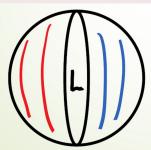
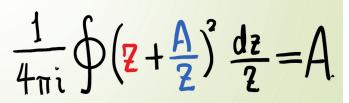
Mirror symmetry: duality between symplectic and complex geometries

Symplectic geometry	Complex geometry
Symplectic form ω	Calabi-Yau volume form Ω
Lagrangian submanifolds	Holomorphic vector bundles
Gromov-Witten invariants	Integrals $\int \Omega$
$H^{p,q}$	$H^{q,p}$



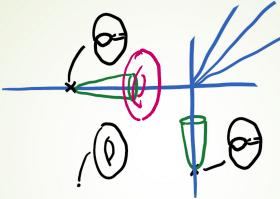


Left and right hemispheres bounded by the equator L add up to area A.

Strominger-Yau-Zaslow: Mirror symmetry is T-duality

- Fundamental geometric guiding principle.
- O_p in \widecheck{M} is mirror to a Lagrangian brane L in M. O_p has n dimensional deformation space. Thus expect $h^1(L)=n$. $Ext^*(O_p,O_p)=\Lambda^*\mathbb{C}^n$. So $L\cong T^n$ cohomologically.
- O_p moves in the whole space.
 Thus L should be a leaf of a foliation, or simply a (special) Lagrangian fibration.
- Need to complexify. Take (L, ∇) . ∇ is a flat U(1) connection in $Hom(\pi_1(L), U(1)) = (T^n)^*$.
- {flat U(1) connections on L} $\cong T^*$ gives a torus in \check{M} . Thus \check{M} should admit a **dual torus fibration**.

Quantum corrections from singular fibers



- Singular fibers occur. Construct and glue in their "dual" to complete the SYZ mirror. [Hong-L.-Kim, Ekholm-Rizell-Tonkonog]
 Glue up a mirror functor. [Cho-Hong-L.]
- Holomorphic discs from singular fibers ⇒ wall-crossing and gluing of dual tori.
 [Auroux, Chan-L.-Leung, Auroux-Abouzaid-Katzarkov, Seidel, Pascaleff-Tonkonog]
- Interacts and produce scattering diagram. [Kontsevich-Soibelman, Gross-Siebert.
 Analytic approach: Chan-Leung-Ma.

 Fukaya, Tu, Abouzaid: family Floer theory for tori. Lin: K3 surfaces.]

Quantum corrections from A-side

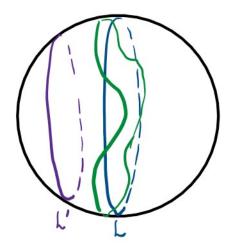
- Need $HF^*(L, L) \cong H^*(T)$ instead of $H^*(L)$. L does not need to be a torus. [Fukaya-Oh-Ohta-Ono toric. Cho-Hong-L. immersed Lagrangians].
- Obstruction term:

$$m_0^L = W \cdot [L] + \sum h_Y \cdot Y \in C^*(L).$$

- May have no commutative solutions to $h_Y = 0$. Noncommutative mirror construction [Cho-Hong-L.]. Ex. Noncommutative resolution of conifold.
- Need Novikov field

$$\Lambda = \left\{ \sum_{i=0}^{\infty} a_i T^{A_i} \colon A_i \to +\infty \right\}.$$

Mirror \check{M} defined over Λ .



The equator L is Hamiltonian non-displaceable, while L' is not. The usual cohomology of L does not tell this. Need Lagrangian Floer cohomology.

$$\mathbb{L} = \{L_1, \dots, L_k\}.$$

Definition 6.1. $Q=Q^{\mathbb{L}}$ is defined to be the following graph. Each vertex v_i of Q corresponds to a Lagrangian $L_i \in \mathbb{L}$. Thus the vertex set is

$$Q_0^{\mathbb{L}} = \{v_1, \cdots, v_k\}.$$

Each arrow from v_i to v_j corresponds to odd-degree Floer generator in $CF^{\bullet}(L_i, L_j)$ (which is an intersection point between L_i and L_j). In particular for i = j, we have loops at v_i corresponding to the odd-degree immersed generators of L_i .

Q will be sometimes called the *endomorphism quiver* of \mathbb{L} .

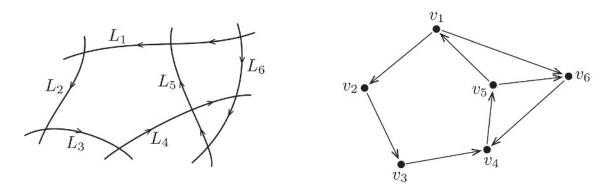


FIGURE 5. Endomorphism quiver Q^{\perp}

The construction is briefly summarized as follows. The odd-degree Floer-theoretical endomorphisms of \mathbb{L} are described by a directed graph Q (so-called a quiver). The path algebra AQ is regarded as the noncommutative space of formal deformations of \mathbb{L} . Each edge e of Q corresponds to an odd-degree Floer generator X_e and a formal dual variable $x_e \in AQ$. Consider the formal deformation $b = \sum_e x_e X_e$. The obstruction is given by

$$m_0^b = m(e^b) = \sum_{k \ge 0} m_k(b, ..., b).$$

A novel point is *extending the notion of weakly unobstructedness by Fukaya-Oh-Ohta-Ono* [**FOOO09**] *to the noncommutative setting.* The corresponding weak Maurer-Cartan equation is

$$m_0^b = \sum_{i=1}^k W_i(b) \mathbf{1}_{L_i}$$

where $\mathbf{1}_{L_i}$ is the Floer-theoretical unit corresponding to the fundamental class of L_i (we assume that Fukaya A_{∞} -category is unital). The solution space is given by a quiver algebra with relations $\mathcal{A} = \Lambda Q/R$ where R is the two-sided ideal generated by weakly unobstructed relations. The end product is a noncommutative Landau-Ginzburg model

$$\mathcal{A}, W = \sum_{i} W_{i}$$

We call this to be a generalized mirror of X, in the sense that there exists a natural functor from the Fukaya category of X to the category of (noncommutative) matrix factorizations of (\mathcal{A}, W) . It is said to be 'generalized' in two reasons. First, the construction can be regarded as a generalization of the SYZ program where we replace Lagrangian tori by immersions. Second, the functor needs not to be an equivalence, and so (\mathcal{A}, W) needs not to be a mirror of X in the original sense.

THEOREM 1.1 (Theorem 4.7). There exists an A_{∞} -functor $\mathscr{F}^{\mathbb{L}}$: Fuk $(X) \to \mathrm{MF}(\mathscr{A}, W)$, which is injective on $H^{\bullet}(\mathrm{Hom}(\mathbb{L}, U))$ for any U.

An important feature is that the Landau-Ginzburg superpotential W constructed in this way is automatically a central element in \mathscr{A} . In particular we can make sense of $\mathscr{A}/\langle W \rangle$ as a hypersurface singularity defined by 'the zero set' of W.

THEOREM 1.2 (Theorem 3.10 and 6.6). $W \in \mathcal{A}$ is a central element.

$$m_k: \mathscr{C}[1](A_0, A_1) \otimes \cdots \mathscr{C}[1](A_{k-1}, A_k) \to \mathscr{C}[1](A_0, A_k)$$

for $A_i \in Ob(\mathscr{C})$, $k = 0, 1, 2, \cdots$. Each A_{∞} -operation m_k is assumed to respect the filtration, and satisfies the A_{∞} -equation: for $v_i \in \mathscr{C}[1](A_i, A_{i+1})$,

$$\sum_{k_1+k_2=n+1} \sum_{i} (-1)^{\epsilon_1} m_{k_1}(v_1, \dots, m_{k_2}(v_i, \dots, v_{i+k_2-1}), v_{i+k_2}, \dots v_n) = 0.$$

We denote by |v| the degree of v and by |v|' = |v| - 1 the shifted degree of v_j . Then $\epsilon_1 = \sum_{j=1}^{i-1} (|v_j|')$.

Let A be an A_{∞} -algebra. When $m_0 \neq 0$, m_1 may not define a differential, which can be seen in the following A_{∞} -equation:

(2.1)
$$0 = m_1^2(v_1) + m_2(m_0, v_1) + (-1)^{|v|'} m_2(v_1, m_0)$$

The obstruction and deformation theory of such A_{∞} -algebras have been studied by Fukaya-Oh-Ohta-Ono[**FOOO9**], who introduced the notion of weak bounding cochains (weak Maurer-Cartan elements).

For this purpose, recall that an element $\mathbf{1}_A \in \mathcal{C}^0(A, A)$ is called a *unit* if it satisfies

$$\begin{cases} m_2(\mathbf{1}_A, v) = v & v \in \mathcal{C}(A, A') \\ (-1)^{|w|} m_2(w, \mathbf{1}_A) = w & w \in \mathcal{C}(A', A) \\ m_k(\dots, \mathbf{1}_A, \dots) = 0 & \text{otherwise.} \end{cases}$$

Note that if m_0 is a constant multiple of a unit, then the latter two terms of (2.1) vanishes by the property of a unit. This happens for A_{∞} -algebras of monotone Lagrangians. In general, a boundary deformation of a given A_{∞} -algebra via an weak Maurer-Cartan element b can be used to define a deformed A_{∞} -algebra $\{m_k^b\}$ such that m_0^b becomes a multiple of a unit. Let us use the notation

$$b^l = \underbrace{b \otimes \cdots \otimes b}_{l}, \ e^b := 1 + b + b^2 + b^3 + \cdots$$

DEFINITION 2.2. An element $b \in F^+ \mathscr{C}^1(A, A)$ is a *weak Maurer-Cartan* element if $m(e^b) := \sum_{k=0}^{\infty} m_k(b, \dots, b)$ is a multiple of the unit, i.e.

$$m(e^b) = PO(A, b) \cdot \mathbf{1}_A$$
, for some $PO(A, b) \in \Lambda$

Denote by $\widetilde{\mathcal{M}}_{meak}^+(A)$ the set of all weak Maurer-Cartan elements.

DEFINITION 2.3. Given $b \in F^+\mathscr{C}^1(A,A)$, we define the deformed A_∞ -operation m_k^b as

$$m_k^b(v_1,\cdots,v_k) = \sum_{l_0,\cdots,l_k \geq 0} m_{k+l_0+\cdots+l_k}(b^{l_0},v_1,b^{l_1},v_2,\cdots,v_k,b^{l_k})$$

$$= m(e^b, v_1, e^b, v_2, \cdots, e^b, v_k, e^b).$$

Then $\{m_k^b\}$ defines an A_∞ -algebra. In general, given $b_0,\cdots,b_k\in F^+\mathscr{C}^1(A,A)$, we define

$$m_k^{b_0,\dots,b_k}(v_1,\dots,v_k) = m(e^{b_0},v_1,e^{b_1},v_2,\dots,e^{b_{k-1}},v_k,e^{b_k}).$$

Note that we have $m_k^b = m_k^{b,b,\cdots,b}$.

Given a weak Maurer-Cartan element b, we have $m_0^b = PO(A, b) \cdot \mathbf{1}_A$, and one can check that $(m_1^b)^2 = 0$. And if $PO(A, b_0) = PO(A, b_1)$, we have $(m_1^{b_0, b_1})^2 = 0$.

In this section we perform a base change of an A_{∞} -algebra A. Originally A is over the Novikov ring, and we enlarge the base to be a noncommutative algebra. This is an important step for deformations.

Let K be a noncommutative algebra over Λ_0 . Consider a filtered A_{∞} -algebra $(A, \{m_k\})$ over Λ_0 . We will consider an induced A_{∞} -algebra structure on the completed tensor product $K \widehat{\otimes}_{\Lambda_0} A$ where we take a completion with respect to the energy, namely the power of the formal variable T.

DEFINITION 2.6. We define an A_{∞} -structure on

$$(2.2) \tilde{A}_0 := K \widehat{\otimes}_{\Lambda_0} A$$

For $f_i \in K$, $e_i \in A$ $i = 1, \dots, k$, the A_{∞} -operation is defined as

$$(2.3) m_k(f_1e_1, f_2e_2, \cdots, f_ke_k) := f_kf_{k-1}\cdots f_2f_1 \cdot m_k(e_1, \cdots, e_k).$$

Then we extend it linearly to define the A_{∞} -structure on \tilde{A}_0 and also tensor over Λ to get the A_{∞} -structure on $\tilde{A} := \tilde{A}_0 \otimes \Lambda$.

LEMMA 2.9. $(\tilde{A}, \{m_k\})$ satisfies the A_{∞} -equation.

PROOF. From linearity, it is enough to prove it when inputs are multiples of basis elements. Namely, we consider the expansion of $m(\hat{m}(f_1e_1, f_2e_2, \dots, f_ne_n))$ which are given by

$$\sum_{k_1+k_2=n+1} m_{k_1}(f_1e_1,\cdots,m_{k_2}(f_{j+1}e_{j+1},\cdots),\cdots,f_ne_n).$$

Here, \widehat{m} is the coderivation corresponding to m. From the A_{∞} -equation of A, we have

$$f_n f_{n-1} \cdots f_2 f_1 \sum_{k_1+k+2=n+1} m_{k_1}(e_1, \cdots, m_{k_2}(e_{j+1}, \cdots), \cdots, e_n) = 0.$$

The unit $\mathbf{1}_A$ of A is also the unit of \tilde{A} . Thus the noncommutative version of the weak Maurer-Cartan equation makes sense.

6.2. Mirror construction

As in Section 2.3, first we perform a base change for the A_{∞} -algebra:

$$\tilde{A}^{\mathbb{L}} := \Lambda Q^{\mathbb{L}} \widehat{\otimes}_{\Lambda^{\oplus}} \mathrm{CF}(\mathbb{L}, \mathbb{L}).$$

Due to the bimodule structure, an expression $pX_e := p \otimes X_e$ for a path p and $X_e \in CF(L_i, L_j)$ is non-zero if and only if t(p) = i. We use Definition 2.6 to extend the A_{∞} -structure on $CF(\mathbb{L}, \mathbb{L})$ to $\tilde{A}^{\mathbb{L}}$.

Denote the formal variable in ΛQ associated to each arrow e of Q by x_e , and denote the corresponding odd-degree immersed generator in $\mathrm{CF}(\mathbb{L},\mathbb{L})$ by X_e . Now take the linear combination

$$b = \sum_{e} x_e X_e \in \tilde{A}^{\perp}$$
.

As in Definition 3.1, $\deg x_e := 1 - \deg X_e$ so that b has degree one. In particular $\deg x_e$ is even. We define nc-weak Maurer-Cartan relations in the following way (assuming the Fukaya category \mathscr{C} is unital).

DEFINITION 6.5. The coefficients P_f of the even-degree generators X_f of $CF(\mathbb{L}, \mathbb{L})$ (other than the fundamental classes $\mathbf{1}_{L_i}$) in

$$m_0^b = m(e^b) = \sum_i W_i \mathbf{1}_{L_i} + \sum_f P_f X_f$$

are called the nc-weak Maurer-Cartan relations. Let R be the completed two-sided ideal generated by P_f . Then define the noncommutative ring

$$\mathcal{A} := \Lambda Q/R$$
.

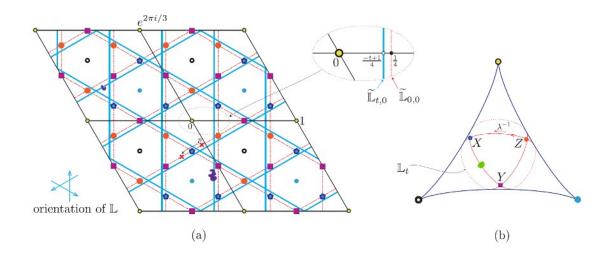
 $W_{\mathbb{L}} = \sum_{i} W_{i}$ is called the worldsheet superpotential of \mathbb{L} .

We regard \mathscr{A} to be the space of noncommutative weakly unobstructed deformations of \mathbb{L} . Instead of working on $\tilde{A}^{\mathbb{L}} = \Lambda Q^{\mathbb{L}} \widehat{\otimes}_{\Lambda^{\oplus}} \mathrm{CF}(\mathbb{L},\mathbb{L})$, we define $\mathscr{A} = \Lambda Q^{\mathbb{L}}/R$ as above and work on

$$A^{\mathbb{L}} = \mathscr{A} \widehat{\otimes}_{\Lambda^{\oplus}} \mathrm{CF}(\mathbb{L}, \mathbb{L}).$$

Now, the induced A_{∞} -structure on $A^{\mathbb{L}}$ satisfies

(6.2)
$$\boldsymbol{m}_0^b = W_{\mathbb{L}} \cdot \mathbf{1}_{\mathbb{L}} = \sum_i W_i \cdot \mathbf{1}_{L_i} \in \mathcal{A} \widehat{\otimes}_{\Lambda^{\oplus}} \mathrm{CF}(\mathbb{L}, \mathbb{L})$$



THEOREM 5.3 ([CHL17]). When \mathbb{L}_0 is equipped with a non-trivial spin structure, b = xX + yY + zZ is a weak Maurer-Cartan solution for any $x, y, z \in \mathbb{C}$. The mirror LG superpotential W_0 , after a rescaling on x, y, z, takes the form

(5.2)
$$W_0 = x^3 + y^3 + z^3 - \sigma(q_{\text{orb}})xyz$$

where $q_{\text{orb}} = \mathbf{T}^{\omega(\mathbb{P}^1_{3,3,3})}$ is the Kähler parameter of $\mathbb{P}^1_{3,3,3}$ and $\sigma(q_{\text{orb}})$ is the inverse mirror map

(5.3)
$$\sigma(q_{\text{orb}}) = -3 - \left(\frac{\eta(q_{\text{orb}})}{\eta(q_{\text{orb}}^9)}\right)^3.$$

 η above denotes the Dedekind eta function.

Weakly unobstructedness of $(\mathbb{L}_0, \lambda = -1)$ is mainly due to the symmetry of \mathbb{L}_0 under the anti-symplectic involution together with certain sign computations. The potential W_0 was computed by counting infinite series of triangles passing through a given point class. (In fact, with our new formulation of non-standard spin structure, the coordinate change $y \to \tilde{y}$ in [CHL17] is not necessary. More details will be given below.)

THEOREM 5.1. There is a T^2 -family (\mathbb{L}_t, λ) of Lagrangians decorated by flat U(1) connections in $\mathbb{P}^1_{3,3,3}$ for $(t-1) \in \mathbb{R}/2\mathbb{Z}$ and $\lambda \in U(1)$ whose corresponding generalized mirror $(\mathcal{A}_{(\lambda,t)}, W_{(\lambda,t)})$ satisfies the following.

(1) The noncommutative algebras $\mathcal{A}_{(\lambda,t)}$ are Sklyanin algebras, which are of the form

(5.1)
$$\mathcal{A}_{(\lambda,t)} := \frac{\Lambda \langle x, y, z \rangle}{\left(axy + byx + cz^2, ayz + bzy + cx^2, azx + bxz + cy^2\right)}$$

for $a = a(\lambda, t), b = b(\lambda, t), c = c(\lambda, t) \in \Lambda$. We have $\mathcal{A}_0 := \mathcal{A}_{(-1,0)} = \Lambda[x, y, z]$.

- (2) $W_{(\lambda,t)}$ lies in the center of $\mathcal{A}_{(\lambda,t)}$ for all (λ,t) . We denote $W_0 = W_{(-1,0)}$.
- (3) The coefficients (a:b:c) are given by theta functions, which define an embedding $T^2 \to \mathbb{P}^2$ onto the mirror elliptic curve

$$\check{E} = \{(a:b:c) \in \mathbb{P}^2 \mid W_0(x, y, z) = 0\}.$$

(4) For each (λ, t) , there exists a \mathbb{Z}_2 -graded A_{∞} -functor

$$\mathscr{F}^{(\mathbb{L}_t,\lambda)}$$
: Fuk($\mathbb{P}^1_{3,3,3}$) \to MF($\mathscr{A}_{(\lambda,t)},W_{(\lambda,t)}$).

Upstairs there is a \mathbb{Z} -graded A_{∞} -functor

$$\mathscr{F}^{(\tilde{\mathbb{L}}_t,\lambda)}: \operatorname{Fuk}^{\mathbb{Z}}(E) \to \operatorname{MF}^{\mathbb{Z}}(\hat{\mathscr{A}}_{(\lambda,t)},\hat{W}_{(\lambda,t)}).$$

When t = 0, $\lambda = -1$, they give derived equivalences.

- (5) The graded noncommutative algebra $\mathcal{A}_{(\lambda,t)}/\langle W_{(\lambda,t)}\rangle$ is a twisted homogeneous coordinate ring of \check{E} .
- (6) The family of noncommutative algebras $\mathcal{A}_{(\lambda,t)}/\langle W_{(\lambda,t)}\rangle$ near $t=0, \lambda=-1$ gives a quantization of the affine del Pezzo surface defined by $W_0(x,y,z)=0$ in \mathbb{C}^3 .

5.5. Relation to the quantization of an affine del Pezzo surface

Recall that deformation quantization of a (commutative) Poisson algebra is a formal deformation into a noncommutative associative unital algebra whose commutator in the first order is the Poisson bracket.

For any $\phi \in \mathbb{C}[x, y, z]$, the following brackets on coordinated functions extends to a Poisson struncture on $\mathbb{C}[x, y, z]$:

(5.15)
$$\{x, y\} = \frac{\partial \phi}{\partial z}, \quad \{y, z\} = \frac{\partial \phi}{\partial x}, \quad \{z, x\} = \frac{\partial \phi}{\partial y}.$$

One can check that ϕ itself Poisson commute with any other element, and hence the above Poisson structure descend to the quotient $\mathbb{C}[x,y,z]/(\phi)$ by the principal ideal generated by ϕ , which is denoted as \mathcal{B}_{ϕ} .

Our theory provides the quantization of the affine del Pezzo surface in the sense of **[EG10**]. We write $v = u - u_0$ so that now v = 0 corresponds to the commutative point (see the last paragraph of 5.2).

THEOREM 5.14. The family of noncommutative algebra $\mathcal{A}_v/(W_v)$ near v=0 gives a quantization of the affine del Pezzo surface, given by the mirror elliptic curve equation $W_0(x,y,z)=0$ in \mathbb{C}^3 in place of ϕ in (5.15).

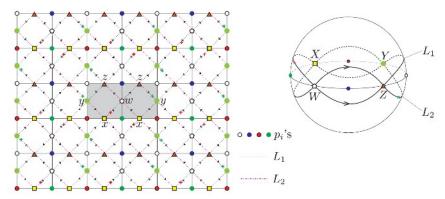
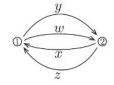


FIGURE 12. The universal cover of $\mathbb{P}^1_{2,2,2,2}$. The bold lines show the lifts of the equator of $\mathbb{P}^1_{2,2,2,2}$, and the dotted lines show the lifts of the Lagrangians L_1 and L_2 .

THEOREM 8.1. The generalized mirror of $\mathbb{E}/\mathbb{Z}_2 = \mathbb{P}^1_{2,2,2,2}$ corresponding to \mathbb{L}_0 is given by (\mathcal{A}_0, W_0) where

- (1) Q is the directed graph with two vertices v_1, v_2 , two arrows $\{y, w\}$ from v_1 to v_2 and two arrows $\{x, z\}$ from v_2 to v_1 .
- (2) $\mathcal{A}_0 = \mathcal{A}(Q, \Phi_0)$ is the noncommutative resolution of the conifold $\frac{\Lambda Q}{(\partial \Phi_0)}$, where $\Phi_0 := xyzw - wzyx.$



(3)

$$W_0 = \phi(q_{\text{orb}}^{\frac{1}{4}})((xy)^2 + (xw)^2 + (zy)^2 + (zw)^2 + (yz)^2 + (wx)^2 + (yz)^2 + (wz)^2) + \psi(q_{\text{orb}}^{\frac{1}{4}})(xyzw + wzyx)$$

lies in the center of \mathcal{A}_0 , where ϕ and ψ are given in Theorem 8.7 and $q_{\rm orb}$ = $\exp\left(-\int_{\mathbb{P}^1_{2,2,2}}\omega\right)$ is the Kähler parameter.

- (4) $\psi(q_{\text{orb}}^{\frac{1}{4}}) \left(\phi(q_{\text{orb}}^{\frac{1}{4}}) \right)^{-1}$ equals to the mirror map of $\mathbb{P}^1_{2,2,2,2}$. (5) We have \mathbb{Z}_2 -graded, and \mathbb{Z} -graded A_{∞} -functors

$$\mathcal{F}^{\mathbb{L}_0}: \mathrm{Fuk}(\mathbb{P}^1_{2,2,2,2}) \to \mathrm{MF}(\mathcal{A}_0,W_0), \ \ \mathcal{F}^{\mathbb{L}_0}: \mathrm{Fuk}^{\mathbb{Z}}(E) \to \mathrm{MF}^{\mathbb{Z}}(\mathcal{A}_0,W_0).$$

THEOREM 8.2. There is a T^2 -family (\mathbb{L}_t, λ) of Lagrangians decorated by flat U(1)connections for $(t-1) \in \mathbb{R}/2\mathbb{Z}$ and $\lambda \in U(1)$ such that

(1) the corresponding mirror noncommutative algebras $\mathcal{A}_{(\lambda,t)}$ takes the form

$$\mathcal{A}_{(\lambda,t)} := \frac{\Lambda Q}{\left(\partial \Phi_{(\lambda,t)}\right)}, \Phi = a(\lambda,t) xyzw + b(\lambda,t) wzyx + \frac{1}{2}c(\lambda,t) \left((wx)^2 + (yz)^2\right) + \frac{1}{2}d(\lambda,t) \left((xy)^2 + (zw)^2\right)$$

 $(\mathcal{A}_{(1,0)} \text{ is the same as } \mathcal{A}_0 \text{ in Theorem 8.1 (2)})$

(2) Coefficients (a:b:c:d) defines an embedding $T^2 \to \mathbb{P}^3$ onto the complete intersection of two quadrics given as follows. For $[x_1, x_2, x_3, x_4] \in \mathbb{P}^3$ and $\sigma = \frac{\psi}{h}$,

$$\begin{aligned} x_1 x_3 &= x_2 x_4 \\ x_1^2 + x_2^2 + x_3^2 + x_4^2 + \sigma x_1 x_3 &= 0. \end{aligned}$$

This is isomorphic to the mirror elliptic curve E given by Hesse cubic in Theorem

(3) The family of noncommutative algebra $\mathcal{A}_{\lambda,t}/(W_{\lambda,t})$ near $t=0, \lambda=1$ gives a quantization of the complete intersection given by above two quadratic equations in \mathbb{C}^4 in the sense of [**EG10**].

The subalgebra \mathcal{A} of \mathcal{A} is obviously the quotient of $\mathbb{C}\{x_4, x_3, x_2, x_1\}$ by the ideal generated by these eight relations. Recall that a, b, c, d are functions in

$$u = -s - \tau \frac{t}{2} - \frac{1}{4}$$

(and $\lambda = e^{2\pi \mathbf{i} s}$). To emphasize the dependence of $\underline{\mathcal{A}}$ in u, we write $\underline{\mathcal{A}}_u$ from now on. Note that $\underline{\mathcal{A}}_{u_0}$ represents the commutative conifold since $a(u_0) = -b(u_0)$ and $c(u_0) = -b(u_0)$ $d(u_0) = 0$:

(8.13)
$$\underline{\mathscr{A}}_{u_0} \cong \mathbb{C}[x_1, x_2, x_3, x_4]/x_1x_3 - x_2x_4.$$

Thus one may view $\underline{\mathcal{A}}_{\mu}$ as a noncommutative conifold. Let

$$f = x_1 x_3 - x_2 x_4$$

be the defining equation of the conifold.

If we are given another function g on \mathbb{C}^4 , we can define a Poisson structure in the following way.

$$(8.14) \{x_i, x_j\} = \zeta \frac{dx_i \wedge dx_j \wedge df \wedge dg}{dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4} = \zeta \left(\frac{\partial f}{\partial x_k} \frac{\partial g}{\partial x_l} - \frac{\partial g}{\partial x_k} \frac{\partial f}{\partial x_l} \right).$$

where (i, j, k, l) is equivalent to (1, 2, 3, 4) up to an even permutation. ζ in (8.14) will be some constant in our case though it could be a more complicated function in general. Such a structure is in fact a special case of certain higher brackets among functions called the Nambu bracket. (See for e.g. [OR02].) Choice of g will be fixed shortly.

One can check that (8.14) satisfies a Jacobi relation, and f and g lie in the Poisson center. Therefore it descends to the quotient algebra $\mathscr{B}_{f,g} = \mathbb{C}[x_1, x_2, x_3, x_4]/\langle f, g \rangle$ which is a coordinate ring of a hypersurface in the conifold defined by g = 0. Now we provide some relation between our $\underline{\mathcal{A}}_{u}/W_{u}$ and the deformation quantization of $\mathcal{B}_{f,g}$ associated with the Poisson structure (8.14).

First, we make the following specific choice of the second function g in (8.14). Restricted to the loops based at the first vertex of Q, world sheet potential $(W_{(\lambda,t)})_1$ (8.10)

Theorem 8.10. The family of noncommutative algebra $\underline{\mathcal{A}}_{v}/(W_{v})$ near v=0 gives a quantization of the complete intersection given by two quadratic equations f = 0 and g = 0 in \mathbb{C}^4 in the sense of [EG10].

We remark that $\{f=0\} \cap \{g=0\}$ defines the mirror elliptic curve in \mathbb{P}^3 after projectivization. As in Theorem 5.15 [ATdB90, Ste97], we expect that $\underline{\mathscr{A}}_{\nu}/(W_{\nu})$ is given as a twisted homogeneous coordinate ring of the mirror elliptic curve embedded in the quadric $\{x_1x_3 = x_2x_4\} \subset \mathbb{P}^3$ (which can be identified as $\mathbb{P}^1 \times \mathbb{P}^1$) by the line bundle $\mathcal{L} = \mathcal{O}_{\mathbb{P}^1}(1) \boxtimes \mathcal{O}_{\mathbb{P}^1}(1).$

PROOF. As $v \to 0$, we have

$$\underline{\mathscr{A}}_{v}/(W_{v}) \to \mathbb{C}[x_{1}, x_{2}, x_{3}, x_{4}]/\langle f, g \rangle.$$

So it remains to check that the first order terms of the commutators for A_v are equivalent to the Poisson bracket induced by f and g with the formula (8.14). The first equation in (8.12) gives rise to

$$r(x_3x_4 - x_4x_3) = v(a'(0)x_4x_3 + b'(0)x_3x_4 + c'(0)x_3x_2 + d'(0)x_4x_1) + o(v),$$

where $r := a(0) = -b(0) \in \mathbb{C}$. Thus we obtain

(8.16)
$$\lim_{v \to 0} \frac{x_3 x_4 - x_4 x_3}{v} = \frac{1}{r} \left((a'(0) + b'(0)) x_3 x_4 + c'(0) x_3 x_2 + d'(0) x_4 x_1 \right)$$

since x_3 and x_4 commute at v = 0 (and so do other variables).

On the other hand, the Poisson bracket between x_3 and x_4 from (8.14) is given by

$$\left\{ \underline{x_3,x_4} \right\} = \zeta \left(\frac{\partial f}{\partial x_1} \frac{\partial g}{\partial x_2} - \frac{\partial g}{\partial x_1} \frac{\partial f}{\partial x_2} \right) = \zeta \left(\psi x_3 x_4 + 2 \phi (x_3 x_2 + x_4 x_1) \right),$$

which is proportional to the right hand side of (8.16) since $a'(0) + b'(0) = \zeta \psi$ and $c'(0) = \zeta \psi$ $d'(0) = 2\zeta\phi$. Similarly, the first order commutator between x_i and x_{i+1} for other i's agrees with the Poisson bracket of the corresponding variables.

DEFINITION 9.1 (Extended quiver). Let $\{X_f\}$ be the set of even-degree immersed generators. Moreover take a Morse function on each L_i and let $\{T_g\}$ be the set of their critical points other than the maximum points (which correspond to the fundamental classes $\mathbf{1}_{L_i}$). The extended quiver \tilde{Q} is defined to be a directed graph whose vertices are one-to-one corresponding to $\{L_i\}$, and whose arrows are one-to-one corresponding to $\{X_e\} \cup \{X_f\} \cup \{T_g\}.$

DEFINITION 9.3. Take

$$\tilde{b} = \sum_{e} x_e X_e + \sum_{f} x_f X_f + \sum_{g} t_g T_g.$$

Define $\deg x_e = 1 - \deg X_e$, $\deg x_f = 1 - \deg X_f$ and $\deg t_g = 1 - \deg T_g$ such that \bar{b} has degree one.

The deformation parameter $\deg x_e$ is always even, but the other parameters may not be. Hence we need to modify the sign rule of (2.3) in the definition 2.6 to the following.

$$(9.1) m_k(f_1e_{i_1}, f_2e_{i_2}, \cdots, f_ke_{i_k}) := (-1)^{\epsilon} f_k f_{k-1} \cdots f_2 f_1 \cdot m_k(e_{i_1}, \cdots, e_{i_k}).$$

where ϵ is obtained from the usual Koszul sign convention. For example, if f_i is the dual variable of e_{i_j} for all j = 1, ... k, then we have

$$(9.2) m_k(f_1e_{i_1}, f_2e_{i_2}, \cdots, f_ke_{i_k}) := (-1)^{\sum_{j=1}^k \deg f_j} f_k f_{k-1} \cdots f_2 f_1 \cdot m_k(e_{i_1}, \cdots, e_{i_k}),$$

since one can pull out $f_k, f_{k-1}, ..., f_1$ one at a time and by assumption $f_i e_{ij}$ will have (shifted) degree 0. One can check that this defines an A_{∞} -structure.

Then m_0^b will additionally have odd-degree part, i.e., it is of the form

$$m_0^{\tilde{b}} = \sum_i W_i \mathbf{1}_{L_i} + \sum_e P_e X_e + \sum_f P_f X_f + \sum_g P_g T_g.$$

$$m_0^{\tilde{b}} = \sum_i W_i \mathbf{1}_{L_i} + \sum_e P_e X_e + \sum_f P_f X_f + \sum_g P_g T_g.$$

The constructions in previous chapters generalize to this setting, to give the non-commutative ring A modulo the relations (P_e, P_f, P_g) , and an extended A_{∞} functor to matrix factorizations of an extended potential function \widetilde{W} .

Alternatively, we explain a construction which gives a curved dg-algebra (A, d, \widetilde{W}) , and an A_{∞} -functor to the category of curved dg-modules over (A, d, \widetilde{W}) .

We will construct a curved dg-algebra from the extended deformations.

DEFINITION 9.4 (**[KL03**]). A curved dg-algebra is a triple (A, d, F), where A is a graded associative algebra, d is a degree-one derivation of A, and $F \in A$ is a degree 2 element such that dF = 0 and $d^2 = [F, \cdot] = F(\cdot) - (\cdot)F$.

If $d^2 = 0$ (or equivalently F is central), a curved dg-algebra structure gives rise to a noncommutative Landau-Ginzburg model on its d-cohomology with the cohomology class [F] as a (worldsheet) superpotential. If the dg-algebra is formal, then dg-modules over A (Definition 9.11 below) boils down to matrix factorizations of [F] over H(A). In this section we don't take this assumption and work with dg-modules.

Now take the path algebra $\Lambda \tilde{Q}$. It carries a natural curved dg structure as follows.

DEFINITION 9.5. Define the extended worldsheet superpotential to be $\tilde{W} = \sum_i \tilde{W}_i$, where \tilde{W}_i are the coefficients of $\mathbf{1}_{L_i}$ in $m_0^{\tilde{b}}$. Define a derivation d of degree one on $\Lambda \tilde{Q}$ by

$$d(a_ex_e + b_fx_f + c_gt_g) = a_eP_e + b_fP_f + c_gP_g$$

$$dt_g = P_g$$

$$dt_g = P_g$$

for $a_e, b_f, c_g \in \Lambda$, and extend it using Leibniz rule. (Our sign convention is $d(xy) = xdy + (-1)^{\deg y}(dx)y$.)

Then the A_{∞} -relations for \mathbb{L} can be rewritten as follows.

PROPOSITION 9.6. $d\tilde{W} = 0$ and $d^2 = [\tilde{W}, \cdot]$. In other words $(\Lambda \tilde{Q}, d, \tilde{W})$ is a curved dg algebra.

REMARK 9.7. It is well-known (see [KS09]) that A_{∞} -algebra structure on V is equivalent to a codifferential \hat{d} on the tensor coalgebra TV. And if V is finite dimensional (as in our case), then one can take its dual algebra $(TV)^*$ with a differential \tilde{d} (with $\tilde{d}^2 = 0$). We may regard $\{x_e, x_f, x_g\}$ as dual generators of the dual algebra $(TV)^*$. There is one more generator x_1 that we have suppressed in the previous formulation. Turning it on simply results in adding a multiple of unit in \tilde{W} . The desired identities can be obtained from $\tilde{d}^2 = 0$ by setting $x_1 = 0$. But we show the direct proof below due to signs. These two formulations are equivalent.

In general it is difficult to write down $(\Lambda \tilde{Q}, d, \tilde{W})$ explicitly since it requires computing all m_k 's for \mathbb{L} . On the other hand, for Calabi-Yau threefolds with grading assumptions (see below), a lot of terms automatically vanish by dimension reason, and $(\Lambda \tilde{Q}, d, \tilde{W})$ can be recovered from the quiver Q with potential Φ (and $\tilde{W}=0$). The resulting dg algebra $(\Lambda \tilde{Q}, d)$ is known as Ginzburg algebra.

DEFINITION 9.9 ([**Gin**]). Let (Q, Φ) be a quiver with potential. The Ginzburg algebra associated to (Q, Φ) is defined as follows. Let \tilde{Q} be the doubling of Q by adding a dual arrow \bar{e} (in reversed direction) for each arrow e of Q and a loop based at each vertex of Q. Define the grading on the path algebra $\Lambda \tilde{Q}$ as

$$\deg x_e = 0, \deg x_{\bar{e}} = -1, \deg t_i = -2$$

where t_i corresponds to the loop at a vertex. Define the differential d by

$$dt_i = \sum_e \pi_{v_i} \cdot [x_e, x_{\bar{e}}] \cdot \pi_{v_i}, \ dx_{\bar{e}} = \partial_{x_e} \Phi, \ dx_e = 0$$

where π_{v_i} denotes the constant path at the vertex v_i . Then the dg algebra $(\Lambda \tilde{Q}, d)$ is called the *Ginzburg algebra*.

PROPOSITION 9.10. Suppose X is a Calabi-Yau threefold, L_i are graded Lagrangian

Better for homotopy theory: working with complexes rather than cohomology spaces. called the Ginzburg algebra.

PROPOSITION 9.10. Suppose X is a Calabi-Yau threefold, L_i are graded Lagrangian spheres (equipped with a Morse function with exactly one maximum point and one minimum point) such that deg X equals to either one or two for all immersed generators X. Then $(\Lambda \tilde{Q}, d, \tilde{W} = 0)$ produced from the above construction is the Ginzburg algebra associated to (Q, Φ) .

 m_k^b $m_k(\sum x_e X_e, ..., \sum x_e X_e), \sum x_e X_e$

DEFINITION 9.11. A curved dg-module over a curved dg-algebra (A, d, F) is a pair (M, d_M) where M is a graded A-module and d_M is a degree one linear endomorphism of M such that

(9.4)
$$d_M(am) = a(d_M m) + (-1)^{\deg m} (da) m$$
 and $d_M^2 = F$.

Conclusion:

We have learnt the following topics about quivers:

- 1. Quiver representations (modules of path algebra)
- 2. Classification of indecomposable representations (Gabriel and Katz)
- 3. Moduli space of stable quiver representations [Kings]
- Quiver moduli associated to complex varieties (to understand the derived category, or to provide ambient space of embeddings)
- Cohomology: resolutions of quiver modules to compute Ext and HH
- Framed moduli as iterated Grassmannian bundles [Reineke]
- 7. Nakajima quiver variety
- 8. Quiver algebra constructed as mirror of symplectic geometry

There are still several topics of quiver variety that we have not got into, such as

- relation with cluster variety
- applications like persistence theory

Some of your reports are introducing these topics.

Wish you have enjoyed the course!