[Craw; Smith - Toric var. as fine moduli]

<u>Toric var.</u>

ex. \mathbb{P}^2 . Have fan (complex) and polytope (symplectic) description.

GIT quotient: Each ray ρ is associated a variable x_{ρ} of \mathbb{C}^m . From the primitive vectors of rays, get exact sequence $0 \to K \to \mathbb{Z}^m \to N \to 0$. Have complex subtorus $K_{\mathbb{C}}/K \subset (\mathbb{C}^{\times})^m$ that acts on \mathbb{C}^m .

 $\mathbb{C}^m / /_{\theta} (\mathbb{C}^{\times})^k$ where unstable points are defined by the ideal gen. by monomials

$$x^{\widehat{\sigma}} = \prod_{\rho \in \widehat{\sigma}} x_{\rho}$$

where $\hat{\sigma}$ is set of rays not contained in σ .

ex. $\mathbb{P}^2 = \mathbb{C}^3 / /_{\theta} \mathbb{C}^{\times}$. The set of unstable points is $\{x_1 = x_2 = x_3 = 0\} \subset \mathbb{C}^3$.

 $\theta \in K^* = \operatorname{Pic}(Y)$ can also be understood as `level' of $M_{\mathbb{R}} \subset (\mathbb{R}^m)^*$.

The dual sequence $0 \to M \to (\mathbb{Z}^m)^* \to K^* \to 0$ has geometric meaning: $0 \to M_Y \to \operatorname{CDiv}(Y) \to \operatorname{Pic}(Y) \to 0.$

<u>Overview</u>

- dim = (1, ..., 1) rep. of Q (without relations) defines a smooth proj. toric var.
- Embed a projective variety X to a quiver toric variety.
 (Generalization of Kodaira embedding to P^m.)

Take line bundles $L \coloneqq (O_X, L_1, ..., L_r)$ over X.

Take endo. alg. of *L* which corr. to a quiver *Q* (of sections). *Q* is rooted. $End(L) \cong \mathbb{C}Q/R.$

Denote the toric var. of dim=(1,...,1) rep. of Q by |L|. Analogous to Kodaira embedding, want to have $\phi: X \rightarrow |L|$. Then X is identified as mod. of quiver rep. with relations.

• This paper: do this for toric variety *X*. Have nice graph-theoretical interpretation.

Main Theorem 1.2:

Can find *L* such that ϕ is embedding, and *X* is the (fine) moduli $M_{\theta}(Q, R)$ of stable rep. (of dim=1) of (Q, R)where *R* is the ideal of relations.

The universal rep. over $X \cong M_{\theta}(Q, R)$ decomposes into taut. line bundles which equal to L_i .

Recall taut. bundles on quiver moduli

Have $M_{\theta}(\alpha)$ for $\theta \in Wt(Q)$. In this paper, $\alpha = (1, ..., 1)$. Primitive. $G = \{(g_0, ..., g_r) \in (\mathbb{C}^{\times})^{Q_0} : g_0 = 1\}.$ (Kill the trivial action of overall scaling. Can do this since *Q* is rooted.)

For generic θ , M_{θ} is fine moduli. Have tautological line bundles $F_i \quad \forall i \in Q_0$. Just take trivial product $Rep_{\alpha} \times V_i$ and quotient by G. F_0 is trivial since G acts trivially on 0th vertex.

Note:

This is to understand *X* as fine moduli of objects. *L* may NOT be complete strong exceptional collection. (No higher *Ext*, no morphism from later to earlier, self morphism space is 1d, gen. the category.) (*L* provides an equiv. on der. cat. iff it is such a collection.)

Every toric variety has a complete exceptional collections of coherent sheaves, but such collection of line bundles may not exist. (Has counter-example in dim=2.)

(A-side analog: moduli of stable Lagrangians.)

Toric var. associated to quiver

Recall $G = \{(g_0, \dots, g_r) \in (\mathbb{C}^{\times})^{Q_0} : g_0 = 1\}$ acts on Rep_{α} by $g_{h_a} \cdot V(a) \cdot g_{t_a}^{-1}$.

Thus think of $G \subset (\mathbb{C}^{\times})^{Q_1}$ induced by $\mathbb{Z}^{Q_0} \to \mathbb{Z}^{Q_1}$ with ϵ_i mapped to f where $f_a = 1, -1, 0$ if $h_a = i, t_a = i$, otherwise respectively.

Get the toric exact sequence. Taking the dual, have: $\mathbb{Z}^{Q_1} \to \mathbb{Z}^{Q_0}$ by $\sum_{a} ((f_a)_{h_a} - (f_a)_{t_a}).$ The image lies in weight lattice Wt(Q): $\theta \in \mathbb{Z}^{Q_0}$ with $\Sigma \theta = 0.$ Rank = $|Q_0| - 1.$

Surjective to Wt(Q) for Q conn. Define the kernel as Cir(Q). Called circulation.

Thus have exact seq. $0 \rightarrow \operatorname{Cir}(Q) \rightarrow \mathbb{Z}^{Q_1} \rightarrow \operatorname{Wt}(Q) \rightarrow 0.$ Rank of $\operatorname{Cir}(Q) = |Q_1| - |Q_0| + 1.$

Easy description of Cir(*Q*):

Given a walk γ (which is allowed to have inverse of arrows)

$$\begin{split} f(\gamma) &\coloneqq \sum_{a} \operatorname{mult}_{\gamma}(a) \cdot a \in \mathbb{Z}^{Q_{1}}. \\ f(\gamma) &\in \operatorname{Cir}(Q) \Leftrightarrow \gamma \text{ is closed.} \\ \operatorname{Cir}(Q) \text{ are generated by such closed walks.} \\ \operatorname{Rank}(N) &= |Q_{1}| - |Q_{0}| + 1. \end{split}$$

The dual sequence is the toric exact sequence: $0 \rightarrow (Wt(Q))^* \rightarrow (\mathbb{Z}^{Q_1})^* \rightarrow N \rightarrow 0.$

Fan Σ_Q : ray ρ_a for $a \in Q_1$ generated by $ev_a \in N_{\mathbb{R}} = \operatorname{Cir}(Q)^*$. $\rho_{a_1}, \dots, \rho_{a_l}$ span a cone iff exists spanning tree rooted at source of Qwhich does not contain any of $a_1 \dots a_l$. (Spanning tree has #edges = #vertices - 1. Thus $l \leq |Q_1| - |Q_0| + 1$.) Max. cone 1-1 corr. to spanning tree rooted at source of Q.

Prop. 3.8. *Q* conn. rooted acyclic.

The fine mod. M_{θ} for any rational θ in the GIT chamber containing

$$\theta_0 \coloneqq \sum_{i \in Q_0} (\chi_i - \chi_0)$$

($\chi_i \in \mathbb{Z}^{Q_0}$ is std basis)
($\theta_0 \perp \alpha = (1, ..., 1)$)
is the toric var. defined by Σ_Q ,
which is unimod. and proj.

It is the GIT quot.
Spec(
$$\mathbb{C}[y_a: a \in Q_1]$$
) - $V(B_Y)$
by $G = \text{Hom}_{\mathbb{Z}}(\text{Wt}(Q), \mathbb{C}^{\times})$,
 B_Y gen. by all the monomials
 $\prod_{a \in \text{rooted spanning tree}} y_a$
 $a \in \text{rooted spanning tree}$
which can also be written as intersection of ideals
 $\bigcap_{i=1}^r (y_a: h_a = i)$.
(Set of vertices labeled by 0, ..., r.)
(For each vertex other than source, choose an arrow
going to that vertex. This forms a spanning tree.)

Conclusion.

The sequence $0 \rightarrow \operatorname{Cir}(Q) \rightarrow \mathbb{Z}^{Q_1} \rightarrow \operatorname{Wt}(Q) \rightarrow 0$ is isom. to $0 \rightarrow M_Y \rightarrow \operatorname{CDiv}(Y) \rightarrow \operatorname{Pic}(Y) \rightarrow 0.$ (Cartier div. up to principal div.)

The dual sequence $0 \rightarrow (Wt(Q))^* \rightarrow (\mathbb{Z}^{Q_1})^* \rightarrow (Cir(Q))^* \rightarrow 0$ tells us the rays of the fan in $N = (Cir(Q))^*$. (Counting the multiplicity of an arrow appearing in a circulation.)

The irrelevant ideal is gen. by monomials

 $\prod_{a \in \text{rooted spanning tree}} y_a \, .$

(Rooted spanning tree is formed by choice of an arrow heading at each vertex other than root.)

Thus each rooted spanning tree corresponds to a max. cone of the fan, gen. by the rays which are arrows NOT contained in

the tree.

Ex. 3.10.

(monomials corr. to spanning trees). $Y = \mathbb{P}^m$.

If *Q* is the quiver of sections of $\{O_X, L\}$, then this is the usual linear system |L| of a variety *X*.

Ex. 3.11.

Basis of Cir(Q) (corr. to mero. functions): $(a_1a_3^{-1}, a_3a_2a_4^{-1})$

Rays and toric divisors correspond to a_i . $a_1: (1,0); a_2: (0,1); a_3: (-1,1), a_4: (0,-1).$

$$S_Y = \mathbb{C}[y_1, y_2, y_3, y_4];$$

$$B_Y = (y_1, y_3) \cap (y_2, y_4).$$

$$G = (\mathbb{C}^{\times})^2.$$

$$Y = \mathbb{F}_1.$$

Nef cone:

(divisors that has non-negative intersections with all effective curves)

The above GIT chamber in $Wt(Q) \otimes \mathbb{R}$ is the ample cone of \mathbb{Q} -div. classes. ($O_Y(\theta_0)$ is very ample.) The nef cone is the closure

 $\operatorname{Nef}_{\mathbb{Q}}(Y) = \bigcap_{Q' \subseteq Q} \left\{ \sum_{a \in Q'_1} \lambda_a[D_a]: \ \lambda_a \in \mathbb{Q}_{\geq 0} \right\},$

where Q' is rooted spanning tree,

 D_a are toric divisors.

(Spanning trees are corr. to max. toric charts.

The above are divisors that can be `moved away' from any given max. chart,

and hence must intersect non-neg. with any toric curve,

which must be `Zariski contained' in a max. chart.)

In the example of \mathbb{P}^n , this is non-neg. comb. of the toric div. D_i .

Basis of Cir(Q) (corr. to mero. functions):

Figure 2. Hirzebruch surface \mathbb{F}_2 .

 $(a_1a_2^{-1}, a_1a_4a_3^{-1}, a_1a_5a_3^{-1}, a_1a_6a_7^{-1}a_3^{-1}, a_1a_6a_8^{-1}a_3^{-1})$

 $D_1 \sim D_2, D_3 \sim D_1 + D_4 \sim D_1 + D_5,$ $D_1 + D_6 \sim D_3 + D_7 \sim D_3 + D_8.$ Then $D_4 \sim D_5, D_7 \sim D_8, D_6 \sim D_4 + D_7.$ Thus Pic(Y) gen. by (image of) $D_1, D_4, D_7 \in \text{CDiv}(Y) \rightarrow \text{Pic}(Y).$

$$\begin{split} S_Y &= \mathbb{C}[y_1, \dots, y_8]; \\ B_Y &= (y_1, y_2) \cap (y_3, y_4, y_5) \cap (y_6, y_7, y_8). \\ G &= (\mathbb{C}^{\times})^3. \end{split}$$

Y is 5 dim. toric with 8 toric divisors. Toric fixed points (max. cones) corr. to $2 \times 3 \times 3 = 18$ spanning trees.

$$\operatorname{Nef}_{\mathbb{Q}}(Y) = \bigcap_{\underline{Q}' \subseteq \underline{Q}} \left\{ \sum_{a \in \underline{Q}'_1} \lambda_a[D_a]: \ \lambda_a \in \mathbb{Q}_{\geq 0} \right\},$$

Express $h_1D_1 + h_2D_4 + h_3D_7$ in divisors involved in spanning trees to get conditions on h_i : (moving it away from given max. toric chart) $h_1D_1 + h_2D_4 + h_3D_7$ (147) $= h_1D_1 + h_2(D_3 - D_1) + h_3D_7$ (137) $= h_1D_1 + h_2D_4 + h_3(D_6 - D_4)$ (146) $= h_1D_1 + h_2(D_3 - D_1) + h_3(D_6 - D_3 + D_1)$ (136) Thus $h_1 \ge h_2 \ge h_3 \ge 0$.

 $h_1D_1 + h_2D_4 + h_3D_7$ expressed as weights: (CDiv(Y) \rightarrow Pic(Y) identified with $\mathbb{Z}^{Q_1} \rightarrow$ Wt(Q)) (#head - #tails at each vertex) $p_0 = -h_1, p_1 = h_1 - h_2, p_2 = h_2 - h_3, p_3 = h_3.$

Thus nef cone is $\{p_0 + p_1 + p_2 + p_3 = 0, p_1 \ge 0, p_2 \ge 0, p_3 \ge 0\}.$

ex. anti-can. div. $\sum_{i=1}^{8} D_i \mapsto (-3, -1, 1, 3) \notin \text{nef cone.}$

Quiver of sections of toric

Take distinct toric line bundle L_i . $L_0 = O_X$. Indecomp. (T-inv.) section $s \in H^0(X, L_j \otimes L_i^{-1})$: the divisor div(s) cannot be sum div(s') + div(s'')for $s' \in H^0(X, L_k \otimes L_i^{-1}), s'' \in H^0(X, L_j \otimes L_k^{-1})$.

Quiver of sections: vertices 1-1 corr. to L_i ; arrows 1-1 corr. to T-inv. indecomp. sections (up to scaling). (Recall: T-inv. hol. sections corr. to certain lattice points in *M*.)

Hence paths give non-zero elements in $H^0(L_i, L_j)$. If projective, one of $H^0(L_i, L_j)$, $H^0(L_j, L_i)$ is zero (for $i \neq j$). Hence must be acyclic. Reorder such that $H^0(X, L_j \otimes L_i^{-1}) = 0$ if j < i.

Assume taken $H^0(X, L_i) \neq 0 \forall i$. Then *Q* connected and rooted at vertex 0.

Ideal of relations gen. by $p - p' \in \mathbb{C}Q$ where div(p) = div(p'), same head and tail.

Note: two non-zero sections define the same div. iff they are proportional (by compactness).

By def., **Prop. 3.3.**

 $\mathbb{C}Q/R$ is isom. to End($\bigoplus L_i$).

$$\begin{array}{cccc} \mathcal{D}_{1} & \cdot & (f_{1}) \geq -\mathcal{D}_{1} & : 1, \overline{\epsilon}_{1}^{-1} & \mathcal{D}_{1}, \mathcal{D}_{3} \\ \mathcal{D}_{1} \rightarrow \mathcal{D}_{4} & \cdot & \cdot \geq -\mathcal{D}_{4} + \mathcal{D}_{1} & : \overline{\epsilon}_{1} \overline{\epsilon}_{2}, \overline{\epsilon}_{1}^{2} \overline{\epsilon}_{2} & \mathcal{D}_{3} + \mathcal{D}_{2}, \mathcal{D}_{1} + \mathcal{D}_{2} \\ \mathcal{D}_{4} & \cdot & \cdot & \geq -\mathcal{D}_{4} & : 1 & \mathcal{D}_{4} \\ \end{array}$$

Conclude:

From toric X, choose $L = \{L_i: i = 0 \dots r\}$ to get (complete) quiver of sections Q. From Q, get toric Y which is also denoted as |L|.

Morphism $X \to Y$

On total coord. ring: $\Phi_Q: S_Y \to S_X:$ $y_a \mapsto x^{\operatorname{div}(a)}.$ a) Fan

(c) Listing the arrows

(Take toric divisor defined by toric holo. section. The multiplicity is positive.)

Prop. 4.1 (Criterion for base-point free):

```
Have X \to Y iff

B_X \subset \operatorname{rad}(B_Q)

(B_Q \coloneqq S_X \cdot \Phi_Q(B_Y))

iff

For each cone \sigma of fan of X, has spanning tree Q'

rooted at 0 such that
```

supp $(\operatorname{div}(a)) \subset \hat{\sigma} \ \forall a \in Q'_1$. ($\hat{\sigma}$ is the set of rays not contained in σ . The removed locus in def. of *X* corr. to ideal gen. by the monomials $x^{\hat{\sigma}} \ \forall \sigma$.)

Proof.

The first is by def. and group equivariance. For second equiv., recall B_Y is gen. by monomials $y_{a_k} \dots y_{a_1}$ of rooted spanning trees. $\Phi_Q(y_{a_k} \dots y_{a_1}) = x^{\operatorname{div}(a_k)} \dots x^{\operatorname{div}(a_1)}$. By multiplying more $x \in S_X$ and then taking roots, rad (B_Q) is gen. (over S_X) by $\prod_{i \in \bigcup_{l=1}^k \operatorname{supp}(\operatorname{div}(a_l))} x_i$.

 B_X gen. by $x^{\hat{\sigma}}$ for all σ . $B_X \subset \operatorname{rad}(B_Q)$ iff for all σ , has certain rooted spanning tree such that $x^{\hat{\sigma}}$ has factor $\prod_{i \in \bigcup_{l=1}^k \operatorname{supp}(\operatorname{div}(a_l))} x_i$.

Corr. 4.2.

A (complete) quiver of sections is basepoint free iff all line bundles involved are basepoint free.

Proof.

 $\rightarrow)$

For each cone σ of fan of X, has spanning tree Q' rooted at 0 such that

 $\operatorname{supp}(\operatorname{div}(a)) \subset \widehat{\sigma} \, \forall a \in Q'_1.$

Then for each vertex, has path (in Q') from 0 to that vertex such that supp $(\operatorname{div}(a)) \subset \hat{\sigma}$ for all arrows in that path.

Then the corresponding section is non-zero at the corresponding toric strata.

←)

Given a cone of fan,

has path from 0 to every vertex satisfying the above condition supp $(\operatorname{div}(a)) \subset \hat{\sigma}$.

```
Suppose already fix a tree containing vertex 0, ..., k satisfying the condition.
```

For the vertex k + 1,

has a path satisfying the condition. If the path does not pass through any of 0, ..., *k*, simply add this path to the tree. Otherwise, consider the last time that the path pass thru 0, ..., *k*. Only take the part of the path after that vertex and add this to the tree.

:

Section lattice
$$\mathbb{Z}(Q)$$
:
Image of
 $\left(\sum_{a} ((f_a)_{h_a} - (f_a)_{t_a}), \sum_{a} f_a div(a)\right)$
 $\pi: \mathbb{Z}^{Q_1} \to Wt(Q) \oplus CDiv(X).$
 \mathbb{Z}^{Q_1}
 $\stackrel{\text{inc}}{\bigvee} \mathbb{Z}(Q) \xrightarrow{\pi_1} Wt(Q)$
 $\downarrow^{\pi_2} \qquad \downarrow^{\text{pic}}$
 $CDiv(X) \to Pic(X),$

 \mathbb{N}^{Q_1} corr. to monomials. For two monomials y^u and y^v , $u - v \in \text{Ker}(\pi) \cap \mathbb{N}^{Q_1}$ means: u and v have the same weights (homogeneous); y^u and y^v equal after pullback to X.

Thus the image is defined by the ideal $I_Q \coloneqq (y^u - y^v \colon u - v \in \text{Ker}(\pi) \cap \mathbb{N}^{Q_1}).$

Prop. 4.3.

The image of $X \to Y$ given by a basepoint-free quiver of sections is $V(I_Q)//_{\theta}G$, that is, $\left(V(I_Q) - V(B_Y)\right)//G$.

The following gives useful way to find L_i to have an embedding.

Cor. 4.10. Let $L = \bigotimes L_i$. Assume

 $H^0(L_1) \otimes \cdots \otimes H^0(L_r) \to H^0(L)$ is surjective. Then $X \to Y$ is a closed embedding iff *L* is very ample.

Prop. 4.14.

Let $L_1, ..., L_{r-1}$ be basepoint free. If $L_1, ..., L_{r-1}$ generates an ample line bundle, then there exists L_r such that $(O_X, L_1, ..., L_r)$ gives an embedding.