
Hyper‐Kaehler	quotient

Given graph with no self edge.
𝐻: set of all edges together with orientation.
Choose 𝛺 ⊂ 𝐻 with
𝛺 ∪ 𝛺 𝐻,𝛺 ∩ 𝛺 ∅
such that 𝛺 has no oriented cycle.

Fix Herm. v.s. 𝑉 ,𝑊   ∀ vertex 𝑘.
Dim. vector 𝑣,𝑤.
Framed rep. space:

𝑊 are the framing.

We have started with 𝑀 below.

Nakajima - Instantons on ALE spaces, quiver 
varieties and Kac-Moody Algebras

Provide nice examples of non-compact  
holomorphic symplectic varieties and resolutions 
of singularities

•

Cohomologies give representations of Kac-Moody 
Lie algebras

•

Naturally come up as mod. of ASD connections over 
ℂ /Γ Kronheimer

•

Nakajima quiver variety
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𝐵, 𝑖, 𝑗 ∈ 𝑀.

where 𝐴 is adj. matrix.

Holomorphic symplectic:

where 𝜖 ℎ 1, 1 for ℎ ∈ Ω,Ω resp.

Decompose into Lagrangian subspaces:

𝑀 𝑀 ⊕𝑀 can be understood as 𝑇∗𝑀 .

𝑀 has Herm. metric induced from that of 𝑉,𝑊.
HyperKaehler:
𝐽 𝑚,𝑚 𝑚 ,𝑚   ∀ 𝑚,𝑚 ∈ 𝑀 ⊕𝑀 𝑀
Where ⬚ is the Herm. adj. for Hom space.

𝐺 𝑈 𝑉

acts on 𝑀:

preserving hyperKaehler structure.
𝐺 does not act on the framing 𝑊.
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Moment maps of 𝐺 and 𝐺ℂ w.r.t. 𝜔ℝ and 𝜔ℂ :

Fix 𝜁 𝜁ℝ, 𝜁ℂ ∈ 𝑍 ⊕ 𝑍 ⊗ ℂ where
𝑍 ⊂ 𝔤 center 𝑖ℝ ⋅ 𝐼𝑑 over each vertex 𝑘 .

𝑍 ⊂ ℝ analog of real Cartan subalg.
Some 𝑣 𝑘 can be zero and so 𝔤𝔩 0.  

Then 𝑍 may not be whole ℝ .

HK quotient:

where
𝐶 2𝐼 𝐴 and 𝐴 is adj. matrix.
Euler form
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Smoothness

𝑅 ≔ 𝜃 ∈ ℤ :𝜃 𝐶 𝜃 2 0 .
Recall ϵ  𝐶 ϵ 2, and so positive real roots have
𝜃 𝐶 𝜃 2.

𝑅 𝑣 ≔ 𝜃 ∈ 𝑅 :  𝜃 𝑣  ∀𝑘 finite set .

wall
𝐷 ≔ 𝑥 ∈ ℝ : 𝑥 ⋅ 𝜃 0
where 𝜃 ∈ 𝑅 .

Thm.	2.8.
If

then 𝑀 is smooth.
The HK quotient is complete.

Proof.
Want: no non-trivial stabilizer.
Suppose has stabilizer: 𝐵, 𝑖, 𝑗 ∈ 𝜇 𝜁 is fixed by 𝑔 ∈
𝐺 whose action is non-trivial .

Eigenspace decomp. of 𝑉 by 𝑔 :

𝑉 𝑉 𝜆 .
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𝑉 𝑉 𝜆 .

Recall action of 𝑔:

Hence 𝐵 preserves eigenspaces with same eigenvalues ;
𝑖 𝑊 ⊂ 𝑉 1 ;
𝑗 𝑉 𝜆 0 unless 𝜆 1.

Hence 𝐵 restricted on 𝑉 𝜆 for 𝜆 1  defines a rep. in 
𝑀 𝜃, 0 where 𝜃 dim 𝑉 𝜆 .

𝜇 is originally 𝜁 ⋅ Id.  Hence restricts to 𝜁 ⋅ Id on 
eigenspaces. 

Momentum 𝜇 remains the same:

Consider the action of 𝐺 /𝑈 1 on 𝐺 ⋅ 𝐵 ⊂ Rep .
If has non-trivial stabilizer, take eigen-decomp. of that.
Keep on doing this, until
𝐺 /U 1 acts freely on orbit of 𝐵 .
Momentum of 𝐵 is still 𝜁 ⋅ Id.

Then 𝐵 is a smooth point of 𝜇 𝜁 /𝐺
where 𝜇 here is 𝑀 𝜃, 0 → 𝑍 ⊕ 𝑍 ⊗ ℂ .

Denote the corresponding rep. by 𝑉 .

Recall at a smooth point with framing,

Without framing:
dim 𝜇 𝜁 /𝐺 2 𝜃 𝐶𝜃 0
where 2 comes from that 𝑈 1 acts trivially in 

hyperKaehler quotient.  𝑤 0.
Hence the dim. vector of 𝑉 : 𝜃 ∈ 𝑅 𝑣 .
By Lemma below,
𝜁ℝ ⊥ 𝜃 and 𝜁ℂ ⊥ 𝜃, that is,
𝜁 ∈ ℝ ⊗𝐷 .
QED.

Lemma:
Given any subrep. 𝑉 ⊂ 𝑉 with 
𝑖 𝑊 ⊂ 𝑉 and 𝑗 𝑉 0, 
𝜁ℝ ⊥ 𝜃 and 𝜁ℂ ⊥ 𝜃.
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Proof.
Take
𝜋: ortho. proj. 𝑉 → 𝑉 .
𝑖𝜋 ∈ 𝔤 skew-Herm.

𝑒 is Id on 𝑉 and ∈ 𝑈 1 on 𝑉 .
Hence acts trivially as overall scaling  on 𝑉 ;
𝑖, 𝑗 are only supported on 𝑉 . 

𝑒 ∈ 𝐺 fixes 𝐵, 𝑖, 𝑗 :

Hence Hamiltonian function in direction of 𝑖𝜋 is constant, 
which must be 0 since 𝜇 𝐵 0, 𝑖 0, 𝑗 0 0.
⟨𝜇 𝐵, 𝑖, 𝑗 , 𝑖𝜋⟩𝔤 0.
Since 𝜇 𝐵, 𝑖, 𝑗 𝜁 ⋅ Id, get

⟨𝜁 ⋅ Id, 𝑖𝜋⟩𝔤 ζ dim𝑉 0 ∈ ℝ⊕ ℂ.

Holomorphic	description
Kirwan , Ness  

For 𝜉ℝ 0,
sympl  GIT quot:
𝑀 , ℂ ≅ 𝜇ℂ 𝜉ℂ //𝐺ℂ

affine GIT .
𝐺ℂ ∏ 𝐺𝐿 𝑉 .

Key point: a 𝐺ℂ-orbit is stable iff 
the orbit has a minimum for || .
In this case,
each crit. pt. of |𝜇ℝ| lies in 𝜇ℝ 0 .

For generic 𝜁ℝ, ζℂ ,

where

If 0, 𝜁ℂ is generic in the above sense that there is no 
strictly semi-stable points , 
then for 𝜁ℝ, 𝜁ℂ , 
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all points are stable:
𝐻

ℝ, ℂ 𝜇ℂ 𝜉ℂ  ∀𝜁ℝ.
Then complex structure is indep. of 𝜁ℝ.
Only Kaehler structure depends.
No resolution occurs.

The above def. of 𝐻 is not practical enough.
Prop.
If ζℝ 0 ∀𝑘,
𝐵, 𝑖, 𝑗 ∈ 𝐻
⟺
No non-trivial subrep. of 𝐵 lies in kernel of 𝑗 , 
namely,
for 𝑆 ⊂ 𝑉 , preserved by 𝐵 and
 𝑗 𝑆 0 ∀𝑘,
then 𝑆 0 ∀𝑘.

Resolution	of	singularity
Denote
𝜁 0, 𝜁ℂ generic.
𝜁 𝜁ℝ, 𝜁ℂ .
Have I-holomorphic

Also known as affinization.  
RHS is Spec of 𝐺ℂ-inv. functions.

𝜋 is proper.1.

𝜋 𝑀 ≅ 𝑀 . 𝜋 is resol. of sing.2.

If 𝑀 ∅, then 𝜋 𝑀 dense in 𝑀 .3.

Thm.	4.1.

ℂ ‐action
Assume 𝜁ℝ, 0 generic.

𝑀 ℝ ≔∪ ℂ 𝑀 ℝ, ℂ → 𝑍ℂ.
Need to take union since 𝜇ℂ 𝜁ℂ is generally not 

preserved by the following action.
If we take ζℂ 0, then preserved and don’t need to take 
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union.

𝕊 -action:

That is,
arrows in 𝑀 are multiplied by 𝑡,
those in 𝑀 are unchanged.

Recall that

𝜇ℝ 𝜁ℝ preserved;
Note: this is not preserved if we take 𝑡 ∈ ℂ .
𝜇ℂ 𝑡 ⋅ 𝐵, 𝑖, 𝑗 𝑡𝜇ℂ 𝐵, 𝑖, 𝑗 .

Use this action and its moment map flow  to understand 
topology.

Recall

4 :
Assume not.  Then there exists a sequence 𝐵, 𝑖, 𝑗 in 
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𝑀 ℝ that has no convergent subsequence, whose 𝐹-image 
lies in a bounded interval.
| 𝐵, 𝑖, 𝑗 | → ∞ or otherwise must has convergent subseq.
Take 𝐵, 𝑖, 𝑗 /| 𝐵, 𝑖, 𝑗 | lying in the unit sphere and hence
must have convergent subseq.
𝜇ℝ 𝐵, 𝑖, 𝑗 /| 𝐵, 𝑖, 𝑗 | → 0 since 𝜇ℝ 𝐵, 𝑖, 𝑗 𝜁ℝ
and
𝐹 𝐵, 𝑖, 𝑗 /| 𝐵, 𝑖, 𝑗 | → 0 since 𝐹 𝐵, 𝑖, 𝑗 is bounded .
Then the limit 𝐵, 𝑖, 𝑗 has 
| 𝐵, 𝑖, 𝑗 | 1, 𝜇ℝ 𝐵, 𝑖, 𝑗 0 and 𝐹 𝐵, 𝑖, 𝑗 0.
𝐹 0 means 𝐵, 𝑖, 𝑗 is usual framed quiver rep. without 
doubling .
𝜇ℝ 0 implies at sink, 𝑖 0 and arrow maps to sink 0.
Inductively, 𝐵, 𝑖, 𝑗 0.  But | 𝐵, 𝑖, 𝑗 | 1 !

In 5 , still need to take 𝑀
ℝ
≔∪

ℂ
𝑀

ℝ, ℂ since 𝜁ℂ ↦ 𝑡𝜁ℂ.
The holo. description implies the new point has orbit 

closure intersects the orbit closure of 𝑡 ⎯⎯⎯⎯𝐵 , , 𝑖 , 𝑡𝑗 .

Want to argue it has the same orbit as 𝑡 ⎯⎯⎯⎯𝐵 , , 𝑖 , 𝑡𝑗 .

Since the moment map 𝐹 has compact fibers,
the corresponding Ham. flow 
which is 𝐽 of the 𝕊 -flow

is complete.
The new point after action lies in 𝑀

ℝ, ℂ
, whose 

representative has 𝐺ℂ-orbit of max. dim.
All points are strictly stable since ζℝ is generic.

Hence it lies in 𝐺ℂ ⋅ 𝑡 ⎯⎯⎯⎯𝐵 , , 𝑖 , 𝑡𝑗 .

Note that 𝑡 ⎯⎯⎯⎯𝐵 , , 𝑖 , 𝑡𝑗 ∉ μℝ 𝜁ℝ !

The ℂ -action preserve ∪ ℂ 𝐻 ℝ, ℂ , since 
subrepresentations survive under scaling of arrows.

From the holomorphic description,
Thm.	5.2.
𝜋:𝑀

ℝ
→ 𝑀 ≔∪

ℂ
𝑀 , ℂ is ℂ -equiv.

Note that in this notation,
𝑀 is DIFFERENT from 𝑀 , !
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𝜋:𝑀 ℝ → 𝑀
can be understood as simultaneous resolution
of every fiber of 𝑀 ≔∪ ℂ 𝑀 , ℂ → 𝑍ℂ .

Slodowy :
𝑀 ℝ, is homotopy equiv. to 𝐿 ≔ 𝜋 0 ∈ 𝑀 , .
Contraction of 𝑀 , to 0 induces contraction of 𝑀

ℝ,

to 𝐿.

ℂ -fixed point set 𝐹 must be contained in 𝑀 ℝ,

since the base point 𝜁ℂ needs to be fixed by ℂ .
Since 𝜋 is equiv, 𝜋 𝐹 must be contained in 
fixed point set of 𝑀 , .
Fixed point set of 𝑀 , is just 0 :
𝐵, 𝑖, 𝑗 fixed by ℂ implies 

it has doubled part  0.
𝜁ℝ 0 implies 𝐵, 𝑖, 𝑗 0 inductively 
like proof of 4  above .

Thus
𝐹 ⊂ 𝜋 0 : 𝐿.

Homology

Denote conn. cpnt. of 𝐹 by 𝐹 …𝐹 .
𝑓: moment map of the 𝕊 -action on 𝑀 ℝ, .
Perfect Morse function.
Proper by Thm. 5.1 4 .
grad 𝑓 2𝐼 ⋅ 𝑉.

𝐹 is the set of critical points of 𝑓.
𝕊 -action on 𝑇 𝑀 ℝ, for 𝑥 ∈ 𝐹
gives weight decomp.

𝑇 𝑀 ℝ, 𝐻 .

𝑇 𝐹 𝐻 .
Hess 𝑓 acts on 𝐻 as multi. by 𝑚.
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Ind 𝑥 𝑚 ≔ dimℝ 𝐻 .

Points in the same fixed component have the same 
index.

Since 𝑀 ℝ, is homotopy equiv. to 𝐿,
Prop.	5.7.

𝐻 𝑀
ℝ, ≅ 𝐻 𝐿 ≅ 𝐻 𝐹 .

The second equality is due to 𝑓 being perfect Morse.

In general,
Ind 𝑥 dimℝ𝑀 dimℝ 𝐹 # positive directions .
We can do better in this case:
Lem.	5.6.
For each 𝛼 indexing of fix set ,
𝑚 dimℂ𝑀 ℝ, dimℝ 𝐹 .

Proof.
Consider 𝜔ℂ:  𝑇 𝑀 ℝ, ∧ 𝑇 𝑀 ℝ, → ℂ.
𝜔ℂ becomes 𝑡𝜔ℂ under the action.
Hence it has weight 1.
ωℂ:𝐻 ≅ 𝐻 .
Recall that 𝐻 are the weight spaces of 𝑇 𝑀

ℝ, .
Then

dim𝐻 dim𝐻 .

They add up to dimℝ𝑀 ℝ, , and hence each is half.
LHS 𝑚 𝑑𝑖𝑚ℝ 𝐹 .

Thm.	5.8.
𝐿 𝜋 0 decomposes into
points that flows to 𝐹

for 𝛼 1, … , 𝑝.
Closure of each is an irred. component.
𝐿 is Lag. w.r.t. 𝜔ℂ.

Reason: 
𝜔 becomes 𝑡𝜔 under pull-back by the
ℂ -action.
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Thus 𝜔 𝑡 ⋅ 𝑢, 𝑡 ⋅ 𝑣 𝑡𝜔 𝑢, 𝑣 .
If 𝑢, 𝑣 ∈ 𝑇𝐿, LHS is bounded for 𝑡 → ∞.
Paths are gradually sent to the fixed locus by the action.

Hence 𝜔 𝑢, 𝑣 0,
𝐿 must be isotropic.
Also it is half dim. since at fixed point,

𝑇 𝐿 𝐻 .

ex. Cotangent bundle of 𝐴 flag
𝐹 𝑣 , … , 𝑣 ; 𝑟 for
𝑟 𝑣 ⋯ 𝑣 0.
𝑇∗𝐹 𝜙,𝐴 ∈ 𝐹 End ℂ :𝐴 𝐸 ⊂ 𝐸
where 𝜙 𝐸 ℂ ⊃ 𝐸 ⊃ ⋯ ⊃ 𝐸 0 .

Take 𝑀 𝑣,𝑤 where
𝑣 𝑣 , … , 𝑣 ,𝑤 𝑟, 0, … , 0 .

Thm.	7.3.

Let 𝜁ℝ ℝ⎯⎯⎯ , … , ℝ⎯⎯⎯

where 𝜁ℝ 0, 𝑘 1, … ,𝑛.

𝑀
ℝ, ≅ 𝑇∗𝐹.

Proof.
𝐵 , arrow from 𝑘 to 𝑘 1  and 𝑗 are injective:
the last vertex:

hence 𝐵 , is injective.
Suppose 𝐵 , is inj.
At the vertex 𝑘 1 :

Hence 𝐾𝑒𝑟 𝐵 , ⊂ 𝐾𝑒𝑟 𝐵 , .
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Hence 𝐵 , is inj.

Similarly, consider the equations at the first vertex,
get 𝑗 inj. 

Thus
𝑀

ℝ, ⊂ 𝐵, 𝑖, 𝑗 :𝜇ℂ 𝐵, 𝑖, 𝑗 0,𝐵 ,  and 𝑗  are inj. /𝐺ℂ.

From RHS to 𝑇∗𝐹:
Get a flag 𝐸 Im 𝑗 𝐵 , …𝐵 , .
𝐸 ⊃ ⋯ ⊃ 𝐸 .
Take 𝐴 𝑗 𝑖 ∈ End ℂ .
𝐴 𝐸 ⊂ 𝐸 :
𝑗 𝑖 𝑗 𝐵 , …𝐵 , 𝑗 𝐵 , 𝐵 , 𝐵 , …𝐵 ,
like moving 𝐵 , to the left and create 𝐵 , 𝐵 ,
𝑗 𝐵 , …𝐵 , 𝐵 , 𝐵 , 𝑗 𝐵 , …𝐵 , 𝐵 , 𝐵 ,

and hence image lies in 𝐼𝑚 𝑗 𝐵 , …𝐵 , 𝐵 , 𝐸 .

Surjective:
construct 𝑗 , 𝐵 , according to the flag 𝐸.

𝐴 ℂ ⊂ 𝐸 Im 𝑗 ≅ 𝑉 defines 𝑖 .
Similarly 𝐴 𝐸 ⊂ 𝐸 defines 𝐵 , .

Injective:
If 𝐵, 𝑖, 𝑗 and 𝐵 , 𝑖 , 𝑗 give the same 𝐸,𝐴 ,
can make 𝐵 , 𝐵 , and 𝑗 𝑗 by 𝐺ℂ.
𝐴 𝑗 𝑖 𝑗 𝑖 𝑗 𝑖
implies 𝑖 𝑖 since 𝑗 is inj.
𝐵 , 𝐵 , 𝑖 𝑗 0 𝐵 , 𝐵 , 𝑖 𝑗
and 𝐵 , 𝐵 , implies 𝐵 , 𝐵 , .
Keep on doing this, get 𝐵, 𝑖, 𝑗 𝐵 , 𝑖 , 𝑗 .

𝑀
ℝ, → 𝑇∗𝐹

is open and closed, and hence is iso:
Whether 𝐺ℂ-orbit has solution to 𝜇ℝ ζℝ is open cond.
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The map 𝐴 𝑗 𝑖 :𝑀 ℝ, → End ℂ is proper and hence 
closed.

Kraft-Procesi  proved 𝑀 → End ℂ is isom. to closure of 
conj. class of a nilpotent matrix.
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