Section 9 and [King]

Affine group action

G : aff. alg. gp.
(ex. $G L$. $\{A: \operatorname{det} A \neq 0\}=\{(A, y): y \operatorname{det} A=1\}$.)
X : aff. var.
G acts on X.
Action $G \times X \rightarrow X$ gives homo.
$\mu^{*}: \mathbb{C}[X] \rightarrow \mathbb{C}[G] \otimes \mathbb{C}[X]$.
Let $\mu^{*}(f)=\sum h_{i} \otimes f_{i}$. Then by def.

$$
(g \cdot f)=\sum h_{i}\left(g^{-1}\right) f_{i}
$$

Lem. 9.1.13.

$W \subset \mathbb{C}[X]$ f.d. subspace.
$G \cdot W:=\operatorname{Span}\{g \cdot w\}$ is f.d. G-rep.

Proof.

$\mu^{*}(W)$ is f.d. and hence contained in some f.d. $A \otimes B$.
Then $G \cdot W \subset B$ and hence f.d.

Prop. 9.1.15: Put X in a rep.

Have rep. V and G-equiv. closed immersion (iso. to its image which is a subvar.)
$\phi: X \rightarrow V$.

Proof.

Key: take $W \subset \mathbb{C}[X]$ f.d. subspace that gen. $\mathbb{C}[X]$.
$V:=(G \cdot W)^{*}$.
Then $\mathbb{C}[V]=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$
where z_{1}, \ldots, z_{n} is a basis of $G \cdot W \subset \mathbb{C}[X]$.
Have $\mathbb{C}[V]=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] \rightarrow \mathbb{C}[X]$ which is surj. since $G \cdot W$ gen. $\mathbb{C}[X]$.
This gives $X \rightarrow V$ which is G-equiv.
Apply to $X=G$, get G-equiv. $\phi: G \subset V$.
$G \rightarrow G L(V)$ is injective. (If acts as Id on V, then $I d$ on G.)
Thus aff. alg. group must be lin.

Alg. framework for integration

Def. 9.2.1. Reynolds operator:

$R: \mathbb{C}[G] \xrightarrow{\operatorname{lin}} \mathbb{C}$ with
$R(1)=1$;
$R(h \cdot f)=R(f) \forall h, f$.
Linear reductive if such R exists.
(Recall `reductive' means complexification of compact Lie group.)
Main example: $G L(n, \mathbb{C})$.
$R(f):=\left.\int_{U(n)} f\right|_{U(n)} d \mu$.
$R(h \cdot f)=R(f)$ for $h \in U(n)$.
$U(n) \subset G L(n, \mathbb{C})$ is Zariski dense:
$\left(\mathbb{S}^{1}\right)^{n} \subset\left(\mathbb{C}^{\times}\right)^{n}$ is Zariski dense.
(Restrict to one variable, polynomial only have finitely many roots.)
Have singular value decomp. $G L=U_{1} D U_{2}^{-1}$.
Thus $U(n)=U(n) \cdot\left(\mathbb{S}^{1}\right)^{n} \cdot U(n)$ is Zariski dense.
$R(h \cdot f)-R(f)$ is polynomial on $h \in G L(n, \mathbb{C})$. Thus
$R(h \cdot f)=R(f)$ for $h \in U(n)$ implies for $h \in G L(n, \mathbb{C})$.
Averaging for $f \in \mathbb{C}[X]$ where G acts on X : Analog of
$\bar{f}(x):=\int_{K} f(h \cdot x) d \mu$.
(f is poly. implies invariance under K gives invariance under G.)
$R_{X}: \mathbb{C}[X] \rightarrow \mathbb{C}[X]^{G}$ which is composition of
$\mathbb{C}[X] \xrightarrow{\mu^{*}} \mathbb{C}[G] \otimes \mathbb{C}[X] \xrightarrow{R \otimes 1} \mathbb{C}[X]$.
The following is direct verification:
Lem. 9.2.4.

1. $R_{X}(\mathbb{C}[X]) \subset \mathbb{C}[X]^{G}$.
2. $R_{X}(f)=f$ for $f \in \mathbb{C}[X]^{G}$.
3. R_{X} is $\mathbb{C}[X]^{G}$-mod. homo.
4. For $W \subset \mathbb{C}[X]$ Ginv., $R_{X}(W)=W^{G}$.

Aff. reductive implies semi-simple

(A more alg. way avoiding inv. metric)

Lem. 9.2.9.

Restriction of pairing to $V^{G} \times\left(V^{*}\right)^{G} \rightarrow \mathbb{C}$ is non-deg.
(Note that $\left(V^{*}\right)^{G}$ is different from $\left(V^{G}\right)^{*}$.)

Proof.

For $v \neq 0 \in V^{G} \subset V$, take $f \in V^{*}$ with $f(v)=1$.
$R_{V}(f) \in\left(V^{*}\right)^{G}$ and $R_{V}(f)(v)=1$ since v is G-inv.
(Van. ideal of $\{v\}$ is G-inv.)

Prop. 9.2.11.

Every rep. of aff. reductive group is a direct sum of irred.

Proof.

Let $W \subset V$ irred. subrep.
Natural pairing $\operatorname{Hom}(V, W) \times \operatorname{Hom}(W, V) \rightarrow \mathbb{C}$ given by $\operatorname{tr}_{W}(\psi \phi)$. Restrict to non-deg. $\operatorname{Hom}(V, W)^{G} \times \operatorname{Hom}(W, V)^{G} \rightarrow \mathbb{C}$ by Lem. 9.2.9.
Let $\iota \in \operatorname{Hom}(W, V)^{G}$ be the inclusion.
There is $\psi \in \operatorname{Hom}(V, W)^{G}$ such that $\operatorname{tr}(\psi \iota) \neq 0$.
$0 \neq \psi \iota \in \operatorname{Hom}(W, W)^{G}=\mathbb{C} \cdot I d$ (Schurs).
Then $V=W \oplus \operatorname{Ker}(\psi)$.

Quotient is finitely generated

First consider G-rep. $X=V$.
$V / / G:=\operatorname{MaxSpec}\left(\mathbb{C}[V]^{G}\right)$ with Zar. top.
$f \in \mathbb{C}[V]^{G}$ is called an "invariant".

Thm. 9.2.6. Hilbert's Finiteness Theorem.

$\mathbb{C}[V]^{G}$ is finitely generated as alg.

Proof.

Since G acts linearly,
$\mathbb{C}[V]_{d}$ is preserved by G, and hence $R_{V}\left(\mathbb{C}[V]_{d}\right)=\mathbb{C}[V]_{d}{ }^{G}$.
Since $\mathbb{C}[V]$ is Noetherian, any ideal is fin. gen.
Take $\mathfrak{m}:=\oplus_{d} \mathbb{C}[V]_{d}{ }^{G} \subset \mathbb{C}[V]^{G}$ max ideal.
$I:=\mathbb{C}[V] \cdot \mathfrak{m} \subset \mathbb{C}[V]$ ideal.
Let $f_{1} \ldots f_{r} \in \mathfrak{m}$ homog. gen. of I.
$f_{1} \ldots f_{r}$ gen. ideal $\mathfrak{m} \subset \mathbb{C}[V]^{G}:$
Any $h=\sum a_{i} f_{i}$ for $a_{i} \in \mathbb{C}[V]$.

$$
h=R_{V}(h)=\sum R_{V}\left(a_{i}\right) f_{i}
$$

where $R_{V}\left(a_{i}\right) \in \mathbb{C}[V]^{G}$.
By the following Prop. 9.2.5,
$f_{1} \ldots f_{r}$ gen. $\mathbb{C}[V]^{G}$.

Cor. 9.2.8.

For aff. X acted by $G, \mathbb{C}[X]^{G}$ is finitely generated.

Proof.

Put $X \subset V$ equivariantly by Prop. 9.1.15. Thus
$\mathbb{C}[X]^{G}=\iota^{*}\left(\mathbb{C}[V]^{G}\right)$ is fin. gen.
Prop. 9.2.5.
R graded. comm. alg.
$\mathfrak{m}=\bigoplus_{d \geq 1} R_{d}$.
If homog. $f_{1} \ldots f_{r} \in \mathfrak{m}$ gen. \mathfrak{m} as ideal, then
$f_{1} \ldots f_{r}$ gen. R. as alg. (meaning only taking sums and products of f_{i}.)

Proof.

Any $h \in R_{d}$ can be generated:
Induction on d.
$h=\sum a_{i} f_{i}$ for $a_{i} \in R$.
f_{i} homog. implies can take a_{i} homog. with lower deg.
a_{i} gen. by f_{i} by induction.

GIT quotient for affine case with trivial character:

$X / / G:=\operatorname{MaxSpec}\left(\mathbb{C}[X]^{G}\right)$.
Have $\pi: X \rightarrow X / / G$ from $\mathbb{C}[X]^{G} \rightarrow \mathbb{C}[X]$.

Main:

$\pi^{-1}(\{\pi(x)\})$ is a union of the orbits whose closure intersect with $\overline{G \cdot x}$.

Lem. 9.3.1.

For closed inv. $A_{1}, A_{2} \subset X$,
$\overline{\pi\left(A_{1}\right)} \cap \overline{\pi\left(A_{2}\right)}=\overline{\pi\left(A_{1} \cap A_{2}\right)}$.

Proof.

$\overline{\pi\left(A_{i}\right)}$ corr. to $J_{i} \cap \mathbb{C}[X]^{G}=R_{X}\left(J_{i}\right)$ where J_{i} is van. ideal of A_{i}.
$\overline{\pi\left(A_{1}\right)} \cap \overline{\pi\left(A_{2}\right)}$ corr. to
$R_{X}\left(J_{1}\right)+R_{X}\left(J_{2}\right)=R_{X}\left(J_{1}+J_{2}\right)=\left(J_{1}+J_{2}\right) \cap \mathbb{C}[X]^{G}$
which corr. to $\overline{\pi\left(A_{1} \cap A_{2}\right)}$.

Lem. 9.3.2.

$\pi: X \rightarrow X / / G$ is surj.
For closed inv. $A \subset X, \pi(A)$ is closed. Thus Lem. 9.3.1 simplifies to $\pi\left(A_{1}\right) \cap \pi\left(A_{2}\right)=\pi\left(A_{1} \cap A_{2}\right)$ for closed inv. $A_{1}, A_{2} \subset X$.

Proof.

Surjective:
For max. ideal $I \subset \mathbb{C}[X]^{G}$, take ideal $J=\mathbb{C}[X] \cdot I \subset \mathbb{C}[X]$.
$J \cap \mathbb{C}[X]^{G}=I:$
For $h=\sum a_{i} f_{i}$ in LHS,

$$
h=R_{X}(h)=\sum R_{X}\left(a_{i}\right) f_{i} \in I
$$

J is contained in some max. ideal \mathfrak{m}, and $\mathfrak{m} \cap \mathbb{C}[X]^{G}=I$.
$\pi(A)$ is closed:
Supposed not closed. Have $y \in \overline{\pi(A)}-\pi(A)$.
$B:=\pi^{-1}(y) \neq \emptyset$ is closed inv.
$y \in \overline{\pi(A)} \cap \overline{\pi(B)}=\overline{\pi(A \cap B)}=\emptyset!$

Prop.

$G \cdot x$ and $G \cdot x^{\prime}$ sit in the same fiber of π iff $\overline{G \cdot x} \cap \overline{G \cdot x^{\prime}} \neq \emptyset$.

Proof.

First, fiber of π is closed, and hence contains a whole orbit closure.
$\pi(\overline{G \cdot x}) \cap \pi\left(\overline{G \cdot x^{\prime}}\right)=\pi\left(\overline{G \cdot x} \cap \overline{G \cdot x^{\prime}}\right)$.
Thus whether the two image points are the same are determined by whether $\overline{G \cdot x} \cap \overline{G \cdot x^{\prime}} \neq \emptyset$ or not.

Cor. 9.3.3.

$\pi^{-1}(y)$ contains a unique closed orbit.

Proof.

Exist:
For $z \in \pi^{-1}(y)$, if $\overline{G \cdot z} \neq G \cdot z$, take
$z_{1} \in \overline{G \cdot z}-G \cdot z \subset \pi^{-1}(y)$.
Keep on doing this, get
$z_{1}, z_{2} \ldots$
and
$\overline{G \cdot z_{1}} \subset \overline{G \cdot z}, \quad \overline{G \cdot z_{2}} \subset \overline{G \cdot z_{1}} \ldots$
Since Noetherian, gradually stabilizes and
$\overline{G \cdot z_{k}}=G \cdot z_{k}$.
Unique:
Suppose have two distinct closed $G \cdot z_{i}$ for $i=1,2$.
By Lem. 9.3.2,
$y \in \pi\left(G \cdot z_{1}\right) \cap \pi\left(G \cdot z_{2}\right)=\pi\left(G \cdot z_{1} \cap G \cdot z_{2}\right)=\emptyset!$
For linear $V / / G$, Hilbert nullcone:
$N:=\pi^{-1}\{\pi(0)\}$.
$N=\{v: \overline{G \cdot v} \ni 0\}$: immediate from the above prop.

GIT quotient for general case

General X quasi-proj:
L : equivariant ample line bundle over X.
$R=\bigoplus_{n \geq 0} \Gamma\left(X, L^{\otimes n}\right)$.
$X^{s s}:=X-\operatorname{Zero}\left(R_{+}^{G}\right)=U_{s} U_{s}$
where $U_{s}=\{s \neq 0\}$ for $s \in \Gamma\left(X, L^{\otimes n>0}\right)^{G}$.
(ss stands for "semi-stable".)
$X / /_{L} G$ is glued from $U_{S} / /_{L} G=\operatorname{Spec}\left(A_{s}^{G}\right)$ where $U_{s}=\operatorname{Spec}\left(A_{s}\right)$.
When $X=\operatorname{Proj} R$,
$X / / G=\operatorname{Proj} R^{G}$.
$\pi: X^{s s} \rightarrow X / / G$
is the glued version of the affine case before. Still have Lem. 9.3.2:
$A \subset X / / G$ closed iff $A \subset X^{S S}$ closed.
$X^{S}:=\left\{x \in X^{S S}: G \cdot x\right.$ is closed in $X^{S S}$ and finite stabilizer $\}$ is open.
$\left.\pi\right|_{X^{s}}$ coincides with set-theoretic quotient.
ex. $X=\mathbb{P}(V)$ with trivial char.:
$L=O(1)$ with trivial action.
$R=\mathbb{C}[V] ;$
$\operatorname{Zero}\left(R_{+}^{G}\right)=N$;
$V^{s s}=V-N$;
$X^{s s}=\mathbb{P}\left(V^{s s}\right) ;$
$X / / G=\operatorname{Proj} R^{G}=\mathbb{P}(V / / G)$.
$\pi: X^{s s} \rightarrow X / / G$
descended from $V^{s s} \rightarrow V / / G$.

GIT quotient for linear action with character:

(Section 2 of [King])
$f \in \mathbb{C}[V], \chi: G \xrightarrow{\text { homo }} \mathbb{C}^{\times}$such that
$g \cdot f=\chi(g) f \forall g$.
f is called a semi-invariant of weight χ.
χ can be understood as G-equiv. trivial line bundle
$L^{-1}=V \times \mathbb{C}, \quad g \cdot(x, z)=\left(g \cdot x, z \cdot \chi^{-1}(g)\right)$.
deg $=n$ invariant section (thought as $L^{\otimes n}$):
$f(x) z^{n} \in \mathbb{C}[V \times \mathbb{C}]$ where $f(g \cdot x)=\chi^{n}(g) f(x)$.
Def.
$V / \chi_{\chi} G:=\operatorname{Proj}\left(\bigoplus_{n \geq 0} \mathbb{C}[V]^{G, \chi^{n}}\right)$
which is proj. over $V / / G=\operatorname{Spec}\left(\mathbb{C}[V]^{G}\right)$.
Geom. description:
$V / \chi_{\chi} G=V^{\chi-s s} / \sim$ where
$x \sim x^{\prime}$ iff $\overline{G \cdot x} \cap \overline{G \cdot x^{\prime}} \neq \emptyset$
(where the closure is taken in $V^{\chi-s s}$)
iff $\overline{G \cdot(x, 1)} \cap \overline{G \cdot\left(x^{\prime}, 1\right)} \neq \emptyset$

(where closure is taken in $V \times \mathbb{C}$)
Semi-stable $x \in V: \exists f \in \mathbb{C}[X]^{G, x^{n}}$ for $n \geq 1$ such that $f(x) \neq 0$. (Orbit closure of $(x, 1) \in V \times \mathbb{C}$ is disjoint from zero-section.)

Stable: furthermore, $\operatorname{Stab}_{(x, 1)} / \operatorname{Ker}$ is finite (iff $\left.\operatorname{dim} G \cdot x=\operatorname{dim} G / K e r\right)$ and G-action on $\{u \in V: f(u) \neq 0\}$ for the f above has closed orbits. ($G \cdot(x, 1)$ is closed in $V \times \mathbb{C}$ iff $G \cdot x$ is closed in $V^{\chi-s s}$)
(Ker is the kernel of the linear G-action on V. Assume $\chi(\mathrm{Ker})=1$.)
Reason for geom. description:
disjoint closed G-sets can be distinguished by G-inv. functions.

Hilbert-Mumford numerical criterion:

x is $\mathbf{s . s .}$ iff for all one-parameter subgroups $\lambda \subset G$,

$$
\lim _{t \rightarrow 0} \lambda(t) \cdot(x, 1) \notin V \times\{0\}
$$

$$
(x, \lambda)=0
$$

iff
$\lim _{t \rightarrow 0} \lambda(t) \cdot x$ exists $\Rightarrow(\chi, \lambda) \geq 0$.
stable iff
$\lim _{t \rightarrow 0} \lambda(t) \cdot(x, 1)$ exists $\Rightarrow \lambda \subset \Delta$ iff
iff
$\lim _{t \rightarrow 0} \lambda(t) \cdot x$ exists $\Rightarrow(\chi, \lambda)>0$ or $\lambda \subset \Delta$.
(χ, λ) is defined by

$$
\chi(\lambda(t))=t^{(x, \lambda)}: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times} . \lambda(t) \cdot(x, 1)=\left(\lambda(t) \cdot x, \chi(\lambda(t))^{-1}\right) .
$$

Note: for x s.s., $G \cdot(x, 1)$ is closed iff
$\lim _{t \rightarrow 0} \lambda(t) \cdot x$ exists and $(\chi, \lambda)=0 \Rightarrow \lim _{t \rightarrow 0} \lambda(t) \cdot x \in G \cdot x$.
In such case $\lim _{t \rightarrow 0} \lambda(t) \cdot x$ is fixed by λ.
If further x has finite stabilizer, so does $\lim _{t \rightarrow 0} \lambda(t) \cdot x$. Then $\lambda \subset \Delta$.
For $x, y \in V^{\chi-s s}, x \sim y$ iff
$\exists \lambda_{1}, \lambda_{2}$ with $\chi\left(\lambda_{1}\right)=\chi\left(\lambda_{2}\right)=0$ such that
$\lim _{t \rightarrow 0} \lambda_{1}(t) \cdot x$ and $\lim _{t \rightarrow 0} \lambda_{2}(t) \cdot y$ belong to the same closed G-orbit.

Principle:

If a closed G-set A intersects $\overline{G \cdot x}$, then A intersects $\overline{\lambda \cdot x}$ for some one parameter λ.
For the last statement for $x \sim y, \overline{G \cdot(x, 1)} \cap \overline{G \cdot(y, 1)}$ is a closed G-set which must contains a closed G-orbit.
χ-semi-invariants form a subspace $\mathbb{C}[X]_{\chi}$.
Form a ring $S I:=\oplus_{\chi} \mathbb{C}[X]_{\chi}$.

Lem. 9.4.1.
$S I=\mathbb{C}[V]^{[G, G]}$.
(G reductive, $[G, G]$ gen. by $\mathrm{ghg}^{-1} h^{-1}$.)

Lem. 9.4.2. (Sato-Kimura)

If V has a dense open orbit, Then SI is poly. ring.

Quotient for quiver representations

$\theta \in\left(\mathbb{Z}^{V_{0}}\right)^{*}$. (Called weight.)
Rep. V is θ-s.s. if $\theta(\overrightarrow{\operatorname{dim} V})=0$ and $\theta\left(\overrightarrow{\operatorname{dim} V^{\prime}}\right) \geq 0$ for $V^{\prime} \subset V$.
θ-stable if further $\theta\left(\overrightarrow{\operatorname{dim} V^{\prime}}\right)=0 \Rightarrow V^{\prime}=V$ or 0 .

Want to identify with GIT stability.
Define

$$
\chi_{\theta}: G L(\overrightarrow{\operatorname{dim} \vec{V}}) \rightarrow \mathbb{C}^{\times}, \chi_{\theta}(g)=\prod_{v \in Q_{0}} \operatorname{det}\left(g_{v}\right)^{\theta_{v}} .
$$

Note: $\Delta=\mathbb{C}^{\times} \in G L(\overrightarrow{\operatorname{dim} V})$ acts trivially.

$$
\chi_{\theta}(c \cdot I)=c^{(\theta, \overline{\operatorname{dim} \vec{v}})}=1 .
$$

One parameter $\lambda: \mathbb{C}^{\times} \rightarrow G L(\overrightarrow{\operatorname{dim} V})$ that has $\lim _{t \rightarrow 0} \lambda(t) \cdot V$ gives a filtration:

Weight decomposition
$V_{x}=\bigoplus_{n \in \mathbb{Z}} V_{x}^{(n)}$
where $\lambda(t)$ acts on $V_{x}^{(n)}$ as multi. by t^{n}.
Arrow: matrix $V_{a}=\left(V_{a}^{(m, n)}: V_{t_{a}}^{(n)} \rightarrow V_{h_{a}}^{(m)}\right)$.
$\lambda(t)$ acts on $V_{a}^{(m, n)}$ as multi. by t^{m-n}.
Has $\lim _{t \rightarrow 0}$ iff $V_{a}^{(m, n)}=0$ for $m<n$, that is,
V_{a} preserves $V_{x}^{\geq n} \forall n$, meaning
$V^{\geqq n}$ forms subrepresentations.

$$
\cdots \supset V^{\geq n} \supset V^{\geq n+1} \supset \cdots
$$

$\lim _{t \rightarrow 0} \lambda(t) \cdot V=\bigoplus_{n \in \mathbb{Z}} V^{\geq n} / V^{\geq n+1}$.
Converse: a filtration always arise in this way (although such λ is not unique).
The filtration is trivial (meaning $V^{\geq n}$ are either 0 or V) implies
$\lambda(t)$ acts on V_{x} as $t^{n} \cdot I d$ (and same n for all x)
meaning $\lambda \subset \Delta$.

Prop. V is GIT χ_{θ}-semistable iff θ-semistable. (Similar for stable.)

Proof.

Recall the numerical criterion:
χ_{θ}-semistable iff
$\lim _{t \rightarrow 0} \lambda(t) \cdot x$ exists $\Rightarrow\left(\chi_{\theta}, \lambda\right) \geq 0$.
$\left\langle\chi_{\theta}, \lambda\right\rangle\left(t\right.$-power of $\left.\chi_{\theta}(\lambda(t)): \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}\right)$in terms of filtration $V^{\geq n}$:
$\left\langle\chi_{\theta}, \lambda\right\rangle=\sum_{x} \theta(x) \sum_{n} n \operatorname{dim} V_{x}^{(n)}=\sum_{n} n \theta\left(\overline{\operatorname{dim} V^{\geq n} / V^{\geq n+1}}\right)$
$=\sum_{n} \theta\left(\overrightarrow{\operatorname{dim} V^{\geq n}}\right)$
a finite sum since $\theta(\overrightarrow{\operatorname{dim} V})=0\left(\right.$ and $\left.V^{\geqq n}=V \forall n \ll 0\right)$.
θ-s.s.:
$\theta\left(\overrightarrow{\operatorname{dim} V^{\prime}}\right) \geq 0 \forall V^{\prime} \subset V$.
θ-s.s. \Rightarrow GIT χ_{θ}-s.s.:

$$
\left\langle\chi_{\theta}, \lambda\right\rangle=\sum_{n} \theta\left(\overline{\operatorname{dim} V^{\geq n}}\right) \geq 0 .
$$

θ-stable $\Rightarrow \operatorname{GIT} \chi_{\theta}$-stable:
$\left\langle\chi_{\theta}, \lambda\right\rangle=0$
$\Rightarrow \theta\left(\overrightarrow{\operatorname{dim} V^{\geq n}}\right)=0 \forall n$
$\Rightarrow V^{\geq n}=V$ or $0 \forall n$
$\Rightarrow \lambda \in \Delta$.
$\operatorname{GIT} \chi_{\theta}$-s.s.s. $\Rightarrow \theta$-s.s.:
For $V^{\prime} \subset V$, take the filtration
$V \supset V^{\prime} \supset 0$
and a corresponding one parameter λ.
GIT s.s. implies
$\left\langle\chi_{\theta}, \lambda\right\rangle=\theta(\overrightarrow{\operatorname{dim} V})+\theta\left(\overrightarrow{\operatorname{dim} V^{\prime}}\right)=\theta\left(\overrightarrow{\operatorname{dim} V^{\prime}}\right) \geq 0$.
GIT χ_{θ}-stable $\Rightarrow \theta$-stable:
If $\theta\left(\overrightarrow{\operatorname{dim} V^{\prime}}\right)=0$,
$\left\langle\chi_{\theta}, \lambda\right\rangle=0$ and hence $\lambda \subset \Delta$.
Thus the filtration is trivial and $V^{\prime}=0$ or V.

Recall: for V GIT s.s., $G L \cdot V$ is closed iff
$\lim _{t \rightarrow 0} \lambda(t) \cdot V$ exists and $(\chi, \lambda)=0 \Rightarrow \lim _{t \rightarrow 0} \lambda(t) \cdot V \in G \cdot V$.
$(\chi, \lambda)=\sum_{n} \theta\left(\overrightarrow{\operatorname{dim} V^{\geq n}}\right)=0$ iff
each $V^{\geq n}$ has $\theta=0$, and hence s.s.
(Sub-rep. of $V^{\geq n}$ is sub-rep. of V and hence has $\theta \geq 0$.)
V is isom. to
$\lim _{t \rightarrow 0} \lambda(t) \cdot V=\bigoplus_{n} V^{\geq n} / V^{\geq n+1}$.
Jordan-Holder filtration (for Abel. cat. of s.s. rep.) exists,
where the graded pieces
$V^{\geq n} / V^{\geq n+1}$ are simple s.stable objects.
Simple s.s. \Leftrightarrow stable:
\rightarrow)
If $V^{\prime} \subset V$ has $\theta\left(\overrightarrow{\operatorname{dim} V^{\prime}}\right)=0$, then V^{\prime} is also s.s. and hence $=V$ or 0 since simple.
$\leftarrow)$
For $V^{\prime} \subset V$ s.s., $\theta\left(\overrightarrow{\operatorname{dim} V^{\prime}}\right)=0$ and by stable $V^{\prime}=V$ or 0 .
Thus we obtain:

Prop.

$G L \cdot V$ is closed in s.s. iff V is direct sum of stables.
(Direct sum of stables have direct sum of $c \cdot I d$ as stabilizers.)
Recall: GIT equiv. for s.s. objects $V \sim W$:
$\exists \lambda_{1}, \lambda_{2}$ with $\chi\left(\lambda_{1}\right)=\chi\left(\lambda_{2}\right)=0$ such that
$\lim _{t \rightarrow 0} \lambda_{1}(t) \cdot V$ and $\lim _{t \rightarrow 0} \lambda_{2}(t) \cdot W$ belong to the same closed G orbit.
By above prop., $\lim _{t \rightarrow 0} \lambda_{1}(t) \cdot V$ and $\lim _{t \rightarrow 0} \lambda_{2}(t) \cdot W$ are direct sums of the same stables.
Thus:

Prop.

s.s. $V \stackrel{G I T}{\sim} W$ iff V and W have the same graded pieces in Jordan-Holder filtration. (Called S-equiv.)

Finite dim. algebra

Corr. to quiver Q with relations:
Take a decomposition $A=P_{1}^{\oplus m_{1}} \oplus \cdots \oplus P_{n}^{\oplus m_{n}}$.
Take $P=P_{1} \oplus \cdots \oplus P_{n}$.
$B=\operatorname{End}_{A}(P)^{o p}$ is a basic alg. Morita equiv. to A (Ch. 3),
that is,
$B / \operatorname{rad}(B) \cong \mathbb{C}^{n}$ as algebra.
Define \mathbb{C}^{n}-bimod
$M:=\operatorname{rad}(B) / \operatorname{rad}(B)^{2}$
which corr. to a quiver Q :
vertex set is the standard basis of \mathbb{C}^{n}
(which are indecomp. proj. mod. P_{i} of A);
arrow set is a basis of $e_{i} \cdot M \cdot e_{j}$.
Has surjective $\mathbb{C} Q \rightarrow B$ whose kernel is admissible ideal J.
A-mod can be understood as subcat. of $\mathbb{C} Q$-mod (that satisfies the relations):
the functor $\operatorname{Hom}_{A}(-, M)$ restricted to cat. of proj. $A-\bmod$.
corr. to $\mathbb{C} Q$-mod. (Morita equiv.)
$M=\operatorname{Hom}_{A}(A, M)$ is reconstructed from this functor.
Vertices of Q corr. to simple A-mod.
$K_{0}\left(A\right.$-mod) is the free Abel. group gen. by Q_{0}
(by Jordan-Holder thm.).
Char. θ for $A-\bmod$ is element of $\mathbb{Z}^{Q_{0}}$.
Using the above identification, get:

Thm. 4.1.

The GIT quotient $M_{A}(\alpha, \theta)$ gives the moduli space of θ-semistable A-mod. of dim. α. The points correspond to S-equiv. classes of θ-semistable A mod.

Prop. 4.3.
$M_{A}(\alpha, \theta)$ is projective.

Proof.

$M_{A}(\alpha, \theta)$ is projective over $V_{A}(\alpha) / / G L(\alpha)$ (character zero case).
For character zero,
all points are semi-stable.
For any point, the orbit closure must contain a closed orbit. (If $G \cdot p$ not closed, has $p^{\prime} \in \overline{G \cdot p}-G \cdot p$. Keep on doing this until getting a point with closed orbit.)
By prop. above, has closed orbit iff direct sum of stables, which are simple objects.
Thus the orbit closure must contain a semi-simple object, which is the unique direct sum of simple rep. over the vertices (in given α).
Thus all points in $V_{A}(\alpha)$ are equiv. (when $\theta=0$) and hence $V_{A}(\alpha) / / G L(\alpha)$ is just a point.

Moduli space

It is pretty tautological that $M_{A}(\alpha, \theta)$ is a course moduli, namely for a family of θ-s.stable A-mod over B, has a canonical map $B \rightarrow M_{A}(\alpha, \theta)$
(choose trivialization of the vector bundles at vertices, and then have map to $R e p_{\alpha}$).

Prop. 5.3.

If α is indivisible, then $M_{A}^{S}(\alpha, \theta)$ is a fine mod. of θ-stable A-mod.

Proof.

Want a taut. bundle over $M_{A}^{S}(\alpha, \theta)$ whose fiber over [V] is V (equipped with $A \rightarrow \operatorname{End}(V))$.
Take $\operatorname{Rep}_{\alpha}^{s} \times V_{x}$ for each vertex x, and take quotient by $G L_{\alpha}$.
(Just usual quotient for stable points.)
TROUBLE:
$\Delta \subset G L_{\alpha}$ acts trivially on $\operatorname{Rep}_{\alpha}^{s}$, but acts on V_{x} by scaling!
Then $\left(\operatorname{Rep}_{\alpha}^{s} \times V_{x}\right) / G L_{\alpha} \rightarrow \operatorname{Rep}_{\alpha}^{s} / G L_{\alpha}$ is problematic!

Remedy:
Modify the $G L_{\alpha}$-action on the second factor such that Δ acts trivially.
Take $(g \cdot p, \chi(g) \cdot g \cdot v) \in \operatorname{Rep}_{\alpha}^{s} \times V_{x}$
where $\chi: G \rightarrow \mathbb{C}^{\times}$such that $\chi\left(c \cdot \operatorname{Id}_{x}\right)=c^{-1}$.
Character takes the form
$\chi(-)=\prod_{x} \operatorname{det}(-)^{\psi_{x}}$.
Then need $\sum \psi_{x} \alpha(x)=-1$
which exists iff α is indivisible.
Then done.
Rmk. 5.4.
For α indivisible, $M_{A}(\alpha, \theta)=M_{A}^{S}(\alpha, \theta)$ for generic θ.

