[Nakajima - Instantons on ALE spaces, quiver varieties and Kac-Moody Algebras]

- Provide nice examples of (non-compact) holomorphic symplectic varieties and resolutions of singularities
- Cohomologies give representations of Kac-Moody Lie algebras
- Naturally come up as mod. of ASD connections over $\widetilde{\mathbb{C}_{2} / \Gamma}$ [Kronheimer]

Hyper-Kaehler quotient

Given graph with no self edge.
H : set of all edges together with orientation.
Choose $\Omega \subset H$ with
$\Omega \cup \bar{\Omega}=H, \Omega \cap \bar{\Omega}=\varnothing$
such that Ω has no oriented cycle.
ex.

Fix Herm. v.s. $V_{k}, W_{k} \forall$ vertex k.
Dim. vector v, w.
Framed rep. space:

$$
\mathbf{M} \stackrel{\text { def. }}{=}\left(\underset{h \in H}{\oplus} \operatorname{Hom}\left(V_{\text {out }(h)}, V_{\text {in }(h)}\right)\right) \oplus\left(\bigoplus_{k=1}^{n} \operatorname{Hom}\left(W_{k}, V_{k}\right) \oplus \operatorname{Hom}\left(V_{k}, W_{k}\right)\right) .
$$

W_{k} are the framing.
(We have started with M_{Ω} below.)
$(B, i, j) \in M$.
$\operatorname{dim}_{\mathbb{R}} \mathbf{M}=2^{t} \mathbf{v A v}+4^{t} \mathbf{v w}$
where A is adj. matrix.
ex. Quiver with only one vertex.

Holomorphic symplectic:

$$
\omega_{\mathbb{C}}\left((B, i, j),\left(B^{\prime}, i^{\prime}, j^{\prime}\right)\right) \stackrel{\text { def. }}{=} \sum_{h \in H} \operatorname{tr}\left(\varepsilon(h) B_{h} B_{\bar{h}}^{\prime}\right)+\sum_{k=1}^{n} \operatorname{tr}\left(i_{k} j_{k}^{\prime}-i_{k}^{\prime} j_{k}\right)
$$

where $\epsilon(h)=1,-1$ for $h \in \Omega, \bar{\Omega}$ resp.
Decompose into Lagrangian subspaces:

$$
\begin{aligned}
& \mathbf{M}_{\Omega} \stackrel{\text { def. }}{=}\left(\underset{h \in \Omega}{\oplus} \operatorname{Hom}\left(V_{\text {out }(h)}, V_{\text {in }(h)}\right)\right) \oplus\left(\bigoplus_{k=1}^{n} \operatorname{Hom}\left(W_{k}, V_{k}\right)\right) \\
& \mathbf{M}_{\bar{\Omega}} \stackrel{\text { def }}{=}\left(\bigoplus_{h \in \Omega} \operatorname{Hom}\left(V_{\text {out }(h)}, V_{\text {in }(h)}\right)\right) \oplus\left(\bigoplus_{k=1}^{n} \operatorname{Hom}\left(V_{k}, W_{k}\right)\right) .
\end{aligned}
$$

$M=M_{\Omega} \oplus M_{\bar{\Omega}}$ can be understood as $T^{*} M_{\Omega}$.
M has Herm. metric induced from that of V, W.
HyperKaehler:
$J\left(m, m^{\prime}\right)=\left(-m^{\prime \dagger}, m^{\dagger}\right) \forall\left(m, m^{\prime}\right) \in M_{\Omega} \oplus M_{\bar{\Omega}}=M$
Where (\#) ${ }^{\dagger}$ is the Herm. adj. for How space.
$G=\prod_{k} U\left(V_{k}\right)$
acts on M :

$$
\left(B_{h}, i_{k}, j_{k}\right) \mapsto\left(g_{\text {in }(h)} B_{h} g_{\text {out }(h)}^{-1}, g_{k} i_{k}, j_{k} g_{k}^{-1}\right)
$$

preserving hyperKaehler structure.
(G does not act on the framing W.)
ex.

Moment maps of G and $G_{\mathbb{C}}\left(\right.$ w.r.t. $\omega_{\mathbb{R}}$ and $\left.\omega_{\mathbb{C}}\right)$:

$$
\begin{aligned}
& \mu_{\mathbb{R}}(B, i, j)=\frac{i}{2}\left(\sum_{h \in H: k=\operatorname{in}(h)} B_{h} B_{h}^{\dagger}-B_{\bar{h}}^{\dagger} B_{\bar{h}}+i_{k} i_{k}^{\dagger}-j_{k}^{\dagger} j_{k}\right)_{k} \in \bigoplus_{k} \mathfrak{u}\left(V_{k}\right)=\mathfrak{g}_{\mathbf{v}}, \\
& \mu_{\mathbb{C}}(B, i, j)=\left(\sum_{h \in H: k=\operatorname{in}(h)} \varepsilon(h) B_{h} B_{\bar{h}}+i_{k} j_{k}\right)_{k} \in \bigoplus_{k} \mathfrak{g l}\left(V_{k}\right)=\mathfrak{g}_{\mathbf{v}} \otimes \mathbb{C},
\end{aligned}
$$

$\operatorname{Fix} \zeta=\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right) \in Z_{v} \oplus\left(Z_{v} \otimes \mathbb{C}\right)$ where $Z_{v} \subset g_{v}$ center ($i \mathbb{R} \cdot I d$ over each vertex k).
$Z_{v} \subset \mathbb{R}^{Q_{0}}$ (analog of real Carton subalg.)
(Some $v(k)$ can be zero and so $\mathfrak{g l}_{k}=0$.
Then Z_{v} may not be whole $\mathbb{R}^{Q_{0}}$.)

HK quotient:

$$
\mathfrak{M}_{\zeta}=\mathfrak{M}_{\zeta}(\mathbf{v}, \mathbf{w}) \stackrel{\text { def. }}{=}\{(B, i, j) \in \mathbf{M} \mid \mu(B, i, j)=-\zeta\} / G_{\mathbf{v}} .
$$

$\mathfrak{M}_{\zeta}^{\text {reg def. }} \stackrel{\text { dit }}{=}\left\{(B, i, j) \in \mu^{-1}(-\zeta) \mid\right.$ the stabilizer of (B, i, j) in G_{v} is trivial $\} / G_{\boldsymbol{v}}$.

$$
\operatorname{dim}_{\mathbb{R}} \mathbf{M}=2^{t} \mathbf{v A v}+4^{t} \mathbf{v w} \quad \vdash^{t} \mathbf{V} \cdot v
$$

$$
\operatorname{dim}_{\mathbb{R}} \mathfrak{M}_{\zeta}^{\text {reg }}=\operatorname{dim}_{\mathbb{R}} M-4 \operatorname{dim}_{\mathbb{R}} G_{\mathbf{v}}=2^{t} \mathbf{v}(2 \mathbf{w}-\mathbf{C v})
$$

where
$C=2 I-A$ and A is adj. matrix.
(Euler form)

$$
\begin{align*}
& 0 \\
& \text { ex. } \tag{array}\\
& \text { rIse } \\
& \text { ex. }
\end{align*}
$$

$$
\begin{aligned}
& \text { W, } \\
& \text { (} \mathrm{V}_{3} \\
& W_{n}
\end{aligned}
$$

$$
\begin{align*}
& \underset{U(k)}{\mathbf{L}} \mathbf{V} \underset{i}{\sim_{i}^{r}} \tag{12}\\
& \left.i \cdot i^{\prime}-\partial^{\prime} \partial=-\underset{\substack{V_{\text {set }}}}{-S_{\mathbb{R}} \cdot 1 d}\right) / \mathbb{U}(k) \\
& \text { but } v^{\dagger}(R+S)_{v}<0 \text {. }
\end{align*}
$$

Take $S=\operatorname{In} j$.
$(1) \Rightarrow S \subset \operatorname{Ker} i$.
$A=j i$ maps W / S to S
(that is, $W \rightarrow S$ and $S \rightarrow 0$).

$$
\therefore m \simeq T^{\star} G_{r}(k, n) \ni(S, A)
$$

ex. $k=1 . \quad T^{*} \mathbb{P}^{n}$.
(1) $\sum_{i} w_{i} z_{i}=0$.

$$
\begin{aligned}
& T^{*} \mathbb{P}^{n} \xrightarrow{\left(\left.z_{1}\right|^{2}\left|W_{1}\right|^{2}\right)} \mathbb{R}^{n} \\
& \downarrow^{n}\left(z_{1}, v_{1} \ldots z_{n} w_{n}\right) \\
& \mathbb{C}^{n}
\end{aligned}
$$

\mathbb{C} - hyperplane omangenent

Smoothness

$R_{+}:=\left\{\theta \in \mathbb{Z}_{\geq 0}^{n}: \theta^{t} C \theta \leq 2\right\}-\{0\}$.
(Recall $\epsilon_{x}^{t} C \epsilon_{x}=2$, and so positive real roots have $\theta^{t} C \theta=2$.)
$R_{+}(v):=\left\{\theta \in R_{+}: \theta_{k} \leq v^{(k)} \forall k\right\}$ (finite set).
(wall)
$D_{\theta}:=\left\{x \in \mathbb{R}^{n}: x \cdot \theta=0\right\}$
where $\theta \in R_{+}$.
Thm. 2.8.
If
$\zeta \in \mathbb{R}^{3} \otimes \mathbb{R}^{n} \backslash_{\theta \in R_{+}(\boldsymbol{v})} \mathbb{R}^{3} \otimes D_{\theta}$
then M_{ζ} is smooth.
(The HK quotient is complete.)

Proof.

Want: no non-trivial stabilizer.
Suppose has stabilizer: $(B, i, j) \in \mu^{-1}(-\zeta)$ is fixed by $g \in$ G_{v} (whose action is non-trivial).

Eigenspace decomp. of V_{k} by g_{k} :
$V_{k}=\bigoplus_{2} V_{k}(\lambda)$.
$V_{k}=\bigoplus_{\lambda} V_{k}(\lambda)$.
Recall action of g :

$$
\left(B_{h}, i_{k}, j_{k}\right) \mapsto\left(g_{\operatorname{in}(h)} B_{h} g_{\text {out }(h)}^{-1}, g_{k} i_{k}, j_{k} g_{k}^{-1}\right)
$$

Hence B preserves eigenspaces (with same eigenvalues); $i(W) \subset V(1)$;
$j(V(\lambda))=0$ unless $\lambda=1$.
Hence B_{h} restricted on $V_{k}(\lambda)$ (for $\lambda \neq 1$) defines a rep. in $M(\theta, 0)$ (where $\theta=\operatorname{dim} V(\lambda)$).
Momentum μ remains the same:
μ is originally $-\zeta \cdot$ Id. Hence restricts to $-\zeta \cdot$ Id on eigenspaces.

Consider the action of $G_{\theta} / U(1)$ on $G_{\theta} \cdot\left\{B_{h}\right\} \subset \operatorname{Rep}_{\theta}$.
If has non-trivial stabilizer, take eigen-decomp. of that.
Keep on doing this, until
$G_{\theta} / \mathrm{U}(1)$ acts freely on orbit of B_{h}.
Momentum of B_{h} is still $-\zeta \cdot$ Id.
Then B_{h} is a smooth point of $\mu^{-1}(-\zeta) / G_{\theta}$ (where μ here is $M(\theta, 0) \rightarrow Z_{v} \oplus\left(Z_{v} \otimes \mathbb{C}\right)$).
Denote the corresponding rep. by V^{\prime}.
Recall at a smooth point with framing,

$$
\operatorname{dim}_{\mathbb{R}} \mathfrak{M}_{\zeta}^{\text {reg }}=\operatorname{dim}_{\mathbb{R}} M-4 \operatorname{dim}_{\mathbb{R}} G_{\mathbf{v}}=2^{t} \mathbf{v}(2 \mathbf{w}-\mathbf{C v})
$$

Without framing:
$\operatorname{dim} \mu^{-1}(-\zeta) / G_{\theta}=2-\theta^{t} C \theta \geq 0$
(where 2 comes from that $U(1)$ acts trivially in
hyperKaehler quotient. $w=0$.)
Hence the dim. vector of $V^{\prime}: \theta \in R_{+}(v)$.
By Lemma below,
$\zeta_{\mathbb{R}} \perp \theta$ and $\zeta_{\mathbb{C}} \perp \theta$, that is,
$\zeta \in \mathbb{R}^{3} \otimes D_{\theta}$.
QED.
Lemma: $\mu(V)=\zeta$.
Given any subrep. $V^{\prime} \subset V$ with
$i(W) \subset\left(V^{\prime}\right)^{\perp}$ and $j\left(V^{\prime}\right)=0$,
$\zeta_{\mathbb{R}} \perp \theta$ and $\zeta_{\mathbb{C}} \perp \theta$.

Proof.

Take
π : ortho. proj. $V \rightarrow V^{\prime}$.
$i \pi \in \mathrm{~g}$ (skew-Herm.)
$e^{t i \pi} \in G$ fixes (B, i, j) :
$e^{t i \pi}$ is Id on $V^{\prime \perp}$ and $\in U(1)$ on V^{\prime}.
Hence acts trivially (as overall scaling) on V^{\prime};
i, j are only supported on $V^{\prime \perp}$.
Hence Hamiltonian function in direction of $i \pi$ is constant, which must be 0 since $\mu(B=0, i=0, j=0)=0$.
$\langle\mu(B, i, j), i \pi\rangle_{g}=0$.
Since $\mu(B, i, j)=\zeta \cdot$ Id, get
$\langle\zeta \cdot \operatorname{Id}, i \pi\rangle_{\mathrm{g}}=\sum_{k} \zeta_{k} \operatorname{dim} V_{k}^{\prime}=0 \in \mathbb{R} \oplus \mathbb{C}$.

Holomorphic description

[Kirwan],[Ness]
For $\xi_{\mathbb{R}}=0$,
sympl $=$ GIT quot:
$M_{\left(0, \xi_{\mathbb{C}}\right)} \cong \mu_{\mathbb{C}}^{-1}\left(-\xi_{\mathbb{C}}\right) / / G_{v}^{\mathbb{C}}$

(affine GIT).
$\left(G_{v}^{\mathbb{C}}=\prod_{k} G L\left(V_{k}\right).\right)$
Key point: a $G^{\mathbb{C}}$-orbit is stable iff the orbit has a minimum for $\|^{2}$.
In this case,
each crit. pt. of $\left|\mu_{\mathbb{R}}\right|^{2}$ lies in $\mu_{\mathbb{R}}^{-1}\{0\}$.
For generic $\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right)$,

$$
\mathfrak{M}_{\zeta} \cong H_{\zeta}^{\mathrm{s}} / G_{\mathbf{v}}^{\mathbf{C}}
$$

where

$H_{\zeta}^{\text {s }} \stackrel{\text { def. }}{=}\left\{m \in \mu_{\mathbb{C}}^{-1}\left(-\zeta_{\mathbb{C}}\right) \mid\right.$ the $G_{v}^{\mathbb{C}}$-orbit through m intersects the level set $\left.\mu_{\mathbb{R}}^{-1}\left(-\zeta_{\mathbb{R}}\right)\right\}$.
If $\left(0, \zeta_{\mathbb{C}}\right)$ is generic (in the above sense that there is no strictly semi-stable points), then for $\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right)$,
all points are stable:
$H_{\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right)}^{S}=\mu_{\mathbb{C}}^{-1}\left(-\xi_{\mathbb{C}}\right) \forall \zeta_{\mathbb{R}}$.
Then complex structure is indep. of $\zeta_{\mathbb{R}}$.
(Only Kaehler structure depends.)
(No resolution occurs.)
The above def. of H_{ζ}^{S} is not practical enough.

Prop.

If $\zeta_{\mathbb{R}}^{(k)}>0 \forall k$,
$(B, i, j) \in H_{\zeta}^{S}$
\Leftrightarrow
No non-trivial subrep. of B lies in kernel of j_{k}, namely,
for $\left(S_{k} \subset V_{k}\right)_{k}$, preserved by B and $j_{k}\left(S_{k}\right)=0 \forall k$, then $S_{k}=0 \forall k$.

Resolution of singularity

Denote
$\zeta=\left(0, \zeta_{\mathbb{C}}\right)$ generic.
$\tilde{\zeta}=\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right)$.
Have I-holomorphic

$$
\pi: \mathfrak{M}_{\zeta} \rightarrow \mathfrak{M}_{\zeta} .
$$

(Also known as affinization.
RHS is Spec of $G_{\mathbb{C}}$-inv. functions.)
Thm. 4.1.

1. π is proper.
2. $\pi^{-1}\left(M_{\zeta}^{\mathrm{reg}}\right) \cong M_{\zeta}^{\mathrm{reg}}$. (π is resol. of sing.)
3. If $M_{\zeta}^{\text {reg }} \neq \emptyset$, then $\pi^{-1}\left(M_{\zeta}^{\text {reg }}\right)$ dense in $M_{\tilde{\zeta}}$.

\mathbb{C}^{\times}-action

Assume ($\zeta_{\mathbb{R}}, 0$) generic.
$M_{\zeta_{\mathbb{R}}}:=\mathrm{U}_{\zeta_{\mathbb{C}}} M_{\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right)} \rightarrow Z_{\mathbb{C}}$.
(Need to take union since $\mu_{\mathbb{C}}=\zeta_{\mathbb{C}}$ is generally not preserved by the following action.
If we take $\zeta_{\mathbb{C}}=0$, then preserved and don't need to take
union.)

\mathbb{S}^{1}-action:

$$
\left(B_{h}, i_{k}, j_{k}\right) \mapsto\left(t^{(1-\varepsilon(h)) / 2} B_{h}, i_{k}, t j_{k}\right)
$$

That is, arrows in $M_{\bar{\Omega}}$ are multiplied by t, those in M_{Ω} are unchanged.

Recall that

$$
\begin{aligned}
& \mu_{\mathbb{R}}(B, i, j)=\frac{i}{2}\left(\sum_{h \in H: k=\operatorname{in}(h)} B_{h} B_{h}^{\dagger}-B_{\bar{h}}^{\dagger} B_{\bar{h}}+i_{k} i_{k}^{\dagger}-j_{k}^{\dagger} j_{k}\right)_{k} \in \bigoplus_{k} \mathfrak{u}\left(V_{k}\right)=\mathfrak{g}_{\mathbf{v}}, \\
& \mu_{\mathbb{C}}(B, i, j)=\left(\sum_{h \in H: k=\mathrm{in}(h)} \varepsilon(h) B_{h} B_{\bar{h}}+i_{k} j_{k}\right)_{k} \in \bigoplus_{k} \mathfrak{g l}\left(V_{k}\right)=\mathrm{g}_{\mathbf{v}} \otimes \mathbb{C},
\end{aligned}
$$

$\mu_{\mathbb{R}}=-\zeta_{\mathbb{R}}$ preserved;
(Note: this is not preserved if we take $t \in \mathbb{C}^{\times}$.)
$\mu_{\mathbb{C}}(t \cdot(B, i, j))=t \mu_{\mathbb{C}}(B, i, j)$.
Use this action (and its moment map flow) to understand topology.

Theorem 5.1. The S^{1}-action on $\mathscr{M}_{\zeta_{\mathrm{R}}}$ has the following properties:
(1) The natural projection map $\mathscr{M}_{\zeta_{\mathbb{R}}} \rightarrow Z \otimes \mathbb{C}$ is equivariant; here we make S^{1} act on the vector space $Z \otimes \mathbb{C}$ with weight 1 . (In particular, $\mathfrak{M}_{\left(\mathfrak{H}_{\mathbb{R}}, 0\right)}$ admits an S^{1}-action.)
(2) It preserves the complex structure I and the metric.
(3) The holomorphic symplectic form $\omega_{\mathbb{C}}$ transforms as $\omega_{\mathbb{C}} \rightarrow t \omega_{\mathbb{C}}$.
(4) The corresponding moment map

$$
F([B, i, j])=\sum_{h \in \bar{\Omega}}\left\|B_{h}\right\|^{2}+\sum_{k}\left\|j_{k}\right\|^{2}
$$

is proper.
(5) The action is extended to a holomorphic (with respect to I) \mathbb{C}^{*}-action. If we use the holomorphic description $\mathfrak{M}_{\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right)}=H_{\left(\zeta_{\mathrm{R}}, \zeta_{\mathrm{C}}\right)}^{\mathrm{s}} / G_{\mathbf{v}}^{\mathbb{C}}$, the \mathbb{C}^{*}-action is given by

$$
G_{v}^{\mathbb{C}}\left(B_{h}, i_{k}, j_{k}\right) \mapsto G_{v}^{\mathbb{C}}\left(t^{(1-\varepsilon(h)) / 2} B_{h}, i_{k}, t j_{k}\right) .
$$

Recall

$$
\omega_{\mathbb{C}}\left((B, i, j),\left(B^{\prime}, i^{\prime}, j^{\prime}\right)\right) \stackrel{\text { def. }}{=} \sum_{h \in H} \operatorname{tr}\left(\varepsilon(h) B_{h} B_{\bar{h}}^{\prime}\right)+\sum_{k=1}^{n} \operatorname{tr}\left(i_{k} j_{k}^{\prime}-i_{k}^{\prime} j_{k}\right)
$$

(4):

Assume not. Then there exists a sequence $\left[(B, i, j)_{l}\right]$ in
$M_{\zeta_{\mathbb{R}}}$ that has no convergent subsequence, whose F-image
lies in a bounded interval.
$\left|(B, i, j)_{l}\right| \rightarrow \infty$ or otherwise must has convergent subseq.
Take $(B, i, j)_{l} /\left|(B, i, j)_{l}\right|$ lying in the unit sphere and hence must have convergent subseq.
$\mu_{\mathbb{R}}\left((B, i, j)_{l} /\left|(B, i, j)_{l}\right|\right) \rightarrow 0\left(\right.$ since $\left.\mu_{\mathbb{R}}\left((B, i, j)_{l}\right)=\zeta_{\mathbb{R}}\right)$
and
$F\left((B, i, j)_{l} /\left|(B, i, j)_{l}\right|\right) \rightarrow 0\left(\right.$ since $F\left((B, i, j)_{l}\right)$ is bounded $)$.
Then the limit (B, i, j) has
$|(B, i, j)|=1, \mu_{\mathbb{R}}(B, i, j)=0$ and $F(B, i, j)=0$.
$F=0$ means (B, i, j) is usual framed quiver rep. (without doubling).
$\mu_{\mathbb{R}}=0$ implies at sink, $i=0$ and arrow maps to $\operatorname{sink}=0$.
Inductively, $(B, i, j)=0$. But $|(B, i, j)|=1$!

In (5), still need to take $M_{\zeta_{\mathbb{R}}}:=\bigcup_{\zeta_{\mathbb{C}}} M_{\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right)}$ since $\zeta_{\mathbb{C}} \mapsto t \zeta_{\mathbb{C}}$.
The holo. description implies the new point has orbit
closure intersects the orbit closure of $\left(t^{1-\frac{\epsilon(h)}{2}} B_{h}, i_{k}, t j_{k}\right)$.
Want to argue it has the same orbit as $\left(t^{1-\frac{\epsilon(h)}{2}} B_{h}, i_{k}, t j_{k}\right)$.
Since the moment map F has compact fibers,
the corresponding Ham. flow
(which is J of the \mathbb{S}^{1}-flow)
is complete.
The new point after action lies in $M_{\left(\zeta_{\mathbb{R}}, t \zeta_{\mathbb{C}}\right)}$, whose
representative has $G_{\mathbb{C}}$-orbit of max. dim.
(All points are strictly stable since $\zeta_{\mathbb{R}}$ is generic.)
Hence it lies in $G_{\mathbb{C}} \cdot\left(t^{1-\frac{\epsilon(h)}{2}} B_{h}, i_{k}, t j_{k}\right)$.
(Note that $\left(t^{1-\frac{\epsilon(h)}{2}} B_{h}, i_{k}, t j_{k}\right) \notin \mu_{\mathbb{R}}^{-1}\left\{\zeta_{\mathbb{R}}\right\}!$)
The \mathbb{C}^{\times}-action preserve $\cup_{\zeta_{\mathbb{C}}} H_{\left(\zeta_{\mathbb{R}}, \zeta_{\mathbb{C}}\right)}^{S}$, since subrepresentations survive under scaling of arrows.

From the holomorphic description,
Thm. 5.2.
$\pi: M_{\zeta_{\mathbb{R}}} \rightarrow M_{0}:=\cup_{\zeta_{\mathbb{C}}} M_{\left(0, \zeta_{\mathbb{C}}\right)}$ is \mathbb{C}^{\times}-equiv.
Note that in this notation,
M_{0} is DIFFERENT from $M_{(0,0)}$!
$\pi: M_{\zeta_{\mathbb{R}}} \rightarrow M_{0}$
can be understood as simultaneous resolution
(of every fiber of $M_{0}:=\cup_{\zeta_{\mathbb{C}}} M_{\left(0, \zeta_{\mathbb{C}}\right)} \rightarrow Z_{\mathbb{C}}$).

[Slodowy]:

$M_{\left(\zeta_{\mathbb{R}}, 0\right)}$ is homotopy equiv. to $L:=\pi^{-1}\left\{0 \in M_{(0,0)}\right\}$.
(Contraction of $M_{(0,0)}$ to 0 induces contraction of $M_{\left(\zeta_{\mathbb{R}}, 0\right)}$ to L.)
\mathbb{C}^{\times}-fixed point set F must be contained in $M_{\left(\zeta_{\mathbb{R}}, 0\right)}$ (since the base point $\zeta_{\mathbb{C}}$ needs to be fixed by \mathbb{C}^{\times}).
Since π is equiv, $\pi(F)$ must be contained in
fixed point set of $M_{(0,0)}$.
Fixed point set of $M_{(0,0)}$ is just [0]:
(B, i, j) fixed by \mathbb{C}^{\times}implies
it has doubled part $=0$.
$\zeta_{\mathbb{R}}=0$ implies $(B, i, j)=0$ inductively like proof of (4) above.

Thus
$F \subset \pi^{-1}\{0\}=: L$.

Homology

ex.

Denote conn. cpnt. of F by $F_{1} \ldots F_{p}$.

f : moment map of the \mathbb{S}^{1}-action on $M_{\left(\zeta_{\mathbb{R}}, 0\right)}$.
Perfect Morse function.
Proper by Thm. 5.1 (4).
$\operatorname{grad} f=2 I \cdot V$.
F is the set of critical points of f.
\mathbb{S}^{1}-action on $T_{x} M_{\left(\zeta_{\mathbb{R}}, 0\right)}$ for $x \in F$ gives weight decomp.
$T_{x} M_{\left(\zeta_{\mathbb{R}}, 0\right)}=\bigoplus_{m} H^{m}$.
$T_{x} F_{\alpha}=H^{m=0}$.

$\operatorname{Hess}_{x}(f)$ acts on H^{m} as multi. by m.
$\operatorname{Ind}(x)=m_{\alpha}:=\sum_{m<0} \operatorname{dim}_{\mathbb{R}} H^{m}$.
(Points in the same fixed component have the same index.)

Since $M_{\left(\zeta_{\mathbb{R}}, 0\right)}$ is homotopy equiv. to L,
Prop. 5.7.
$H_{i}\left(M_{\left(\zeta_{\mathbb{R}}, 0\right)}\right) \cong H_{i}(L) \cong \bigoplus_{1 \leq \alpha \leq p} H_{i-m_{\alpha}}\left(F_{\alpha}\right)$.
The second equality is due to f being perfect Morse.
In general,
$\operatorname{Ind}(x)=\operatorname{dim}_{\mathbb{R}} M-\operatorname{dim}_{\mathbb{R}} F_{\alpha}-\#$ (positive directions).
We can do better in this case:
Lem. 5.6.
For each α (indexing of fix set),
$m_{\alpha}=\operatorname{dim}_{\mathbb{C}} M_{\left(\zeta_{\mathbb{R}}, 0\right)}-\operatorname{dim}_{\mathbb{R}} F_{\alpha}$.

Proof.

Consider $\omega_{\mathbb{C}}: T_{x} M_{\left(\zeta_{\mathbb{R}}, 0\right)} \wedge T_{x} M_{\left(\zeta_{\mathbb{R}}, 0\right)} \rightarrow \mathbb{C}$.
$\omega_{\mathbb{C}}$ becomes $t \omega_{\mathbb{C}}$ under the action.
Hence it has weight 1.
$\omega_{\mathbb{C}}: H^{m} \cong H^{1-m}$.
(Recall that H^{m} are the weight spaces of $T_{x} M_{\left(\zeta_{\mathbb{R}}, 0\right)}$.)
Then
$\sum_{m \leq 0} \operatorname{dim} H^{m}=\sum_{m>0} \operatorname{dim} H^{m}$.
They add up to $\operatorname{dim}_{\mathbb{R}} M_{\left(\zeta_{\mathbb{R}}, 0\right)}$, and hence ead. is half. LHS $=m_{\alpha}+\operatorname{dim}_{\mathbb{R}} F_{\alpha}$.

Thm. 5.8.
$L=\pi^{-1}(0)$ decomposes into \{points that flows to F_{α} \} for $\alpha=1, \ldots, p$.
Closure of each is an irred. component. L is Lag. w.r.t. $\omega_{\mathbb{C}}$.

Reason:

ω becomes $t \omega$ under pull-back by the \mathbb{C}^{\times}-action.

Thus $\omega(t \cdot u, t \cdot v)=t \omega(u, v)$.
If $u, v \in T L$, LHS is bounded for $t \rightarrow \infty$.
(Paths are gradually sent to the fixed locus by the action.)
Hence $\omega(u, v)=0$,
L must be isotropic.
Also it is half dim. since at fixed point,
$T_{x} L=\bigoplus_{m \leq 0} H^{m}$.
ex. Cotangent bundle of A_{n} flag
$F\left(v_{1}, \ldots, v_{n} ; r\right)$ for
$r>v_{1}>\cdots>v_{n}>0$.
$T^{*} F=\left\{(\phi, A) \in F \times \operatorname{End}\left(\mathbb{C}^{r}\right): A\left(E^{k}\right) \subset E^{k+1}\right\}$
where $\phi=\left(E^{0}=\mathbb{C}^{r} \supset E^{1} \supset \cdots \supset E^{n+1}=0\right)$.

Take $M_{\zeta}(v, w)$ where
$v=\left(v_{1}, \ldots, v_{n}\right), w=(r, 0, \ldots, 0)$.

Thm. 7.3.
Let $\zeta_{\mathbb{R}}=\left(\frac{i \zeta_{\mathbb{R}}^{(1)}}{2}, \ldots, \frac{i \zeta_{\mathbb{R}}^{(n)}}{2}\right)$
where $\zeta_{\mathbb{R}}^{(k)}>0, k=1, \ldots, n$.
$M_{\left(\zeta_{\mathbb{R}}, 0\right)} \cong T^{*} F$.

Proof.

$B_{k-1, k}$ (arrow from k to $k-1$) and j_{1} are injective:
the last vertex:

$$
B_{n, n-1} B_{n, n-1}^{\dagger}-B_{n-1, n}^{\dagger} B_{n-1, n}=-\zeta_{\mathbb{R}}^{(n)} 1_{V_{n}}
$$

hence $B_{n-1, n}$ is injective.
Suppose $B_{k-1, k}$ is inj.
At the vertex $(k-1)$:

$$
B_{k-1, k} B_{k, k-1}-B_{k-1, k-2} B_{k-2, k-1}=0
$$

Hence $\operatorname{Ker} B_{k-2, k-1} \subset \operatorname{Ker} B_{k, k-1}$.
$B_{k-1, k} B_{k-1, k}^{\dagger}-B_{k, k-1}^{\dagger} B_{k, k-1}+B_{k-2, k-1} B_{k-1, k-2}^{\dagger}-B_{k-1, k-2}^{\dagger} B_{k-2, k-1}$

$$
\begin{array}{ll}
\quad=-\xi_{R-1)}^{(k-1)} V_{k-1} \\
\text { Hence } B_{k-2, k-1} \text { is inj. } & V_{1} \hookrightarrow V_{2} \subset V_{3} \ldots c V_{n}
\end{array}
$$

Similarly, consider the equations at the first vertex, get j_{1} inj.

Thus
$M_{\left(\zeta_{\mathbb{R}}, 0\right)} \subset\left\{(B, i, j): \mu_{\mathbb{C}}(B, i, j)=0, B_{k-1, k}\right.$ and j_{1} are inj. $\} / G_{v}^{\mathbb{C}}$.

From RHS to $T^{*} F$:
Get a flag $E^{k}=\operatorname{Im} j_{1} B_{1,2} \ldots B_{k-1, k}$.
$E^{1} \supset \cdots \supset E^{n}$.
Take $A=j_{1} i_{1} \in$ End \mathbb{C}^{r}.
$A\left(E^{k}\right) \subset E^{k+1}$:
$j_{1} i_{1} j_{1} B_{1,2} \ldots B_{k-1, k}=j_{1} B_{1,2} B_{2,1} B_{1,2} \ldots B_{k-1, k}$
(like moving $B_{1,2}$ to the left and create $B_{2,1} B_{1,2}$)
$=j_{1} B_{1,2} \ldots B_{k-1, k} B_{k, k-1} B_{k-1, k}=j_{1} B_{1,2} \ldots B_{k-1, k} B_{k, k+1} B_{k+1, k}$
and hence image lies in $\operatorname{Im}\left(j_{1} B_{1,2} \ldots B_{k-1, k} B_{k, k+1}\right)=E^{k+1}$.
Surjective:
construct $j_{1}, B_{k-1, k}$ according to the flag E.
$A\left(\mathbb{C}^{r}\right) \subset E^{1}=\operatorname{Im} j_{1} \xlongequal{j_{1}} \xlongequal[=]{=}$ defines i_{1}.
Similarly $A\left(E^{k}\right) \subset E^{k+1}$ defines $B_{k+1, k}$.

Injective:
If (B, i, j) and ($\left.B^{\prime}, i^{\prime}, j^{\prime}\right)$ give the same (E, A),
can make $B_{k-1, k}=B_{k-1, k}^{\prime}$ and $j=j^{\prime}$ by $G_{v}^{\mathbb{C}}$.
$A=j_{1} i_{1}=j_{1}^{\prime} i_{1}^{\prime}=j_{1} i_{1}^{\prime}$
implies $i_{1}=i_{1}^{\prime}$ since j_{1} is ind.
$B_{1,2} B_{2,1}+i_{1} j_{1}=0=B_{1,2}^{\prime} B_{2,1}^{\prime}+i_{1}^{\prime} j_{1}^{\prime}$
and $B_{1,2}=B_{1,2}^{\prime}$ implies $B_{2,1}=B_{2,1}^{\prime}$.
Keep on doing this, get $(B, i, j)=\left(B^{\prime}, i^{\prime}, j^{\prime}\right)$.
$M_{\left(\zeta_{\mathbb{R}}, 0\right)} \rightarrow T^{*} F$
is open and closed, and hence is iso:
Whether $G_{v}^{\mathbb{C}}$-orbit has solution to $\mu_{\mathbb{R}}=\zeta_{\mathbb{R}}$ is open cond.

The map $A=j_{1} i_{1}: M_{\left(\zeta_{\mathbb{R}}, 0\right)} \rightarrow \operatorname{End}\left(\mathbb{C}^{r}\right)$ is proper and hence closed.
([Kraft-Procesi] proved $M_{0} \rightarrow \operatorname{End}\left(\mathbb{C}^{r}\right)$ is isom. to closure of conj. class of a nilpotent matrix.)

