Affine group action

G: aff. alg. gp. $(ex. GL. \{A: \det A \neq 0\} = \{(A, y): y \det A = 1\}.)$ X: aff. var. G acts on X. $Action G \times X \to X \text{ gives homo.}$ $\mu^*: \mathbb{C}[X] \to \mathbb{C}[G] \otimes \mathbb{C}[X].$ $\text{Let } \mu^*(f) = \sum h_i \otimes f_i. \text{ Then by def.}$ $(g \cdot f) = \sum h_i(g^{-1}) f_i.$

Lem. 9.1.13. $W \subset \mathbb{C}[X]$ f.d. subspace. $G \cdot W \coloneqq \text{Span}\{g \cdot w\}$ is f.d. *G*-rep.

Proof.

 $\mu^*(W)$ is f.d. and hence contained in some f.d. $A \otimes B$. Then $G \cdot W \subset B$ and hence f.d.

Prop. 9.1.15: Put *X* in a rep.

Have rep. *V* and *G*-equiv. closed immersion (iso. to its image which is a subvar.) $\phi: X \rightarrow V$.

Proof.

Key: take $W \subset \mathbb{C}[X]$ f.d. subspace that gen. $\mathbb{C}[X]$. $V \coloneqq (G \cdot W)^*$. Then $\mathbb{C}[V] = \mathbb{C}[z_1, \dots, z_n]$ where z_1, \dots, z_n is a basis of $G \cdot W \subset \mathbb{C}[X]$. Have $\mathbb{C}[V] = \mathbb{C}[z_1, \dots, z_n] \to \mathbb{C}[X]$ which is surj. since $G \cdot W$ gen. $\mathbb{C}[X]$. This gives $X \to V$ which is *G*-equiv.

Apply to X = G, get *G*-equiv. $\phi: G \subset V$.

 $G \rightarrow GL(V)$ is injective. (If acts as *Id* on *V*, then *Id* on *G*.) Thus aff. alg. group must be lin.

<u>Alg. framework for integration</u> Def. 9.2.1. Reynolds operator:

 $R: \mathbb{C}[G] \xrightarrow{\lim} \mathbb{C} \text{ with}$ R(1) = 1; $R(h \cdot f) = R(f) \forall h, f.$ **Linear reductive** if such *R* exists.

(Recall `reductive' means complexification of compact Lie group.)

Main example: $GL(n, \mathbb{C})$. $R(f) \coloneqq \int_{U(n)} f \Big|_{U(n)} d\mu$. $R(h \cdot f) = R(f)$ for $h \in U(n)$. $U(n) \subset GL(n, \mathbb{C})$ is Zariski dense: $(\mathbb{S}^1)^n \subset (\mathbb{C}^{\times})^n$ is Zariski dense. (Restrict to one variable, polynomial only have finitely many roots.) Have singular value decomp. $GL = U_1 D U_2^{-1}$. Thus $U(n) = U(n) \cdot (\mathbb{S}^1)^n \cdot U(n)$ is Zariski dense. $R(h \cdot f) - R(f)$ is polynomial on $h \in GL(n, \mathbb{C})$. Thus $R(h \cdot f) = R(f)$ for $h \in U(n)$ implies for $h \in GL(n, \mathbb{C})$.

Averaging for
$$f \in \mathbb{C}[X]$$
 where *G* acts on *X*: Analog of
 $\overline{f}(x) \coloneqq \int_{K} f(h \cdot x) d\mu$.
(*f* is poly. implies invariance under *K* gives invariance under *G*.)
 $R_{X}: \mathbb{C}[X] \to \mathbb{C}[X]^{G}$ which is composition of
 $\mathbb{C}[X] \xrightarrow{\mu^{*}} \mathbb{C}[G] \otimes \mathbb{C}[X] \xrightarrow{R \otimes 1} \mathbb{C}[X]$.

The following is direct verification: **Lem. 9.2.4.**

- 1. $R_X(\mathbb{C}[X]) \subset \mathbb{C}[X]^G$. 2. $R_X(f) = f$ for $f \in \mathbb{C}[X]^G$.
- 3. R_X is $\mathbb{C}[X]^G$ -mod. homo.

4. For $W \subset \mathbb{C}[X]$ G inv., $R_X(W) = W^G$.

Aff. reductive implies semi-simple

(A more alg. way avoiding inv. metric) **Lem. 9.2.9.** Restriction of pairing to $V^G \times (V^*)^G \to \mathbb{C}$ is non-deg. (Note that $(V^*)^G$ is different from $(V^G)^*$.)

Proof.

For $v \neq 0 \in V^G \subset V$, take $f \in V^*$ with f(v) = 1. $R_V(f) \in (V^*)^G$ and $R_V(f)(v) = 1$ since v is G-inv. (Van. ideal of $\{v\}$ is G-inv.)

Prop. 9.2.11.

Every rep. of aff. reductive group is a direct sum of irred.

Proof.

Let $W \subset V$ irred. subrep. Natural pairing Hom $(V, W) \times$ Hom $(W, V) \rightarrow \mathbb{C}$ given by $tr_W(\psi\phi)$. Restrict to non-deg. Hom $(V, W)^G \times$ Hom $(W, V)^G \rightarrow \mathbb{C}$ by Lem. 9.2.9. Let $\iota \in$ Hom $(W, V)^G$ be the inclusion. There is $\psi \in$ Hom $(V, W)^G$ such that $tr(\psi\iota) \neq 0$. $0 \neq \psi\iota \in$ Hom $(W, W)^G = \mathbb{C} \cdot Id$ (Schurs). Then $V = W \bigoplus$ Ker (ψ) .

Quotient is finitely generated

First consider *G*-rep. X = V. $V//G := \text{MaxSpec}(\mathbb{C}[V]^G)$ with Zar. top. $f \in \mathbb{C}[V]^G$ is called an "invariant".

Thm. 9.2.6. Hilbert's Finiteness Theorem.

 $\mathbb{C}[V]^G$ is finitely generated as alg.

Proof.

Since *G* acts linearly, $\mathbb{C}[V]_d$ is preserved by *G*, and hence $R_V(\mathbb{C}[V]_d) = \mathbb{C}[V]_d^G$. Since $\mathbb{C}[V]$ is Noetherian, any ideal is fin. gen. Take $\mathfrak{m} \coloneqq \bigoplus_d \mathbb{C}[V]_d^G \subset \mathbb{C}[V]^G$ max ideal. $I \coloneqq \mathbb{C}[V] \cdot \mathfrak{m} \subset \mathbb{C}[V]$ ideal. Let $f_1 \dots f_r \in \mathfrak{m}$ homog. gen. of *I*. $f_1 \dots f_r$ gen. ideal $\mathfrak{m} \subset \mathbb{C}[V]^G$: Any $h = \sum a_i f_i$ for $a_i \in \mathbb{C}[V]$. $h = R_V(h) = \sum R_V(a_i) f_i$ where $R_V(a_i) \in \mathbb{C}[V]^G$. By the following Prop. 9.2.5,

 $f_1 \dots f_r$ gen. $\mathbb{C}[V]^G$.

Cor. 9.2.8.

For aff. *X* acted by *G*, $\mathbb{C}[X]^G$ is finitely generated.

Proof.

Put $X \subset V$ equivariantly by Prop. 9.1.15. Thus $\mathbb{C}[X]^G = \iota^*(\mathbb{C}[V]^G)$ is fin. gen.

Prop. 9.2.5.

R graded. comm. alg.

$$\mathfrak{m} = \bigoplus_{d \ge 1} R_d$$

If homog. $f_1 \dots f_r \in \mathfrak{m}$ gen. \mathfrak{m} as ideal, then $f_1 \dots f_r$ gen. R. as alg. (meaning only taking sums and products of f_i .)

Proof.

Any $h \in R_d$ can be generated: Induction on d.

$$h = \sum a_i f_i \text{ for } a_i \in R.$$

 f_i homog. implies can take a_i homog. with lower deg.

 a_i gen. by f_i by induction.

<u>GIT quotient for affine case with trivial character:</u>

 $X//G \coloneqq \operatorname{MaxSpec}(\mathbb{C}[X]^G).$ Have $\pi: X \to X//G$ from $\mathbb{C}[X]^G \to \mathbb{C}[X].$

Main:

 $\pi^{-1}({\pi(x)})$ is a union of the orbits whose closure intersect with $\overline{G \cdot x}$.

Lem. 9.3.1. For closed inv. $A_1, A_2 \subset X$, $\overline{\pi(A_1)} \cap \overline{\pi(A_2)} = \overline{\pi(A_1 \cap A_2)}$.

Proof.

 $\overline{\frac{\pi(A_i)}{\pi(A_1)}} \operatorname{corr.} \operatorname{to} J_i \cap \mathbb{C}[X]^G = R_X(J_i) \text{ where } J_i \text{ is van. ideal of } A_i.$ $\overline{\pi(A_1)} \cap \overline{\pi(A_2)} \text{ corr. to}$ $R_X(J_1) + R_X(J_2) = R_X(J_1 + J_2) = (J_1 + J_2) \cap \mathbb{C}[X]^G$ which corr. to $\overline{\pi(A_1 \cap A_2)}.$

Lem. 9.3.2.

 $\pi: X \to X//G$ is surj. For closed inv. $A \subset X$, $\pi(A)$ is closed. Thus Lem. 9.3.1 simplifies to $\pi(A_1) \cap \pi(A_2) = \pi(A_1 \cap A_2)$ for closed inv. $A_1, A_2 \subset X$.

Proof.

Surjective:

For max. ideal
$$I \subset \mathbb{C}[X]^G$$
, take ideal $J = \mathbb{C}[X] \cdot I \subset \mathbb{C}[X]$.
 $J \cap \mathbb{C}[X]^G = I$:
For $h = \sum a_i f_i$ in LHS,
 $h = R_X(h) = \sum R_X(a_i) f_i \in I$.

J is contained in some max. ideal \mathfrak{m} , and $\mathfrak{m} \cap \mathbb{C}[X]^G = I$.

 $\pi(A)$ is closed: Supposed not closed. Have $y \in \overline{\pi(A)} - \pi(A)$. $B \coloneqq \pi^{-1}(y) \neq \emptyset$ is closed inv.

$$y \in \overline{\pi(A)} \cap \overline{\pi(B)} = \overline{\pi(A \cap B)} = \emptyset$$
!

Prop.

 $G \cdot x$ and $G \cdot x'$ sit in the same fiber of π iff $\overline{G \cdot x} \cap \overline{G \cdot x'} \neq \emptyset$.

Proof.

First, fiber of π is closed, and hence contains a whole orbit closure. $\pi(\overline{G \cdot x}) \cap \pi(\overline{G \cdot x'}) = \pi(\overline{G \cdot x} \cap \overline{G \cdot x'}).$

Thus whether the two image points are the same are determined by whether $\overline{G \cdot x} \cap \overline{G \cdot x'} \neq \emptyset$ or not.

Cor. 9.3.3.

 $\pi^{-1}(y)$ contains a unique closed orbit.

Proof.

Exist:

For $z \in \pi^{-1}(y)$, if $\overline{G \cdot z} \neq G \cdot z$, take $z_1 \in \overline{G \cdot z} - G \cdot z \subset \pi^{-1}(y).$ Keep on doing this, get $Z_1, Z_2 \dots$ and $\overline{G \cdot z_1} \subset \overline{G \cdot z}, \qquad \overline{G \cdot z_2} \subset \overline{G \cdot z_1} \dots$ Since Noetherian, gradually stabilizes and $\overline{G \cdot z_k} = G \cdot z_k.$

Unique:

Suppose have two distinct closed $G \cdot z_i$ for i = 1,2. By Lem. 9.3.2, $y \in \pi(G \cdot z_1) \cap \pi(G \cdot z_2) = \pi(G \cdot z_1 \cap G \cdot z_2) = \emptyset$!

For linear *V*//*G*, **Hilbert nullcone**: $N \coloneqq \pi^{-1}\{\pi(0)\}.$ $N = \{v: \overline{G \cdot v} \ni 0\}$: immediate from the above prop.

GIT quotient for general case

General *X* quasi-proj: *L*: equivariant ample line bundle over *X*. $R = \bigoplus_{n \ge 0} \Gamma(X, L^{\otimes n}).$ $X^{ss} \coloneqq X - \operatorname{Zero}(R^G_+) = \bigcup_s U_s$ where $U_s = \{s \ne 0\}$ for $s \in \Gamma(X, L^{\otimes n > 0})^G$. (ss stands for "semi-stable".) $X//_L G$ is glued from $U_s//_L G = \operatorname{Spec}(A^G_s)$ where $U_s = \operatorname{Spec}(A_s)$. When $X = \operatorname{Proj} R$, $X//G = \operatorname{Proj} R^G$. $\pi: X^{ss} \to X//G$ is the glued version of the affine case before. Still have Lem. 9.3.2: $A \subset X//G$ closed iff $A \subset X^{ss}$ closed.

 $X^s \coloneqq \{x \in X^{ss}: G \cdot x \text{ is closed in } X^{ss} \text{ and finite stabilizer}\}$ is open. $\pi|_{X^s}$ coincides with set-theoretic quotient.

ex. $X = \mathbb{P}(V)$ with trivial char.: L = O(1) with trivial action. $R = \mathbb{C}[V]$; $Zero(R^G_+) = N$; $V^{SS} = V - N$; $X^{SS} = \mathbb{P}(V^{SS})$; $X//G = \operatorname{Proj} R^G = \mathbb{P}(V//G)$. π : $X^{SS} \to X//G$ descended from $V^{SS} \to V//G$.

<u>GIT quotient for linear action with character:</u> (Section 2 of [King])

 $f \in \mathbb{C}[V], \chi: G \xrightarrow{\text{homo}} \mathbb{C}^{\times} \text{ such that}$ $g \cdot f = \chi(g) f \quad \forall g.$ $f \text{ is called a semi-invariant of weight } \chi.$

 χ can be understood as *G*-equiv. trivial line bundle $L^{-1} = V \times \mathbb{C}, \qquad g \cdot (x, z) = (g \cdot x, z \cdot \chi^{-1}(g)).$

deg = *n* invariant section (thought as $L^{\otimes n}$): $f(x)z^n \in \mathbb{C}[V \times \mathbb{C}]$ where $f(g \cdot x) = \chi^n(g) f(x)$.

Def.

$$V//_{\chi}G \coloneqq \operatorname{Proj}\left(\bigoplus_{n\geq 0} \mathbb{C}[V]^{G,\chi^n}\right)$$

which is proj. over $V//G = \operatorname{Spec}(\mathbb{C}[V]^G)$.

Geom. description:

 $V//_{\chi}G = V^{\chi-ss}/\sim$ where $x\sim x'$ iff $\overline{G \cdot x} \cap \overline{G \cdot x'} \neq \emptyset$ (where the closure is taken in $V^{\chi-ss}$) iff $\overline{G \cdot (x,1)} \cap \overline{G \cdot (x',1)} \neq \emptyset$ (where closure is taken in $V \times \mathbb{C}$)

Semi-stable $x \in V$: $\exists f \in \mathbb{C}[X]^{G,\chi^n}$ for $n \ge 1$ such that $f(x) \ne 0$. (Orbit closure of $(x, 1) \in V \times \mathbb{C}$ is disjoint from zero-section.)

Stable: furthermore, $\operatorname{Stab}_{(x,1)}/\operatorname{Ker}$ is finite (iff dim $G \cdot x = \dim G/\operatorname{Ker}$) and G-action on $\{u \in V : f(u) \neq 0\}$ for the f above has closed orbits. $(G \cdot (x, 1) \text{ is closed in } V \times \mathbb{C} \text{ iff } G \cdot x \text{ is closed in } V^{\chi-ss})$ (Ker is the kernel of the linear G-action on V. Assume $\chi(\operatorname{Ker}) = 1$.)

Reason for geom. description: disjoint closed *G*-sets can be distinguished by *G*-inv. functions.

Hilbert-Mumford numerical criterion:

 $x \text{ is } \mathbf{s.s. iff for all one-parameter subgroups } \lambda \subset G,$ $\lim_{\substack{t \to 0 \\ \text{iff}} \lambda(t) \cdot (x, 1) \notin V \times \{0\}$ $\lim_{\substack{t \to 0 \\ \text{iff}} \lambda(t) \cdot x \text{ exists } \Rightarrow (\chi, \lambda) \ge 0.$ $\mathbf{s.s:}$ $(x, \lambda) = 0$ $(x, \lambda) = 0$

$$\inf_{\substack{t \to 0 \\ (\chi, \lambda) \text{ is defined by}}} \lambda(t) \cdot x \text{ exists } \Rightarrow (\chi, \lambda) > 0 \text{ or } \lambda \subset \Delta.$$
$$(\chi, \lambda) \text{ is defined by}$$
$$\chi(\lambda(t)) = t^{(\chi, \lambda)} \colon \mathbb{C}^{\times} \to \mathbb{C}^{\times}. \ \lambda(t) \cdot (x, 1) = (\lambda(t) \cdot x, \chi(\lambda(t))^{-1}).$$

Note: for *x* s.s., $G \cdot (x, 1)$ is closed iff $\lim_{t \to 0} \lambda(t) \cdot x \text{ exists and } (\chi, \lambda) = 0 \Rightarrow \lim_{t \to 0} \lambda(t) \cdot x \in G \cdot x.$ In such case $\lim_{t \to 0} \lambda(t) \cdot x$ is fixed by λ . If further *x* has finite stabilizer, so does $\lim_{t \to 0} \lambda(t) \cdot x$. Then $\lambda \subset \Delta$.

For $x, y \in V^{\chi-ss}$, $x \sim y$ iff $\exists \lambda_1, \lambda_2$ with $\chi(\lambda_1) = \chi(\lambda_2) = 0$ such that $\lim_{t\to 0} \lambda_1(t) \cdot x$ and $\lim_{t\to 0} \lambda_2(t) \cdot y$ belong to the same closed *G*-orbit.

Principle:

If a closed *G*-set *A* intersects $\overline{G \cdot x}$, then *A* intersects $\overline{\lambda \cdot x}$ for some one parameter λ .

For the last statement for $x \sim y$, $\overline{G \cdot (x, 1)} \cap \overline{G \cdot (y, 1)}$ is a closed *G*-set which must contains a closed *G*-orbit.

 χ -semi-invariants form a subspace $\mathbb{C}[X]_{\chi}$. Form a ring $SI \coloneqq \bigoplus_{\chi} \mathbb{C}[X]_{\chi}$.

Lem. 9.4.1. $SI = \mathbb{C}[V]^{[G,G]}$. (*G* reductive, [*G*, *G*] gen. by $ghg^{-1}h^{-1}$.)

Quotient for quiver representations $\theta \in (\mathbb{Z}^{V_0})^*$. (Called weight.) Rep. *V* is θ -s.s. if $\theta(\overrightarrow{\dim V}) = 0$ and $\theta(\overrightarrow{\dim V'}) \ge 0$ for $V' \subset V$.

 θ -stable if further $\theta\left(\overrightarrow{\dim V'}\right) = 0 \Rightarrow V' = V \text{ or } 0.$

Want to identify with GIT stability. Define

$$\chi_{\theta}: GL(\overrightarrow{\dim V}) \to \mathbb{C}^{\times}, \chi_{\theta}(g) = \prod_{v \in Q_0} \det(g_v)^{\theta_v}$$

Note: $\Delta = \mathbb{C}^{\times} \in GL(\overrightarrow{\dim V})$ acts trivially.
 $\chi_{\theta}(c \cdot I) = c^{\left(\theta, \overrightarrow{\dim V}\right)} = 1.$

One parameter $\lambda: \mathbb{C}^{\times} \to GL(\overrightarrow{\dim V})$ that has $\lim_{t\to 0} \lambda(t) \cdot V$ gives a filtration:

Weight decomposition

 $n \in \mathbb{Z}$

$$\begin{split} V_{\chi} &= \bigoplus_{n \in \mathbb{Z}} V_{\chi}^{(n)} \\ \text{where } \lambda(t) \text{ acts on } V_{\chi}^{(n)} \text{ as multi. by } t^{n}. \\ \text{Arrow: matrix } V_{a} &= \left(V_{a}^{(m,n)} : V_{t_{a}}^{(n)} \to V_{h_{a}}^{(m)} \right). \\ \lambda(t) \text{ acts on } V_{a}^{(m,n)} \text{ as multi. by } t^{m-n}. \\ \text{Has } \lim_{t \to 0} \inf V_{a}^{(m,n)} &= 0 \text{ for } m < n, \text{ that is,} \\ V_{a} \text{ preserves } V_{\chi}^{\geq n} \quad \forall n, \text{ meaning} \\ V^{\geq n} \text{ forms subrepresentations.} \\ \cdots \supset V^{\geq n} \supset V^{\geq n+1} \supset \cdots \\ \lim_{t \to 0} \lambda(t) \cdot V &= \bigoplus V^{\geq n} / V^{\geq n+1}. \end{split}$$

Converse: a filtration always arise in this way (although such λ is not unique).

The filtration is trivial (meaning $V^{\geq n}$ are either 0 or V) implies $\lambda(t)$ acts on V_x as $t^n \cdot Id$ (and same n for all x) meaning $\lambda \subset \Delta$.

Prop. *V* is GIT χ_{θ} -semistable iff θ -semistable. (Similar for stable.)

Proof.

Recall the numerical criterion: χ_{θ} -semistable iff $\lim_{t \to 0} \lambda(t) \cdot x \text{ exists} \Rightarrow (\chi_{\theta}, \lambda) \ge 0.$

 $\langle \chi_{\theta}, \lambda \rangle$ (*t*-power of $\chi_{\theta}(\lambda(t)): \mathbb{C}^{\times} \to \mathbb{C}^{\times}$) in terms of filtration $V^{\geq n}$:

$$\begin{aligned} \langle \chi_{\theta}, \lambda \rangle &= \sum_{x} \theta(x) \sum_{n} n \dim V_{x}^{(n)} = \sum_{n} n \ \theta\left(\overline{\dim V^{\geq n}/V^{\geq n+1}}\right) \\ &= \sum_{n} \theta\left(\overline{\dim V^{\geq n}}\right) \\ &\text{a finite sum since } \theta\left(\overline{\dim V}\right) = 0 \ (\text{and } V^{\geq n} = V \ \forall n \ll 0). \end{aligned}$$

$$\begin{array}{l} \theta \text{-s.s.:} \\ \theta \left(\overrightarrow{\dim V'} \right) \geq 0 \; \forall V' \subset V. \end{array}$$

$$\begin{array}{l} \theta \text{-s.s.} \Rightarrow \text{GIT } \chi_{\theta} \text{-s.s.:} \\ \langle \chi_{\theta}, \lambda \rangle = \sum_{n} \theta \left(\overrightarrow{\dim V^{\geq n}} \right) \geq 0. \\ \theta \text{-stable} \Rightarrow \text{GIT } \chi_{\theta} \text{-stable:} \\ \langle \chi_{\theta}, \lambda \rangle = 0 \\ \Rightarrow \theta \left(\overrightarrow{\dim V^{\geq n}} \right) = 0 \ \forall n \\ \Rightarrow V^{\geq n} = V \text{ or } 0 \ \forall n \\ \Rightarrow \lambda \in \Delta. \end{array}$$

GIT χ_{θ} -s.s. $\Rightarrow \theta$ -s.s.: For $V' \subset V$, take the filtration $V \supset V' \supset 0$ and a corresponding one parameter λ . GIT s.s. implies $\langle \chi_{\theta}, \lambda \rangle = \theta \left(\overline{\dim V} \right) + \theta \left(\overline{\dim V'} \right) = \theta \left(\overline{\dim V'} \right) \ge 0.$ GIT χ_{θ} -stable $\Rightarrow \theta$ -stable: If $\theta \left(\overline{\dim V'} \right) = 0$, $\langle \chi_{\theta}, \lambda \rangle = 0$ and hence $\lambda \subset \Delta$. Thus the filtration is trivial and V' = 0 or V.

Recall: for *V* GIT s.s.,
$$GL \cdot V$$
 is closed iff

$$\lim_{t \to 0} \lambda(t) \cdot V \text{ exists and } (\chi, \lambda) = 0 \Rightarrow \lim_{t \to 0} \lambda(t) \cdot V \in G \cdot V.$$
 $(\chi, \lambda) = \sum_{n} \theta\left(\overline{\dim V^{\geq n}}\right) = 0$ iff
each $V^{\geq n}$ has $\theta = 0$, and hence s.s.
(Sub-rep. of $V^{\geq n}$ is sub-rep. of *V* and hence has $\theta \geq 0.$)
V is isom. to

$$\lim_{t \to 0} \lambda(t) \cdot V = \bigoplus_{n} V^{\geq n}/V^{\geq n+1}.$$
Jordan-Holder filtration (for Abel. cat. of s.s. rep.) exists,
where the graded pieces
 $V^{\geq n}/V^{\geq n+1}$ are simple s.stable objects.
Simple s.s. \Leftrightarrow stable:
 \rightarrow)
If $V' \subset V$ has $\theta\left(\overline{\dim V'}\right) = 0$, then *V'* is also s.s. and hence = *V* or 0
since simple.
 \leftarrow)
For $V' \subset V$ s.s., $\theta\left(\overline{\dim V'}\right) = 0$ and by stable $V' = V$ or 0.
Thus we obtain:

Prop.

 $GL \cdot V$ is closed in s.s. iff V is direct sum of stables.

(Direct sum of stables have direct sum of $c \cdot Id$ as stabilizers.)

Recall: GIT equiv. for s.s. objects $V \sim W$: $\exists \lambda_1, \lambda_2 \text{ with } \chi(\lambda_1) = \chi(\lambda_2) = 0 \text{ such that}$ $\lim_{t \to 0} \lambda_1(t) \cdot V \text{ and } \lim_{t \to 0} \lambda_2(t) \cdot W \text{ belong to the same closed } G$ orbit. By above prop., $\lim_{t \to 0} \lambda_1(t) \cdot V$ and $\lim_{t \to 0} \lambda_2(t) \cdot W$ are direct sums
of the same stables. Thus: **Prop.** $_{GIT}$ s.s. $V \stackrel{GIT}{\sim} W$ iff V and W have the same graded pieces in Jordan-Holder filtration. (Called S-equiv.)

<u>Finite dim. algebra</u>

Corr. to quiver Q with relations: Take a decomposition $A = P_1^{\bigoplus m_1} \bigoplus \dots \bigoplus P_n^{\bigoplus m_n}$. Take $P = P_1 \bigoplus \dots \bigoplus P_n$. $B = \operatorname{End}_A(P)^{op}$ is a basic alg. Morita equiv. to A (Ch. 3), that is, $B/\operatorname{rad}(B) \cong \mathbb{C}^n$ as algebra. Define \mathbb{C}^n -bimod $M \coloneqq \operatorname{rad}(B)/\operatorname{rad}(B)^2$ which corr. to a quiver Q: vertex set is the standard basis of \mathbb{C}^n (which are indecomp. proj. mod. P_i of A); arrow set is a basis of $e_i \cdot M \cdot e_j$. Has surjective $\mathbb{C}Q \to B$ whose kernel is admissible ideal J.

A-mod can be understood as subcat. of $\mathbb{C}Q$ -mod (that satisfies the relations):

the functor $Hom_A(-, M)$ restricted to cat. of proj. *A*-mod. corr. to $\mathbb{C}Q$ -mod. (Morita equiv.) $M = Hom_A(A, M)$ is reconstructed from this functor.

Vertices of Q corr. to simple A-mod. $K_0(A$ -mod) is the free Abel. group gen. by Q_0 (by Jordan-Holder thm.). Char. θ for A-mod is element of \mathbb{Z}^{Q_0} .

Using the above identification, get:

Thm. 4.1.

The GIT quotient $M_A(\alpha, \theta)$ gives the moduli space of θ -semistable A-mod. of dim. α . The points correspond to S-equiv. classes of θ -semistable A-mod.

Prop. 4.3.

 $M_A(\alpha, \theta)$ is projective.

Proof.

 $M_A(\alpha, \theta)$ is projective over $V_A(\alpha)//GL(\alpha)$ (character zero case).

For character zero,

all points are semi-stable.

For any point, the orbit closure must contain a closed orbit.

(If $G \cdot p$ not closed, has $p' \in \overline{G \cdot p} - G \cdot p$. Keep on doing this until getting a point with closed orbit.)

By prop. above, has closed orbit iff direct sum of stables, which are simple objects.

Thus the orbit closure must contain a semi-simple object, which is the unique direct sum of simple rep. over the vertices (in given α).

Thus all points in $V_A(\alpha)$ are equiv. (when $\theta = 0$) and hence $V_A(\alpha)//GL(\alpha)$ is just a point.

<u>Moduli space</u>

It is pretty tautological that $M_A(\alpha, \theta)$ is a course moduli, namely for a family of θ -s.stable A-mod over B, has a canonical map $B \to M_A(\alpha, \theta)$ (choose trivialization of the vector bundles at vertices, and then h

(choose trivialization of the vector bundles at vertices, and then have map to Rep_{α}).

Prop. 5.3.

If α is indivisible, then $M_A^s(\alpha, \theta)$ is a fine mod. of θ -stable *A*-mod.

Proof.

Want a taut. bundle over $M_A^s(\alpha, \theta)$ whose fiber over [V] is V (equipped with $A \rightarrow End(V)$).

Take $\operatorname{Rep}_{\alpha}^{s} \times V_{x}$ for each vertex x, and take quotient by GL_{α} . (Just usual quotient for stable points.) TROUBLE: $\Delta \subset GL_{\alpha}$ acts trivially on $\operatorname{Rep}_{\alpha}^{s}$, but acts on V_{x} by scaling! Then $(\operatorname{Rep}_{\alpha}^{s} \times V_{x})/GL_{\alpha} \to \operatorname{Rep}_{\alpha}^{s}/GL_{\alpha}$ is problematic! Remedy:

Modify the GL_{α} -action on the second factor such that Δ acts trivially. Take $(g \cdot p, \chi(g) \cdot g \cdot v) \in \operatorname{Rep}_{\alpha}^{s} \times V_{\chi}$ where $\chi: G \to \mathbb{C}^{\times}$ such that $\chi(c \cdot \operatorname{Id}_{\chi}) = c^{-1}$. Character takes the form

$$\chi(-) = \prod_{x} \det(-)^{\psi_x}$$

Then need $\sum \psi_x \alpha(x) = -1$ which exists iff α is indivisible. Then done.

Rmk. 5.4.

For α indivisible, $M_A(\alpha, \theta) = M_A^s(\alpha, \theta)$ for generic θ .