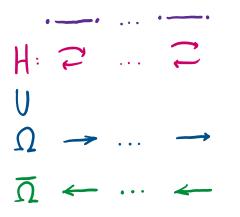
Saturday, February 1, 2020 11:46 AM

[Nakajima - Instantons on ALE spaces, quiver varieties and Kac-Moody Algebras]

- Provide nice examples of (non-compact) holomorphic symplectic varieties and resolutions of singularities
- Cohomologies give representations of Kac-Moody Lie algebras
- Naturally come up as mod. of ASD connections over $\widetilde{\mathbb{C}_2/\Gamma}$ [Kronheimer]

Hyper-Kaehler quotient

Given graph with no self edge. *H*: set of all edges together with orientation. Choose $\Omega \subset H$ with $\Omega \cup \overline{\Omega} = H, \Omega \cap \overline{\Omega} = \emptyset$ such that Ω has no oriented cycle.



Fix Herm. v.s. V_k , $W_k \forall$ vertex k. Dim. vector v, w. Framed rep. space:

$$\mathbf{M} \stackrel{\text{def.}}{=} \left(\bigoplus_{h \in H} \operatorname{Hom}(V_{\operatorname{out}(h)}, V_{\operatorname{in}(h)}) \right) \oplus \left(\bigoplus_{k=1}^{n} \operatorname{Hom}(W_{k}, V_{k}) \oplus \operatorname{Hom}(V_{k}, W_{k}) \right).$$

 W_k are the framing.

(We have started with M_{Ω} below.)

 $(B, i, j) \in M$. $\dim_{\mathbb{R}} \mathbf{M} = 2^t \mathbf{v} \mathbf{A} \mathbf{v} + 4^t \mathbf{v} \mathbf{w}$ where *A* is adj. matrix.

Holomorphic symplectic:

 $\omega_{\mathbb{C}}((B, i, j), (B', i', j')) \stackrel{\text{def.}}{=} \sum_{h \in H} \operatorname{tr}(\varepsilon(h)B_h B'_{\overline{h}}) + \sum_{k=1}^n \operatorname{tr}(i_k j'_k - i'_k j_k)$ where $\varepsilon(h) = 1, -1$ for $h \in \Omega, \overline{\Omega}$ resp.

Decompose into Lagrangian subspaces:

$$\mathbf{M}_{\Omega} \stackrel{\text{def.}}{=} \left(\bigoplus_{h \in \Omega} \operatorname{Hom}(V_{\operatorname{out}(h)}, V_{\operatorname{in}(h)}) \right) \oplus \left(\bigoplus_{k=1}^{n} \operatorname{Hom}(W_{k}, V_{k}) \right)$$
$$\mathbf{M}_{\overline{\Omega}} \stackrel{\text{def.}}{=} \left(\bigoplus_{h \in \overline{\Omega}} \operatorname{Hom}(V_{\operatorname{out}(h)}, V_{\operatorname{in}(h)}) \right) \oplus \left(\bigoplus_{k=1}^{n} \operatorname{Hom}(V_{k}, W_{k}) \right).$$
$$M = M_{\Omega} \bigoplus M_{\overline{\Omega}} \text{ can be understood as } T^{*}M_{\Omega}.$$

M has Herm. metric induced from that of *V*, *W*. HyperKaehler:

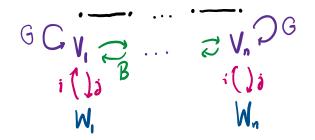
 $J(m, m') = (-m'^{\dagger}, m^{\dagger}) \ \forall (m, m') \in M_{\Omega} \bigoplus M_{\overline{\Omega}} = M$ Where $(\square)^{\dagger}$ is the Herm. adj. for Hom space.

$$G = \prod_{k} U(V_k)$$

acts on *M*:

 $(B_h, i_k, j_k) \mapsto (g_{in(h)} B_h g_{out(h)}^{-1}, g_k i_k, j_k g_k^{-1})$ preserving hyperKaehler structure. (*G* does not act on the framing *W*.)

ex.



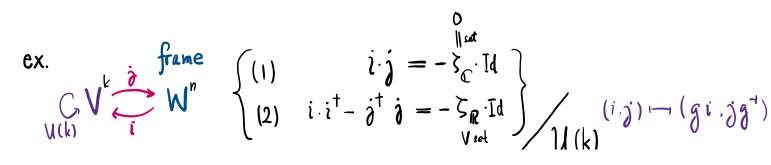
Moment maps of *G* and $G_{\mathbb{C}}$ (w.r.t. $\omega_{\mathbb{R}}$ and $\omega_{\mathbb{C}}$):

$$\mu_{\mathbb{R}}(B, i, j) = \frac{i}{2} \left(\sum_{h \in H: k = \mathrm{in}(h)} B_h B_h^{\dagger} - B_{\bar{h}}^{\dagger} B_{\bar{h}} + i_k i_k^{\dagger} - j_k^{\dagger} j_k \right)_k \in \bigoplus_k \mathfrak{u}(V_k) = \mathfrak{g}_{\mathbf{v}},$$
$$\mu_{\mathbb{C}}(B, i, j) = \left(\sum_{h \in H: k = \mathrm{in}(h)} \varepsilon(h) B_h B_{\bar{h}} + i_k j_k \right)_k \in \bigoplus_k \mathfrak{gl}(V_k) = \mathfrak{g}_{\mathbf{v}} \otimes \mathbb{C},$$

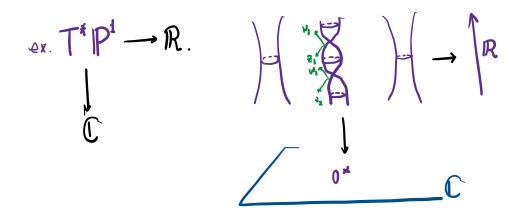
Fix $\zeta = (\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}) \in Z_{v} \oplus (Z_{v} \otimes \mathbb{C})$ where $Z_{v} \subset g_{v}$ center $(i\mathbb{R} \cdot Id$ over each vertex k).

 $Z_v \subset \mathbb{R}^{Q_0}$ (analog of real Cartan subalg.) (Some v(k) can be zero and so $\mathfrak{gl}_k = 0$. Then Z_v may not be whole \mathbb{R}^{Q_0} .)

HK quotient:



$$\begin{array}{c} \underbrace{(1)}_{V(k)} & \underbrace{(2)}_{i} & i \cdot i' - \partial^{*} \partial = -\frac{S_{R} \cdot id}{V_{rel}} \\ \underbrace{(1)}_{V(k)} & \underbrace{(i,j)}_{V(k)} & \underbrace{(j,j)}_{V(k)} & \underbrace{(j,$$



Smoothness

 $R_{+} := \{ \theta \in \mathbb{Z}_{\geq 0}^{n} : \theta^{t} C \ \theta \leq 2 \} - \{ 0 \}.$ (Recall $\epsilon_{x}^{t} C \ \epsilon_{x} = 2$, and so positive real roots have $\theta^{t} C \ \theta = 2$.)

 $R_+(v) \coloneqq \left\{ \theta \in R_+ : \, \theta_k \le v^{(k)} \, \forall k \right\} \text{(finite set)}.$

(wall) $D_{\theta} \coloneqq \{x \in \mathbb{R}^{n} : x \cdot \theta = 0\}$ where $\theta \in R_{+}$.

Thm. 2.8.

If

$$\zeta \in \mathbb{R}^3 \otimes \mathbb{R}^n \backslash \bigcup_{\theta \in R_+(\mathbf{v})} \mathbb{R}^3 \otimes D_{\theta}$$

then M_{ζ} is smooth. (The HK quotient is complete.)

Proof.

Want: no non-trivial stabilizer. Suppose has stabilizer: $(B, i, j) \in \mu^{-1}(-\zeta)$ is fixed by $g \in G_{\nu}$ (whose action is non-trivial).

Eigenspace decomp. of V_k by g_k :

Quiver Page 5

$$V_{k} = \bigoplus_{\lambda} V_{k}(\lambda).$$

Recall action of g:

 $(B_h, i_k, j_k) \mapsto (g_{\mathrm{in}(h)} B_h g_{\mathrm{out}(h)}^{-1}, g_k i_k, j_k g_k^{-1})$

Hence *B* preserves eigenspaces (with same eigenvalues); $i(W) \subset V(1);$ $j(V(\lambda)) = 0$ unless $\lambda = 1$.

Hence B_h restricted on $V_k(\lambda)$ (for $\lambda \neq 1$) defines a rep. in $M(\theta, 0)$ (where $\theta = \dim V(\lambda)$). Momentum μ remains the same: μ is originally $-\zeta \cdot Id$. Hence restricts to $-\zeta \cdot Id$ on eigenspaces.

Consider the action of $G_{\theta}/U(1)$ on $G_{\theta} \cdot \{B_h\} \subset \operatorname{Rep}_{\theta}$. If has non-trivial stabilizer, take eigen-decomp. of that. Keep on doing this, until $G_{\theta}/U(1)$ acts freely on orbit of B_h . Momentum of B_h is still $-\zeta \cdot \text{Id.}$

Then B_h is a smooth point of $\mu^{-1}(-\zeta)/G_{\theta}$ (where μ here is $M(\theta, 0) \rightarrow Z_{\nu} \oplus (Z_{\nu} \otimes \mathbb{C})$). Denote the corresponding rep. by V'.

Recall at a smooth point with framing,

 $\dim_{\mathbb{R}} \mathfrak{M}_{r}^{\mathrm{reg}} = \dim_{\mathbb{R}} M - 4 \dim_{\mathbb{R}} G_{\mathbf{v}} = 2^{t} \mathbf{v} (2\mathbf{w} - \mathbf{C}\mathbf{v})$ Without framing: $\dim \mu^{-1}(-\zeta)/G_{\theta} = 2 - \theta^t C \theta \ge 0$ (where 2 comes from that U(1) acts trivially in hyperKaehler quotient. w = 0.) Hence the dim. vector of $V': \theta \in R_+(v)$. By Lemma below, $\zeta_{\mathbb{R}} \perp \theta$ and $\zeta_{\mathbb{C}} \perp \theta$, that is, $\zeta \in \mathbb{R}^3 \otimes D_{\theta}$. QED.

Given any subrep. $V' \subset V$ with $i(W) \subset (V')^{\perp}$ and $V'' \subset V$ with $\zeta_{\mathbb{R}} \perp \theta$ and $\zeta_{\mathbb{C}} \perp \theta$.

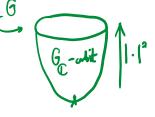
Proof.

Take π : ortho. proj. $V \rightarrow V'$. $i\pi \in g$ (skew-Herm.) $e^{ti\pi} \in G$ fixes (B, i, j): $e^{ti\pi}$ is Id on V'^{\perp} and $\in U(1)$ on V'. Hence acts trivially (as overall scaling) on V'; i, j are only supported on V'^{\perp} .

Hence Hamiltonian function in direction of $i\pi$ is constant, which must be 0 since $\mu(B = 0, i = 0, j = 0) = 0$. $\langle \mu(B, i, j), i\pi \rangle_g = 0$. Since $\mu(B, i, j) = \zeta \cdot Id$, get $\langle \zeta \cdot Id, i\pi \rangle_g = \sum_k \zeta_k \dim V'_k = 0 \in \mathbb{R} \bigoplus \mathbb{C}$.

Holomorphic description

[Kirwan],[Ness] For $\xi_{\mathbb{R}} = 0$, sympl = GIT quot: $M_{(0,\xi_{\mathbb{C}})} \cong \mu_{\mathbb{C}}^{-1}(-\xi_{\mathbb{C}})//G_{\nu}^{\mathbb{C}}$ (affine GIT). $(G_{\nu}^{\mathbb{C}} = \prod_{k} GL(V_{k}).)$



stable

Key point: a $G^{\mathbb{C}}$ -orbit is stable iff the orbit has a minimum for $||^2$. In this case, each crit. pt. of $|\mu_{\mathbb{R}}|^2$ lies in $\mu_{\mathbb{R}}^{-1}\{0\}$.

For generic $(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}),$ $\mathfrak{M}_{\zeta} \xrightarrow{\cong} H^{s}_{\zeta}/G^{\mathbb{C}}_{\mathbf{v}}$

where

 $H^s_{\zeta} \stackrel{\text{def.}}{=} \{ m \in \mu_{\mathbb{C}}^{-1}(-\zeta_{\mathbb{C}}) | \text{the } G^{\mathbb{C}}_{\mathbf{v}} \text{-orbit through } m \text{ intersects the level set } \mu_{\mathbb{R}}^{-1}(-\zeta_{\mathbb{R}}) \}.$

If $(0, \zeta_{\mathbb{C}})$ is generic (in the above sense that there is no strictly semi-stable points), then for $(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}})$,

all points are stable: $H^{s}_{(\zeta_{\mathbb{R}},\zeta_{\mathbb{C}})} = \mu_{\mathbb{C}}^{-1}(-\xi_{\mathbb{C}}) \forall \zeta_{\mathbb{R}}.$ Then complex structure is indep. of $\zeta_{\mathbb{R}}.$ (Only Kaehler structure depends.) (No resolution occurs.)

The above def. of H_{ζ}^{s} is not practical enough.

Prop.

If $\zeta_{\mathbb{R}}^{(k)} > 0 \ \forall k,$ $(B, i, j) \in H_{\zeta}^{s}$

⇔ No 1

No non-trivial subrep. of *B* lies in kernel of j_k , namely, for $(S_k \subset V_k)_k$, preserved by *B* and $j_k(S_k) = 0 \forall k$, then $S_k = 0 \forall k$.

Resolution of singularity

Denote $\zeta = (0, \zeta_{\mathbb{C}})$ generic. $\tilde{\zeta} = (\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}).$ Have I-holomorphic

 $\pi: \mathfrak{M}_{\tilde{\zeta}} \to \mathfrak{M}_{\zeta}.$

(Also known as affinization. RHS is Spec of $G_{\mathbb{C}}$ -inv. functions.)

Thm. 4.1.

1. π is proper. 2. $\pi^{-1}\left(M_{\zeta}^{\text{reg}}\right) \cong M_{\zeta}^{\text{reg}}$. (π is resol. of sing.) 3. If $M_{\zeta}^{\text{reg}} \neq \emptyset$, then $\pi^{-1}\left(M_{\zeta}^{\text{reg}}\right)$ dense in $M_{\tilde{\zeta}}$.

<u>C[×]-action</u> Assume ($\zeta_{\mathbb{R}}$, 0) generic.

 $M_{\zeta_{\mathbb{R}}} := \bigcup_{\zeta_{\mathbb{C}}} M_{(\zeta_{\mathbb{R}},\zeta_{\mathbb{C}})} \to Z_{\mathbb{C}}.$ (Need to take union since $\mu_{\mathbb{C}} = \zeta_{\mathbb{C}}$ is generally not preserved by the following action. If we take $\zeta_{\mathbb{C}} = 0$, then preserved and don't need to take union.)

 \mathbb{S}^1 -action: $(B_h, i_k, j_k) \mapsto (t^{(1-\varepsilon(h))/2} B_h, i_k, tj_k)$ That is, arrows in $M_{\overline{\Omega}}$ are multiplied by t, those in M_{Ω} are unchanged.

Recall that

$$\mu_{\mathbb{R}}(B, i, j) = \frac{i}{2} \left(\sum_{h \in H: k = in(h)} B_h B_h^{\dagger} - B_{\bar{h}}^{\dagger} B_{\bar{h}} + i_k i_k^{\dagger} - j_k^{\dagger} j_k \right)_k \in \bigoplus_k \mathfrak{u}(V_k) = \mathfrak{g}_{\mathbf{v}}$$
$$\mu_{\mathbb{C}}(B, i, j) = \left(\sum_{h \in H: k = in(h)} \varepsilon(h) B_h B_{\bar{h}} + i_k j_k \right)_k \in \bigoplus_k \mathfrak{gl}(V_k) = \mathfrak{g}_{\mathbf{v}} \otimes \mathbb{C},$$

 $\mu_{\mathbb{R}} = -\zeta_{\mathbb{R}} \text{ preserved};$ (Note: this is not preserved if we take $t \in \mathbb{C}^{\times}$.) $\mu_{\mathbb{C}}(t \cdot (B, i, j)) = t\mu_{\mathbb{C}}(B, i, j).$

Use this action (and its moment map flow) to understand topology.

THEOREM 5.1. The S¹-action on $\mathcal{M}_{\zeta_{\mathbb{R}}}$ has the following properties:

(1) The natural projection map $\mathcal{M}_{\zeta_{\mathbb{R}}} \to Z \otimes \mathbb{C}$ is equivariant; here we make S^1 act on the vector space $Z \otimes \mathbb{C}$ with weight 1. (In particular, $\mathfrak{M}_{(\zeta_{\mathbb{R}},0)}$ admits an S^1 -action.)

(2) It preserves the complex structure I and the metric.

- (3) The holomorphic symplectic form $\omega_{\mathbb{C}}$ transforms as $\omega_{\mathbb{C}} \to t\omega_{\mathbb{C}}$.
- (4) The corresponding moment map

$$F([B, i, j]) = \sum_{h \in \Omega} \|B_h\|^2 + \sum_k \|j_k\|^2$$

is proper.

(5) The action is extended to a holomorphic (with respect to I) \mathbb{C}^* -action. If we use the holomorphic description $\mathfrak{M}_{(\zeta_{\mathbb{R}},\zeta_{\mathbb{C}})} = H^s_{(\zeta_{\mathbb{R}},\zeta_{\mathbb{C}})}/G^{\mathbb{C}}_{\mathbf{v}}$, the \mathbb{C}^* -action is given by

$$G^{\mathbb{C}}_{\mathbf{v}}(B_h, i_k, j_k) \mapsto G^{\mathbb{C}}_{\mathbf{v}}(t^{(1-\varepsilon(h))/2}B_h, i_k, tj_k).$$

Recall

$$\omega_{\mathbb{C}}((B, i, j), (B', i', j')) \stackrel{\text{def.}}{=} \sum_{h \in H} \operatorname{tr}(\varepsilon(h) B_h B'_{\bar{h}}) + \sum_{k=1}^n \operatorname{tr}(i_k j'_k - i'_k j_k)$$

(4):

Assume not. Then there exists a sequence $[(B, i, j)_l]$ in

 $M_{\zeta_{\mathbb{R}}}$ that has no convergent subsequence, whose *F*-image lies in a bounded interval.

 $|(B, i, j)_l| \rightarrow \infty$ or otherwise must has convergent subseq. Take $(B, i, j)_l/|(B, i, j)_l|$ lying in the unit sphere and hence must have convergent subseq.

 $\mu_{\mathbb{R}}((B,i,j)_{l}/|(B,i,j)_{l}|) \to 0 \text{ (since } \mu_{\mathbb{R}}((B,i,j)_{l}) = \zeta_{\mathbb{R}})$ and

 $F((B, i, j)_l / | (B, i, j)_l |) \rightarrow 0$ (since $F((B, i, j)_l)$ is bounded). Then the limit (B, i, j) has

 $|(B, i, j)| = 1, \mu_{\mathbb{R}}(B, i, j) = 0$ and F(B, i, j) = 0.

F = 0 means (B, i, j) is usual framed quiver rep. (without doubling).

 $\mu_{\mathbb{R}} = 0$ implies at sink, i = 0 and arrow maps to sink = 0. Inductively, (B, i, j) = 0. But |(B, i, j)| = 1! sink V B i

In (5), still need to take $M_{\zeta_{\mathbb{R}}} \coloneqq \bigcup_{\zeta_{\mathbb{C}}} M_{(\zeta_{\mathbb{R}},\zeta_{\mathbb{C}})}$ since $\zeta_{\mathbb{C}} \mapsto t\zeta_{\mathbb{C}}$. The holo. description implies the new point has orbit

closure intersects the orbit closure of $\left(t^{1-\frac{\epsilon(h)}{2}}B_h, i_k, tj_k\right)$. Want to argue it has the same orbit as $\left(t^{1-\frac{\epsilon(h)}{2}}B_h, i_k, tj_k\right)$.

Since the moment map F has compact fibers, the corresponding Ham. flow (which is J of the S^1 -flow)

is complete.

The new point after action lies in $M_{(\zeta_{\mathbb{R}}, t\zeta_{\mathbb{C}})}$, whose representative has $G_{\mathbb{C}}$ -orbit of max. dim.

(All points are strictly stable since $\zeta_{\mathbb{R}}$ is generic.)

Hence it lies in $G_{\mathbb{C}} \cdot \left(t^{1-\frac{\epsilon(h)}{2}}B_h, j_k, tj_k\right)$. (Note that $\left(t^{1-\frac{\epsilon(h)}{2}}B_h, j_k, tj_k\right) \notin \mu_{\mathbb{R}}^{-1}\{\zeta_{\mathbb{R}}\}!$)

The \mathbb{C}^{\times} -action preserve $\cup_{\zeta_{\mathbb{C}}} H^{s}_{(\zeta_{\mathbb{R}},\zeta_{\mathbb{C}})}$, since subrepresentations survive under scaling of arrows.

From the holomorphic description, **Thm. 5.2.**

 $\pi: M_{\zeta_{\mathbb{R}}} \to M_0 \coloneqq \bigcup_{\zeta_{\mathbb{C}}} M_{(0,\zeta_{\mathbb{C}})} \text{ is } \mathbb{C}^{\times}\text{-equiv.}$ Note that in this notation, M_0 is DIFFERENT from $M_{(0,0)}$! $\pi: M_{\zeta_{\mathbb{R}}} \to M_0$ can be understood as simultaneous resolution (of every fiber of $M_0 := \bigcup_{\zeta_{\mathbb{C}}} M_{(0,\zeta_{\mathbb{C}})} \to Z_{\mathbb{C}}$).

[Slodowy]:

 $M_{(\zeta_{\mathbb{R}},0)}$ is homotopy equiv. to $L \coloneqq \pi^{-1}\{0 \in M_{(0,0)}\}$. (Contraction of $M_{(0,0)}$ to 0 induces contraction of $M_{(\zeta_{\mathbb{R}},0)}$ to L.)

 \mathbb{C}^{\times} -fixed point set F must be contained in $M_{(\zeta_{\mathbb{R}},0)}$ (since the base point $\zeta_{\mathbb{C}}$ needs to be fixed by \mathbb{C}^{\times}). Since π is equiv, $\pi(F)$ must be contained in fixed point set of $M_{(0,0)}$. Fixed point set of $M_{(0,0)}$ is just [0]: (B, i, j) fixed by \mathbb{C}^{\times} implies it has doubled part = 0. $\zeta_{\mathbb{R}} = 0$ implies (B, i, j) = 0 inductively like proof of (4) above .

Thus $F \subset \pi^{-1}\{0\} =: L.$

Homology

Denote conn. cpnt. of *F* by $F_1 \dots F_p$. *f*: moment map of the S¹-action on $M_{(\zeta_{\mathbb{R}},0)}$. Perfect Morse function. Proper by Thm. 5.1 (4). grad $f = 2I \cdot V$.

F is the set of critical points of *f*. S^1 -action on $T_x M_{(\zeta_{\mathbb{R}},0)}$ for $x \in F$ gives weight decomp.

$$T_{\mathcal{X}}M_{(\zeta_{\mathbb{R}},0)}=\bigoplus_{m}H^{m}.$$

 $T_x F_\alpha = H^{m=0}$. Hess_x(f) acts on H^m as multi. by *m*.

ex.

$$\int f = \frac{mr^2}{2}$$

$$H_{us} = \begin{pmatrix} m \\ m \end{pmatrix}$$

$$\int_{m\partial_0} w = mr dr.$$

 $\operatorname{Ind}(x) = m_{\alpha} \coloneqq \sum_{m < 0} \dim_{\mathbb{R}} H^m.$

(Points in the same fixed component have the same index.)

Since $M_{(\zeta_{\mathbb{R}},0)}$ is homotopy equiv. to *L*, **Prop. 5.7.**

$$H_i(M_{(\zeta_{\mathbb{R}},0)}) \cong H_i(L) \cong \bigoplus_{1 \le \alpha \le p} H_{i-m_\alpha}(F_\alpha).$$

The second equality is due to *f* being perfect Morse.

In general, Ind(x) = dim_{\mathbb{R}}M - dim_{\mathbb{R}} F_{α} - #(positive directions). We can do better in this case: **Lem. 5.6.** For each α (indexing of fix set), $m_{\alpha} = \dim_{\mathbb{C}} M_{(\zeta_{\mathbb{R}},0)} - \dim_{\mathbb{R}} F_{\alpha}$.

Proof.

Consider $\omega_{\mathbb{C}}: T_x M_{(\zeta_{\mathbb{R}},0)} \wedge T_x M_{(\zeta_{\mathbb{R}},0)} \to \mathbb{C}.$ $\omega_{\mathbb{C}}$ becomes $t\omega_{\mathbb{C}}$ under the action. Hence it has weight 1. $\omega_{\mathbb{C}}: H^m \cong H^{1-m}.$ (Recall that H^m are the weight spaces of $T_x M_{(\zeta_{\mathbb{R}},0)}.$) Then

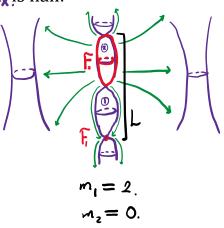
 $\sum_{m \le 0} \dim H^m = \sum_{m > 0} \dim H^m.$ They add up to $\dim_{\mathbb{R}} M_{(\zeta_{\mathbb{R}}, 0)}$, and hence each is half. LHS = $m_{\alpha} + \dim_{\mathbb{R}} F_{\alpha}$.

Thm. 5.8.

 $L = \pi^{-1}(0)$ decomposes into {points that flows to F_{α} } for $\alpha = 1, ..., p$. Closure of each is an irred. component. L is Lag. w.r.t. $\omega_{\mathbb{C}}$.

Reason:

 ω becomes $t\omega$ under pull-back by the \mathbb{C}^{\times} -action.



Thus $\omega(t \cdot u, t \cdot v) = t\omega(u, v)$. If $u, v \in TL$, LHS is bounded for $t \to \infty$. (Paths are gradually sent to the fixed locus by the action.) Hence $\omega(u, v) = 0$, L must be isotropic. Also it is half dim. since at fixed point,

$$T_x L = \bigoplus_{m \le 0} H^m$$

ex. Cotangent bundle of A_n flag $F(v_1, ..., v_n; r)$ for $r > v_1 > \cdots > v_n > 0$. $T^*F = \{(\phi, A) \in F \times \operatorname{End}(\mathbb{C}^r): A(E^k) \subset E^{k+1}\}$ where $\phi = (E^0 = \mathbb{C}^r \supset E^1 \supset \cdots \supset E^{n+1} = 0)$.

Thm. 7.3.

Let
$$\zeta_{\mathbb{R}} = \left(\frac{i\zeta_{\mathbb{R}}^{(1)}}{2}, \dots, \frac{i\zeta_{\mathbb{R}}^{(n)}}{2}\right)$$

where $\zeta_{\mathbb{R}}^{(k)} > 0, k = 1, \dots, n$

 $M_{(\zeta_{\mathbb{R}},0)} \cong T^* F.$

Proof.

 $B_{k-1,k}$ (arrow from k to k-1) and j_1 are injective: the last vertex: $B_{n,n-1}B_{n,n-1}^{\dagger} - B_{n-1,n}^{\dagger}B_{n-1,n} = -\zeta_{\mathbb{R}}^{(n)}1_{V_n}$ hence $B_{n-1,n}$ is injective. Suppose $B_{k-1,k}$ is inj. At the vertex (k-1): $B_{k-1,k}B_{k,k-1} - B_{k-1,k-2}B_{k-2,k-1} = 0$ Hence $Ker B_{k-2,k-1} \subset Ker B_{k,k-1}$.

$$B_{k-1,k}B_{k-1,k}^{\dagger} - B_{k,k-1}^{\dagger}B_{k,k-1} + B_{k-2,k-1}B_{k-1,k-2}^{\dagger} - B_{k-1,k-2}B_{k-2,k-1}$$

= $-\zeta_{\mathbb{R}}^{(k-1)}1_{V_{k-1}}$
Hence $B_{k-2,k-1}$ is inj.

Similarly, consider the equations at the first vertex, get j_1 inj.

Thus $M_{(\zeta_{\mathbb{R}},0)} \subset \{(B,i,j): \mu_{\mathbb{C}}(B,i,j) = 0, B_{k-1,k} \text{ and } j_1 \text{ are inj.} \}/G_{\nu}^{\mathbb{C}}.$

 $\stackrel{1}{\bullet} \xrightarrow{2} \xrightarrow{3} \xrightarrow{n-2} \xrightarrow{n-1} \xrightarrow{n} \xrightarrow{n}$

From RHS to
$$T^*F$$
:
Get a flag $E^k = \text{Im } j_1 B_{1,2} \dots B_{k-1,k}$.
 $E^1 \supset \dots \supset E^n$.
Take $A = j_1 i_1 \in \text{End } \mathbb{C}^r$.
 $A(E^k) \subset E^{k+1}$:
 $j_1 i_1 j_1 B_{1,2} \dots B_{k-1,k} = j_1 B_{1,2} B_{2,1} B_{1,2} \dots B_{k-1,k}$
(like moving $B_{1,2}$ to the left and create $B_{2,1} B_{1,2}$)
 $= j_1 B_{1,2} \dots B_{k-1,k} B_{k,k-1} B_{k-1,k} = j_1 B_{1,2} \dots B_{k-1,k} B_{k,k+1} B_{k+1,k}$
and hence image lies in $Im(j_1 B_{1,2} \dots B_{k-1,k} B_{k,k+1}) = E^{k+1}$.

Surjective: construct j_1 , $B_{k-1,k}$ according to the flag E. $A(\mathbb{C}^r) \subset E^1 = \operatorname{Im} j_1 \stackrel{j_1}{\cong} V_1$ defines i_1 . Similarly $A(E^k) \subset E^{k+1}$ defines $B_{k+1,k}$.

Injective: If (B, i, j) and (B', i', j') give the same (E, A), can make $B_{k-1,k} = B'_{k-1,k}$ and j = j' by $G_{v}^{\mathbb{C}}$. $A = j_{1}i_{1} = j'_{1}i'_{1} = j_{1}i'_{1}$ implies $i_{1} = i'_{1}$ since j_{1} is inj. $B_{1,2}B_{2,1} + i_{1}j_{1} = 0 = B'_{1,2}B'_{2,1} + i'_{1}j'_{1}$ and $B_{1,2} = B'_{1,2}$ implies $B_{2,1} = B'_{2,1}$. Keep on doing this, get (B, i, j) = (B', i', j').

 $M_{(\zeta_{\mathbb{R}},0)} \to T^*F$ is open and closed, and hence is iso: Whether $G_v^{\mathbb{C}}$ -orbit has solution to $\mu_{\mathbb{R}} = \zeta_{\mathbb{R}}$ is open cond. The map $A = j_1 i_1: M_{(\zeta_{\mathbb{R}}, 0)} \to \text{End}(\mathbb{C}^r)$ is proper and hence closed.

([Kraft-Procesi] proved $M_0 \to \text{End}(\mathbb{C}^r)$ is isom. to closure of conj. class of a nilpotent matrix.)