𝑅 (𝑓) ∈ (𝑉∗) and 𝑅 (𝑓)(𝑣) = 1 since 𝑣 is 𝐺-inv.
(Van. ideal of {𝑣} is 𝐺-inv.)

Prop. 9.2.11.
Every rep. of aff. reductive group is a direct sum of irred.

Proof.
Let 𝑊 ⊂ 𝑉 irred. subrep.
Natural pairing
Hom(𝑉, 𝑊) × Hom(𝑊, 𝑉) → ℂ
given by 𝑡𝑟 (𝜓𝜙).  Restrict to non-deg.
Hom(𝑉, 𝑊) × Hom(𝑊, 𝑉) → ℂ
by Lem. 9.2.9.
Let 𝜄 ∈ Hom(𝑊, 𝑉) be the inclusion.
There is 𝜓 ∈ Hom(𝑉, 𝑊) such that 𝑡𝑟(𝜓𝜄) ≠ 0.
0 ≠ 𝜓𝜄 ∈ Hom(𝑊, 𝑊) = ℂ ⋅ 𝐼𝑑 (Schurs).
Then 𝑉 = 𝑊 ⊕ Ker(𝜓).

Quotient is finitely generated
First consider 𝐺-rep. 𝑋 = 𝑉.

𝑉//𝐺 ≔ MaxSpec ℂ[𝑉] with Zar. top.

𝑓 ∈ ℂ[𝑉] is called an "invariant".

Thm. 9.2.6. Hilbert's Finiteness Theorem.
ℂ[𝑉] is finitely generated as alg.

Proof.
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Proof.
Since 𝐺 acts linearly,

ℂ[𝑉] is preserved by 𝐺, and hence 𝑅 (ℂ[𝑉] ) = ℂ[𝑉] .
Since ℂ[𝑉] is Noetherian, any ideal is fin. gen.

Take 𝔪 ≔ ⨁ ℂ[𝑉]  ⊂ ℂ[𝑉]   max ideal.
𝐼 ≔ ℂ[𝑉] ⋅ 𝔪 ⊂ ℂ[𝑉] ideal.
Let 𝑓 … 𝑓 ∈ 𝔪 homog. gen. of 𝐼.

Any ℎ = ∑ 𝑎 𝑓 
  for 𝑎 ∈ ℂ[𝑉].

ℎ = 𝑅 (ℎ) = 𝑅 (𝑎 ) 𝑓

 

 

where 𝑅 (𝑎 ) ∈ ℂ[𝑉] .

𝑓 … 𝑓 gen. ideal 𝔪 ⊂ ℂ[𝑉] :

By the following Prop. 9.2.5,
𝑓 … 𝑓 gen. ℂ[𝑉] .

Cor. 9.2.8.
For aff. 𝑋 acted by 𝐺, ℂ[𝑋] is finitely generated.

Proof.
Put 𝑋 ⊂ 𝑉 equivariantly by Prop. 9.1.15.  Thus

ℂ[𝑋] = ι∗ ℂ[𝑉] is fin. gen.

Prop. 9.2.5.
𝑅 graded. comm. alg.

𝔪 = 𝑅

 

.

If homog. 𝑓 … 𝑓 ∈ 𝔪 gen. 𝔪 as ideal, then
𝑓 … 𝑓 gen. 𝑅. as alg.  (meaning only taking sums and products of 𝑓 .)

Proof.
Any ℎ ∈ 𝑅 can be generated:
Induction on 𝑑.

ℎ = 𝑎 𝑓

 

 

 for 𝑎 ∈ 𝑅.

𝑓 homog. implies can take 𝑎 homog. with lower deg.
𝑎 gen. by 𝑓 by induction.
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𝑎 gen. by 𝑓 by induction.

GIT quotient for affine case with trivial character:
𝑋//𝐺 ≔ MaxSpec ℂ[𝑋] .

Have 𝜋: 𝑋 → 𝑋//𝐺 from ℂ[𝑋] → ℂ[𝑋].

Main:
𝜋 ({𝜋(𝑥)}) is a union of the orbits whose closure intersect with 𝐺 ⋅ 𝑥.

Lem. 9.3.1. 
For closed inv. 𝐴 , 𝐴 ⊂ 𝑋,

𝜋(𝐴 ) ∩ 𝜋(𝐴 ) = 𝜋(𝐴 ∩ 𝐴 ).

Proof.
𝜋(𝐴 ) corr. to 𝐽 ∩ ℂ[𝑋] = 𝑅 (𝐽 ) where 𝐽 is van. ideal of 𝐴 .

𝜋(𝐴 ) ∩ 𝜋(𝐴 ) corr. to
𝑅 (𝐽 ) + 𝑅 (𝐽 ) = 𝑅 (𝐽 + 𝐽 ) = (𝐽 + 𝐽 ) ∩ ℂ[𝑋]

which corr. to 𝜋(𝐴 ∩ 𝐴 ).

Lem. 9.3.2.
𝜋: 𝑋 → 𝑋//𝐺 is surj.
For closed inv. 𝐴 ⊂ 𝑋, 𝜋(𝐴) is closed.  Thus Lem. 9.3.1 simplifies to
𝜋(𝐴 ) ∩ 𝜋(𝐴 ) = 𝜋(𝐴 ∩ 𝐴 ) for closed inv. 𝐴 , 𝐴 ⊂ 𝑋.

Proof.

For max. ideal 𝐼 ⊂ ℂ[𝑋] , take ideal 𝐽 = ℂ[𝑋] ⋅ 𝐼 ⊂ ℂ[𝑋].

For ℎ = ∑ 𝑎 𝑓 
  in LHS,

ℎ = 𝑅 (ℎ) = 𝑅 (𝑎 )

 

 

 𝑓 ∈ 𝐼.

𝐽 ∩ ℂ[𝑋] = 𝐼:

𝐽 is contained in some max. ideal 𝔪, and 𝔪 ∩ ℂ[𝑋] = 𝐼.

Surjective:

𝜋(𝐴) is closed:

Supposed not closed.  Have 𝑦 ∈ 𝜋(𝐴) − 𝜋(𝐴).
𝐵 ≔ 𝜋 (𝑦) ≠ ∅ is closed inv.

𝑦 ∈ 𝜋 𝐴 ∩ 𝜋 𝐵 = 𝜋 𝐴 ∩ 𝐵 = ∅ !
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𝑦 ∈ 𝜋(𝐴) ∩ 𝜋(𝐵) = 𝜋(𝐴 ∩ 𝐵) = ∅ !

Prop.
𝐺 ⋅ 𝑥 and 𝐺 ⋅ 𝑥 sit in the same fiber of 𝜋 iff 𝐺 ⋅ 𝑥 ∩ 𝐺 ⋅ 𝑥 ≠ ∅.

Proof.
First, fiber of 𝜋 is closed, and hence contains a whole orbit closure.

𝜋 𝐺 ⋅ 𝑥 ∩ 𝜋 𝐺 ⋅ 𝑥 = 𝜋 𝐺 ⋅ 𝑥 ∩ 𝐺 ⋅ 𝑥 .

Thus whether the two image points are the same are determined by 
whether 𝐺 ⋅ 𝑥 ∩ 𝐺 ⋅ 𝑥 ≠ ∅ or not.

Cor. 9.3.3.
𝜋 (𝑦) contains a unique closed orbit.

Proof.

For 𝑧 ∈ 𝜋 (𝑦), if 𝐺 ⋅ 𝑧 ≠ 𝐺 ⋅ 𝑧, take
𝑧 ∈ 𝐺 ⋅ 𝑧 − 𝐺 ⋅ 𝑧 ⊂ 𝜋 (𝑦).
Keep on doing this, get
𝑧 , 𝑧 …
and
𝐺 ⋅ 𝑧 ⊂ 𝐺 ⋅ 𝑧, 𝐺 ⋅ 𝑧 ⊂ 𝐺 ⋅ 𝑧 …
Since Noetherian, gradually stabilizes and
𝐺 ⋅ 𝑧 = 𝐺 ⋅ 𝑧 .

Exist:

Suppose have two distinct closed 𝐺 ⋅ 𝑧 for 𝑖 = 1,2.
By Lem. 9.3.2,
𝑦 ∈ 𝜋(𝐺 ⋅ 𝑧 ) ∩ 𝜋(𝐺 ⋅ 𝑧 ) = 𝜋(𝐺 ⋅ 𝑧 ∩ 𝐺 ⋅ 𝑧 ) = ∅ !

Unique:

For linear 𝑉//𝐺, Hilbert nullcone: 
𝑁 ≔ 𝜋 {𝜋(0)}.

𝑁 = 𝑣: 𝐺 ⋅ 𝑣 ∋ 0 : immediate from the above prop.

GIT quotient for general case

𝐿: equivariant ample line bundle over 𝑋.

𝑅 = Γ 𝑋, 𝐿⊗

 

.

General 𝑋 quasi-proj:
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𝑅 = Γ 𝑋, 𝐿⊗

 

.

𝑋 ≔ 𝑋 − Zero 𝑅 =∪  𝑈

where 𝑈 = {𝑠 ≠ 0} for 𝑠 ∈ Γ 𝑋, 𝐿⊗ .

(ss stands for "semi-stable".)

𝑋// 𝐺 is glued from 𝑈 // 𝐺 = Spec 𝐴 where 𝑈 = Spec(𝐴 ).

When 𝑋 = Proj 𝑅,
𝑋//𝐺 = Proj 𝑅 .
𝜋: 𝑋 → 𝑋//𝐺
is the glued version of the affine case before.  Still have Lem. 9.3.2:
𝐴 ⊂ 𝑋//𝐺 closed iff 𝐴 ⊂ 𝑋 closed.

𝑋 ≔ {𝑥 ∈ 𝑋 : 𝐺 ⋅ 𝑥 is closed in 𝑋  and finite stabilizer} is open.
𝜋| coincides with set-theoretic quotient.

𝐿 = 𝑂(1) with trivial action.
𝑅 = ℂ[𝑉];

Zero 𝑅 = 𝑁;

𝑉 = 𝑉 − 𝑁;
𝑋 = ℙ(𝑉 );
𝑋//𝐺 = Proj 𝑅 = ℙ(𝑉//𝐺).
𝜋: 𝑋 → 𝑋//𝐺
descended from 𝑉 → 𝑉//𝐺.

ex. 𝑋 = ℙ(𝑉) with trivial char.:

GIT quotient for linear action with character:
(Section 2 of [King])

𝑓 ∈ ℂ[𝑉], 𝜒: 𝐺 ⎯⎯ ℂ× such that
𝑔 ⋅ 𝑓 = 𝜒(𝑔) 𝑓  ∀𝑔.
𝑓 is called a semi-invariant of weight 𝜒.

𝜒 can be understood as 𝐺-equiv. trivial line bundle

𝐿 = 𝑉 × ℂ, 𝑔 ⋅ (𝑥, 𝑧) = 𝑔 ⋅ 𝑥, 𝑧 ⋅ 𝜒 (𝑔) .

deg = 𝑛 invariant section (thought as 𝐿⊗ ): 
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deg = 𝑛 invariant section (thought as 𝐿⊗ ): 
𝑓(𝑥)𝑧 ∈ ℂ[𝑉 × ℂ] where 𝑓(𝑔 ⋅ 𝑥) = 𝜒 (𝑔) 𝑓(𝑥).

Def.

𝑉// 𝐺 ≔ Proj ℂ[𝑉] ,

 

which is proj. over 𝑉//𝐺 = Spec ℂ[𝑉] .

Geom. description:
𝑉// 𝐺 = 𝑉 /~ where

𝑥~𝑥 iff 𝐺 ⋅ 𝑥 ∩ 𝐺 ⋅ 𝑥 ≠ ∅
(where the closure is taken in 𝑉 )

iff 𝐺 ⋅ (𝑥, 1) ∩ 𝐺 ⋅ (𝑥 , 1) ≠ ∅
(where closure is taken in 𝑉 × ℂ)

Semi-stable 𝑥 ∈ 𝑉: ∃𝑓 ∈ ℂ[𝑋] , for 𝑛 ≥ 1 such that 𝑓(𝑥) ≠ 0.
(Orbit closure of (𝑥, 1) ∈ 𝑉 × ℂ is disjoint from zero-section.)

Stable: furthermore, Stab( , )/𝐾𝑒𝑟 is finite (iff dim 𝐺 ⋅ 𝑥 = dim 𝐺/𝐾𝑒𝑟) 

and 𝐺-action on {𝑢 ∈ 𝑉: 𝑓(𝑢) ≠ 0} for the 𝑓 above has closed orbits.
(𝐺 ⋅ (𝑥, 1) is closed in 𝑉 × ℂ iff 𝐺 ⋅ 𝑥 is closed in 𝑉 )
(Ker is the kernel of the linear 𝐺-action on 𝑉.  Assume 𝜒(Ker) = 1.)

Reason for geom. description:
disjoint closed 𝐺-sets can be distinguished by 𝐺-inv. functions.

Hilbert-Mumford numerical criterion:

lim
→

𝜆(𝑡) ⋅ (𝑥, 1) ∉ 𝑉 × {0}

iff
lim

→
𝜆(𝑡) ⋅ 𝑥  exists ⇒ (𝜒, 𝜆) ≥ 0.

𝑥 is s.s. iff for all one-parameter subgroups 𝜆 ⊂ 𝐺,

lim
→

𝜆(𝑡) ⋅ (𝑥, 1)  exists ⇒ 𝜆 ⊂ Δ

iff 

stable iff 

   Quiver Page 8    



iff 
lim

→
𝜆(𝑡) ⋅ 𝑥  exists ⇒ (𝜒, 𝜆) > 0 or 𝜆 ⊂ Δ.

𝜒 𝜆(𝑡) = 𝑡( , ): ℂ× → ℂ×.   𝜆(𝑡) ⋅ (𝑥, 1) = 𝜆(𝑡) ⋅ 𝑥, 𝜒 𝜆(𝑡) .

(𝜒, 𝜆) is defined by

lim
→

𝜆(𝑡) ⋅ 𝑥  exists and (𝜒, 𝜆) = 0 ⇒ lim
→

𝜆(𝑡) ⋅ 𝑥 ∈ 𝐺 ⋅ 𝑥.

In such case lim → 𝜆(𝑡) ⋅ 𝑥 is fixed by 𝜆.
If further 𝑥 has finite stabilizer, so does lim → 𝜆(𝑡) ⋅ 𝑥.  Then 𝜆 ⊂ Δ.

Note: for 𝑥 s.s., 𝐺 ⋅ (𝑥, 1) is closed iff

For 𝑥, 𝑦 ∈ 𝑉 ,  𝒙~𝒚 iff
∃λ , λ with 𝜒(λ ) = 𝜒(λ ) = 0 such that
lim → λ (𝑡) ⋅ 𝑥 and lim → λ (𝑡) ⋅ 𝑦 belong to the same closed 𝐺-orbit.

Principle:
If a closed 𝐺-set 𝐴 intersects 𝐺 ⋅ 𝑥, then 𝐴 intersects 𝜆 ⋅ 𝑥 for some one 
parameter 𝜆.

For the last statement for 𝑥~𝑦, 𝐺 ⋅ (𝑥, 1) ∩ 𝐺 ⋅ (𝑦, 1) is a closed 𝐺-set 
which must contains a closed 𝐺-orbit.

𝜒-semi-invariants form a subspace ℂ[𝑋] .

Form a ring 𝑆𝐼 ≔ ⨁ ℂ[𝑋]  .

Lem. 9.4.1.
𝑆𝐼 = ℂ[𝑉][ , ].
(𝐺 reductive, [𝐺, 𝐺] gen. by 𝑔ℎ𝑔 ℎ .)

Lem. 9.4.2. (Sato-Kimura)
If 𝑉 has a dense open orbit, Then 𝑆𝐼 is poly. ring.

Quotient for quiver representations
𝜃 ∈ ℤ

∗
.  (Called weight.)

Rep. 𝑉 is 𝜃-s.s. if 𝜃 dim 𝑉 = 0 and 𝜃 dim 𝑉⃗ ≥ 0 for 𝑉 ⊂ 𝑉.

𝜃-stable if further 𝜃 dim 𝑉 = 0 ⇒ 𝑉 = 𝑉 or 0.
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𝜃-stable if further 𝜃 dim 𝑉⃗ = 0 ⇒ 𝑉 = 𝑉 or 0.

Want to identify with GIT stability.
Define

𝜒 : 𝐺𝐿(dim 𝑉) → ℂ×, 𝜒 (𝑔) = det(𝑔 )

 

∈

.

𝜒 (𝑐 ⋅ 𝐼) = 𝑐
, ⃗

= 1.

Note: Δ = ℂ× ∈ 𝐺𝐿(dim 𝑉) acts trivially.

One parameter 𝜆: ℂ× → 𝐺𝐿(dim 𝑉) that has lim → 𝜆 (𝑡) ⋅ 𝑉

Weight decomposition

𝑉 = 𝑉
( )

 

∈ℤ

where λ(𝑡) acts on 𝑉
( )

as multi. by 𝑡 .

Arrow: matrix 𝑉 = 𝑉
( , )

: 𝑉
( )

→ 𝑉
( )

.

𝜆(𝑡) acts on 𝑉
( , )

as multi. by 𝑡 .

Has lim
→

iff 𝑉
( , )

= 0 for 𝑚 < 𝑛, that is,

𝑉 preserves 𝑉   ∀𝑛, meaning
𝑉 forms subrepresentations.
⋯ ⊃ 𝑉 ⊃ 𝑉 ⊃ ⋯

gives a filtration:

lim
→

𝜆 (𝑡) ⋅ 𝑉 = 𝑉 /𝑉

 

∈ℤ

.

Converse: a filtration always arise in this way (although such 𝜆 is not 
unique).

λ(𝑡) acts on 𝑉 as 𝑡 ⋅ 𝐼𝑑 (and same 𝑛 for all 𝑥)
meaning 𝜆 ⊂ Δ.

The filtration is trivial (meaning 𝑉 are either 0 or 𝑉) implies 

Prop. 𝑉 is GIT 𝜒 -semistable  iff 𝜃-semistable.  (Similar for stable.)
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Proof. 
Recall the numerical criterion: 
𝜒 -semistable iff
lim

→
𝜆(𝑡) ⋅ 𝑥  exists ⇒ (𝜒 , 𝜆) ≥ 0.

⟨𝜒 , 𝜆⟩ (𝑡-power of 𝜒 𝜆(𝑡) : ℂ× → ℂ×) in terms of filtration 𝑉 :

⟨𝜒 , 𝜆⟩ = 𝜃(𝑥) 𝑛 dim 𝑉
( )

  

= 𝑛

 

 𝜃 dim 𝑉 /𝑉 ⃗

a finite sum since 𝜃 dim 𝑉 = 0 (and 𝑉 = 𝑉 ∀𝑛 ≪ 0).

= 𝜃 dim 𝑉 ⃗
 

𝜃-s.s.:

𝜃 dim 𝑉⃗ ≥ 0 ∀𝑉 ⊂ 𝑉.

⟨𝜒 , 𝜆⟩ = 𝜃 dim 𝑉 ⃗
 

≥ 0.

𝜃-s.s. ⇒ GIT 𝜒 -s.s.:

⟨𝜒 , 𝜆⟩ = 0

⇒ 𝜃 dim 𝑉 ⃗ = 0  ∀𝑛

⇒ 𝑉 = 𝑉 or 0 ∀𝑛
⇒ 𝜆 ∈ Δ.

𝜃-stable ⇒ GIT 𝜒 -stable:

For 𝑉 ⊂ 𝑉, take the filtration
𝑉 ⊃ 𝑉 ⊃ 0
and a corresponding one parameter 𝜆.
GIT s.s. implies 

⟨𝜒 , 𝜆⟩ = 𝜃 𝑑𝑖𝑚 𝑉 + 𝜃 𝑑𝑖𝑚 𝑉⃗ = 𝜃 𝑑𝑖𝑚 𝑉⃗ ≥ 0.

GIT 𝜒 -s.s. ⇒ 𝜃-s.s.:

If 𝜃 𝑑𝑖𝑚 𝑉⃗ = 0,

𝜒 , 𝜆 = 0 and hence 𝜆 ⊂ Δ.

GIT 𝜒 -stable ⇒ 𝜃-stable:
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⟨𝜒 , 𝜆⟩ = 0 and hence 𝜆 ⊂ Δ.
Thus the filtration is trivial and 𝑉 = 0 or 𝑉.

lim
→

𝜆(𝑡) ⋅ 𝑉  exists and (𝜒, 𝜆) = 0 ⇒ lim
→

𝜆(𝑡) ⋅ 𝑉 ∈ 𝐺 ⋅ 𝑉.

(𝜒, 𝜆) = ∑ 𝜃 dim 𝑉 ⃗  = 0 iff 

each 𝑉 has 𝜃 = 0, and hence s.s.
(Sub-rep. of 𝑉 is sub-rep. of 𝑉 and hence has 𝜃 ≥ 0.)
𝑉 is isom. to

lim
→

𝜆(𝑡) ⋅ 𝑉 = 𝑉 /𝑉

 

.

Jordan-Holder filtration (for Abel. cat. of s.s. rep.) exists, 
where the graded pieces
𝑉 /𝑉 are simple s.stable objects.

→)

If 𝑉 ⊂ 𝑉 has 𝜃 𝑑𝑖𝑚 𝑉⃗ = 0, then 𝑉 is also s.s. and hence = 𝑉 or 0 

since simple.
←)

For 𝑉 ⊂ 𝑉 s.s., 𝜃 𝑑𝑖𝑚 𝑉⃗ = 0 and by stable 𝑉 = 𝑉 or 0.

Simple s.s. ⟺ stable:

Recall: for 𝑉 GIT s.s., 𝐺𝐿 ⋅ 𝑉 is closed iff

Thus we obtain:
Prop.
𝐺𝐿 ⋅ 𝑉 is closed in s.s. iff 𝑉 is direct sum of stables.

(Direct sum of stables have direct sum of 𝑐 ⋅ 𝐼𝑑 as stabilizers.)

∃𝜆 , 𝜆 with 𝜒(𝜆 ) = 𝜒(𝜆 ) = 0 such that
lim → λ (𝑡) ⋅ 𝑉 and lim → λ (𝑡) ⋅ 𝑊 belong to the same closed 𝐺-
orbit.
By above prop., lim → λ (𝑡) ⋅ 𝑉 and lim → λ (𝑡) ⋅ 𝑊 are direct sums 
of the same stables.
Thus:

Recall: GIT equiv. for s.s. objects 𝑉~𝑊:

Prop.
s.s. 𝑉 ~ 𝑊 iff 𝑉 and 𝑊 have the same graded pieces in Jordan-Holder 
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s.s. 𝑉 ~ 𝑊 iff 𝑉 and 𝑊 have the same graded pieces in Jordan-Holder 
filtration.  (Called S-equiv.)

Finite dim. algebra

Take a decomposition 𝐴 = 𝑃
⊕

⊕ ⋯ ⊕ 𝑃
⊕

.

Take 𝑃 = 𝑃 ⊕ ⋯ ⊕ 𝑃 .
𝐵 = End (𝑃) is a basic alg. Morita equiv. to 𝐴 (Ch. 3), 
that is,
𝐵/rad(𝐵) ≅ ℂ as algebra.
Define ℂ -bimod
𝑀 ≔ rad(𝐵)/rad(𝐵)
which corr. to a quiver 𝑄:
vertex set is the standard basis of ℂ
(which are indecomp. proj. mod. 𝑃 of 𝐴);
arrow set is a basis of 𝑒 ⋅ 𝑀 ⋅ 𝑒 .

Has surjective ℂ𝑄 → 𝐵 whose kernel is
admissible ideal 𝐽.

Corr. to quiver 𝑄 with relations:

𝐴-mod can be understood as subcat. of ℂ𝑄-mod

the functor 𝐻𝑜𝑚 (−, 𝑀) restricted to cat. of proj. 𝐴-mod. 
corr. to ℂ𝑄-mod.  (Morita equiv.)
𝑀 = 𝐻𝑜𝑚 (𝐴, 𝑀) is reconstructed from this functor.

(that satisfies the relations):

Vertices of 𝑄 corr. to simple 𝐴-mod.
𝐾 (𝐴-mod) is the free Abel. group gen. by 𝑄
(by Jordan-Holder thm.).
Char. 𝜃 for 𝐴-mod is element of ℤ .  

Using the above identification, get:

Thm. 4.1.
The GIT quotient 𝑀 (𝛼, 𝜃) gives the moduli space of 𝜃-semistable 𝐴-mod. 
of dim. 𝛼.  The points correspond to 𝑆-equiv. classes of 𝜃-semistable 𝐴-
mod.

Prop. 4.3.
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Prop. 4.3.
𝑀 (𝛼, 𝜃) is projective.

Proof.
𝑀 (𝛼, 𝜃) is projective over 𝑉 (𝛼)//𝐺𝐿(𝛼) (character zero case).
For character zero,
all points are semi-stable.
For any point, the orbit closure must contain a closed orbit.
(If 𝐺 ⋅ 𝑝 not closed, has 𝑝 ∈ 𝐺 ⋅ 𝑝 − 𝐺 ⋅ 𝑝.  Keep on doing this until getting 
a point with closed orbit.)
By prop. above, has closed orbit iff direct sum of stables, which are 
simple objects.
Thus the orbit closure must contain a semi-simple object, which is the 
unique direct sum of simple rep. over the vertices (in given 𝛼).
Thus all points in 𝑉 (𝛼) are equiv. (when 𝜃 = 0) and hence
𝑉 (𝛼)//𝐺𝐿(𝛼) is just a point.

Moduli space

It is pretty tautological that 𝑀 (𝛼, 𝜃) is a course moduli, namely
for a family of 𝜃-s.stable 𝐴-mod over 𝐵, has a canonical map
𝐵 → 𝑀 (𝛼, 𝜃)
(choose trivialization of the vector bundles at vertices, and then have 
map to 𝑅𝑒𝑝 ).

Prop. 5.3.
If 𝛼 is indivisible, then 𝑀 (𝛼, 𝜃) is a fine mod. of 𝜃-stable 𝐴-mod.

Proof.
Want a taut. bundle over 𝑀 (𝛼, 𝜃) whose fiber over [𝑉] is 𝑉 (equipped 
with 𝐴 → 𝐸𝑛𝑑(𝑉)).
Take Rep × 𝑉 for each vertex 𝑥, and take quotient by 𝐺𝐿 .
(Just usual quotient for stable points.)
TROUBLE:
Δ ⊂ 𝐺𝐿 acts trivially on Rep , but acts on 𝑉 by scaling!
Then (Rep × 𝑉 )/𝐺𝐿 → Rep /𝐺𝐿 is problematic!
Remedy:
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Remedy:
Modify the 𝐺𝐿 -action on the second factor such that
Δ acts trivially.
Take (𝑔 ⋅ 𝑝, 𝜒(𝑔) ⋅ 𝑔 ⋅ 𝑣) ∈ Rep × 𝑉
where 𝜒: 𝐺 → ℂ× such that 𝜒(𝑐 ⋅ Id ) = 𝑐 .
Character takes the form

𝜒(−) = det(−)

 

.

Then need ∑ 𝜓 𝛼(𝑥) 
  = −1

which exists iff 𝛼 is indivisible.
Then done.

Rmk. 5.4.
For 𝛼 indivisible, 𝑀 (𝛼, 𝜃) = 𝑀 (𝛼, 𝜃) for generic 𝜃.
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