Quiver algebras as noncommutative mirrors
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Cho; Hong; Lau - Noncommutative homological mirror functor

> Mirror symmmetry: duality between
symplectic and complex geometries

Symplectic geometry Complex geometry

Symplectic form w Calabi-Yau volume form Q
Lagrangian submanifolds Holomorphic vector bundles
Gromov-Witten invariants Integrals [ Q
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Left and right hemispheres bounded by the equator L add up to area A.

Strominger-Yau-Zaslow:

D Mirror symmetry is T-duality

Fundamental geometric guiding principle.

0, in M is mirror to a Lagrangian brane L in M.

0, has n dimensional deformation space. Thus expect h'(L) = n.
Ext*(0,,0,) = A"C". So L = T™ cohomologicadlly.

0, moves in the whole space.

Thus L should be a leaf of a foliation, or simply a (special) Lagrangian
fibration.

Need to complexify. Take (L, 7).
7 is a flat U(1) connection in Hom(m, (L), U(1)) = (T™)".

{flat U(1) connections on L} = T* gives a torus in M.
Thus M should admit a dual torus fibration.
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Quantum corrections from singular fibers

e

[ o~

» Singular fibers occur. Construct and glue in their “dual” to complete the SYZ mirror.
[Hong-L.-Kim, Ekholm-Rizell-Tonkonog]
Glue up a mirror functor. [Cho-Hong-L.]

» Holomorphic discs from singular fibers = wall-crossing and gluing of dual tori.
[Auroux, Chan-L.-Leung, Auroux-Abouzaid-Katzarkov, Seidel, Pascaleff-Tonkonog]

» |nteracts and produce scattering diagram. [Kontsevich-Soibelman, Gross-Siebert.
Analytic approach: Chan-Leung-Ma.
Fukaya, Tu, Abouzaid: family Floer theory for tori. Lin: K3 surfaces.]

B Quantum corrections from A-side

o »
» Need HF*(L,L) = H*(T) instead of H*(L). L does not need to be a forus. '
[Fukaya-Oh-Ohta-Ono toric. Cho-Hong-L. immersed Lagrangians]. ok
® (bstruction term:
m3=W.[L]+ZhY.Yec*(L). "

Landau-Ginzburg model (M = {L: hy =0 VY},W).

=» May have no commutative solutions to hy = 0.

Noncommutative mirror construction [Cho-Hong-L.]. K

Ex. Noncommutative resolution of conifold. o y .
= Need Novikov field w

A= {2 aiTAi:AL- - +00}

i=0

Mirror M defined over A. u



COS
The equator L is Hamiltonian non-displaceable, while L is not.

The usual cohomology of I does not tell this.
Need Lagrangian Floer cohomology.

SN ¢ - N

DEFINITION 6.1. Q = Q' is defined to be the following graph. Each vertex v; of Q
corresponds to a Lagrangian L; € L. Thus the vertex set is

L
(2{] = ’L’],“- ,Uk}.

Each arrow from v; to v; corresponds to odd-degree Floer generator in CF* (L;, L;) (which
is an intersection point between L; and L;). In particular for i = j, we have loops at v;
corresponding to the odd-degree immersed generators of L;.

Q will be sometimes called the endomorphism quiver of L.

avl

S

e Ug
Vo @ US.___,__..-—%*

/.
® U4

3

FIGURE 5. Endomorphism quiver Q"



The construction is briefly summarized as follows. The odd-degree Floer-theoretical
endomorphisms of L are described by a directed graph Q (so-called a quiver). The path
algebra AQ is regarded as the noncommutative space of formal deformations of L. Each
edge e of Q corresponds to an odd-degree Floer generator X, and a formal dual variable
Xe € AQ. Consider the formal deformation b=}, x, X,. The obstruction is given by

mg = m(e?) = Z nibaab).
k=0

A novel point is extending the notion of weakly unobstructedness by Fukaya-Oh-
Ohta-Ono [FOO009] fo the noncommutative setting. The corresponding weak Maurer-
Cartan equation is

k
mg =Y Wi(b)1y,
i=1
where 1;, is the Floer-theoretical unit corresponding to the fundamental class of L; (we
assume that Fukaya Ao-category is unital). The solution space is given by a quiver al-
gebra with relations & = AQ/R where R is the two-sided ideal generated by weakly un-
obstructed relations. The end product is a noncommutative Landau-Ginzburg model

(d,W:Zi‘Wi].

We call this to be a generalized mirror of X, in the sense that there exists a natural
functor from the Fukaya category of X to the category of (noncommutative) matrix fac-
torizations of (&7, W). It is said to be ‘generalized’ in two reasons. First, the construction
can be regarded as a generalization of the SYZ program where we replace Lagrangian
tori by immersions. Second, the functor needs not to be an equivalence, and so (&, W)
needs not to be a mirror of X in the original sense.

THEOREM 1.1 (Theorem 4.7). Thereexists an Aoo-ﬁmcrorg"[L :Fuk(X) — MF(«#, W),
which is injective on H* (Hom(L, U)) forany U.

An important feature is that the Landau-Ginzburg superpotential W constructed
in this way is automatically a central element in . In particular we can make sense of
</ [{W) as a hypersurface singularity defined by ‘the zero set’ of W.

THEOREM 1.2 (Theorem 3.10 and 6.6). W € <f is a central element.

my : €[11(Ag, A1) ® -+ € [1](Ak-1, Ar) — €[1](Ag, Ax)
for A; € Ob(€), k =0,1,2,---. Each Ay -operation my is assumed to respect the filtra-
tion, and satisfies the A,,-equation: for v; € €[1](A;, Ai+1),

£
¥ D Gy, mg (05,5 5 Ui 1) Vi 220 5) =10,
ki+ko=n+1 i

We denote by |v| the degree of v and by |v|" = |v| - 1 the shifted degree of v j- Then
e1 =X (il



Let Abe an A;oaalgebra. When}no # 0, m; may not define a differential, which can
be seen in the following A..-equation:

2.1) 0= m?(vy) + ma(mg, v1) + (=" 'ma(vy, mg)

The obstruction and deformation theory of such A, -algebras have been studied by
Fukaya-Oh-Ohta-Ono[FOOO009], who introduced the notion of weak bounding cochains
(weak Maurer-Cartan elements).

For this purpose, recall that an element 14 € €Y(A, A) is called a unitif it satisfies

mo(la,v)=v ve€(A A)
D%my(w, 1) =w weE€A, A
mp(---,14,--)=0 otherwise.

Note that if my is a constant multiple of a unit, then the latter two terms of (2.1) vanishes
by the property of a unit. This happens for A,,-algebras of monotone Lagrangians. In
general, a boundary deformation of a given A -algebra via an weak Maurer-Cartan el-
ement b can be used to define a deformed A.;-algebra {mﬁ} such that m(‘;’ becomes a
multiple of a unit. Let us use the notation

b'=be---®b, e’:=1+b+b*+b>+---.
!

DEFINITION 2.2. An element b € Ft€1(A, A) is a weak Maurer-Cartan element if

m(eb) = i_":() my(b,---, b) is a multiple of the unit, i.e.

m(eh) =PO(A,b)-1,, forsome PO(A,b)e A

Denote by MF{T “;m K (A) the set of all weak Maurer-Cartan elements.

DEFINITION 2.3. Given be FT€¢'(A, A), we define the deformed Aco-Operation mg
as

b _ I ! Iy
mk(vll'”!vk)_ Z m;‘¢+gu+.“+gk(b“,v1,b',Ug,---,vk,b"]
fg,---.fk-zo

= m‘(eby vy, eb! Yggrmng ebr Uk, eb)-
Then { mif } defines an Ay, -algebra. In general, given by, -+, by € F*€'(A, A), we define

m> P (wy,, v) = m(e®, vy, e vy, €01 vy, e,

Note that we have m}? - mi.b,.u’b.

Given a weak Maurer-Cartan element b, we have mé’ = PO(A, b) -14, and one can
check that (m?)? = 0. And if PO(A, by) = PO(A, by), we have (m™")2 =0,



In this section we perform a base change of an A-algebra A. Originally A is over
the Novikov ring, and we enlarge the base to be a noncommutative algebra. This is an
important step for deformations.

Let K be anoncommutative algebra over Ay. Consider a filtered A,,-algebra (A, {m;})
over Ag. We will consider an induced A,-algebra structure on the completed tensor
product K®,, A where we take a completion with respect to the energy, namely the
power of the formal variable T.

DEFINITION 2.6. We define an A,,-structure on

(2.2) Ag:= K&, A
For fieK,e;e Ai=1,---,k, the Ax-operation is defined as
2.3) myi(frer, foez, -, frer) := fife-1++ 2 hr-myler, -+ eg).

Then we extend it linearly to define the A -structure on Ao and also tensor over A to
get the A, -structure on A:= Ap® A.

LEMMA 2.9. (A, {my}) satisfies the A, -equation.

Proor. From linearity, it is enough to prove it when inputs are multiples of basis
elements. Namely, we consider the expansion of m(m(fiey, f2e2,:-+, fnen)) which are
given by

Y my(fier, - mpg,(fje1€j41,000)s 00 s fuen).
ki +ko=n+1

Here, m is the coderivation corresponding to m. From the A,,-equation of A, we have

fafa1 i ). mylen,- -, mp,(eji1,-),-,€0) =0,

ki+k+2=n+1

]

The unit 1 4 of A is also the unit of A. Thus the noncommutative version of the weak
Maurer-Cartan equation makes sense.



6.2. Mirror construction
Asin Section 2.3, first we perform a base change for the A,,-algebra:
AL := AQ 84+ CF(L,L).

Due to the bimodule structure, an expression pX, := p® X, for a path p and X, €
CF(L;, L;) is non-zero if and only if 1(p) = i. We use Definition 2.6 to extend the Ay-
structure on CF(L,L) to AL.

Denote the formal variable in AQ associated to each arrow e of Q by x,, and de-
note the corresponding odd-degree immersed generator in CF(L,L) by X,. Now take the
linear combination

b=) xeX.e A"
[

As in Definition 3.1, degx. := 1 —deg X, so that b has degree one. In particular deg x. is
even. We deline nc-weak Maurer-Cartan relations in the following way (assuming the
Fukaya category % is unital).

DEFINITION 6.5. The coefficients Py of the even-degree generators X¢ of CF(L,L)
(other than the fundamental classes 1z,) in

mé’ = m(e"’) = Z Wily, + ZPfo
i i

are called the ne-weak Maurer-Cartan relations. Let R be the completed two-sided ideal
generated by Py. Then define the noncommutative ring

o =AQ/R.
Wi =¥; W is called the worldsheet superpotential of L.

We regard ¢ to be the space of noncommutative weakly unobstructed deforma-
tions of L. Tnstead of working on A" = AQ"® e CF(L, L), we define ¢ = AQ"/R as above
and work on

AL = o8 4« CF(L,L).
Now, the induced A -structure on AL satisfies

6.2) my=Wi 1y =Y W;-1;, € 48,2 CF(L,L)
i

orientation of [




THEOREM 5.3 ([CHL17]). When Ly is equipped with a non-trivial spin structure,
b= xX+yY + zZ is a weak Maurer-Cartan solution for any x,y,z € C. The mirror LG
superpotential W, after a rescaling on x, v, z, takes the form

(5.2) Wo=2+3* + 2 ~ 0(qom) ¥y 2z

1
where gop = T“®333) is the Kéihler parameter of Pé 35 and a(gom,) is the inverse mirror
map

n(QOrb]]s

(5.3) O(forh) = -3 —
’ - [n(qﬁrb)

n above denotes the Dedekind eta function.

Weakly unobstructedness of (Lg, A = —1) is mainly due to the symmetry of Lo under
the anti-symplectic involution together with certain sign computations. The potential
Wy was computed by counting infinite series of triangles passing through a given point
class. (In fact, with our new formulation of non-standard spin structure, the coordinate
change y — y7in [CHL17] is not necessary. More details will be given below.)

THEOREM 5.1. There is a T?-family (L, A) of Lagrangians decorated by flat U(1) con-
nections in [F"éj,3 for(t=1)eR/2Z and A € U(1) whose corresponding generalized mirror
(1,1, Wi, n) satisfies the following.

(1) The noncommutative algebras <4y ;) are Sklyanin algebras, which are of the
form

AN O e
(5.1) A =

(axy+ byx+cz?,ayz+ bzy+cx?, azx+ bxz+ cy?)

fora=a(A, 1),b=b(A, 1), c=c(A ) e A. We have oy := o1 o) = Alx, ¥, 2].

(2) Wi, liesin the center of <4y, y for all (A, t). We denote Wy = Wiy ).

(3) The coefficients (a : b: c) are given by theta functions, which define an embed-
ding T? — P? onto the mirror elliptic curve

E={(a:b:c) e P? | Wy(x,y,2) =0}.
(4) Foreach (A,t), there exists a Z,-graded A -functor
F N Fuk(P} 5 5) — ME(Z(1,1), Wi, )
Upstairs there is a Z -graded A -functor
FEN  Fuk? (E) — MF (o, 1), Win, 1)-

When t =0, = -1, they give derived equivalences.

(5) The graded noncommutative algebra <4 /(W) ) is a twisted homogeneous
coordinate ring of E.

(6) The family of noncommutative algebras <#y /! {Wir,pn) near t =0,A = -1 gives
a quantization of the affine del Pezzo surface defined by Wy (x, y,z) = 0 in C*.



5.5. Relation to the quantization of an affine del Pezzo surface

Recall that deformation quantization of a (commutative) Poisson algebra is a formal
deformation into a noncommutative associative unital algebra whose commutator in
the first order is the Poisson bracket.

For any ¢ € C[x, y, z], the following brackets on coordinated functions extends to a
Poisson struncture on Clx, y, z]:

a_(P, a_ﬂb’ {z’ x} = a_qﬁ_
0z ox oy
One can check that ¢ itself Poisson commute with any other element, and hence the
above Poisson structure descend to the quotient C[x, y, 2]/ (¢) by the principal ideal gen-
erated by ¢, which is denoted as 28.

Our theory provides the quantization of the affine del Pezzo surface in the sense of
[EG10]. We write v = u — 14y so that now v = 0 corresponds to the commutative point
(see the last paragraph of 5.2).

(5.15) T — vz =

THEOREM 5.14. The family of noncommutative algebra <, /(W,) near v =0 gives a
quantization of the affine del Pezzo surface, given by the mirror elliptic curve equation
Wo(x,y,2)=0in C3 in place of ¢ in (5.15).

The bold lines show the

Frcurr 12, The universal cover of Pi.z.z.z'

lilts ol the equalor c:f'F’£2 25+ and the dolted lines show Lhe lilts of the

Tagrangians T and ;.



THEOREM 8.1. The generalized mirror of EIZo = Pé.z,z,z corresponding to Ly is given
by (=, Wy) where
(1) Q is the directed graph with two vertices v, va, fwo arrows {y, w) from vy to v
and two arrows {x, z} from v to vy,

(2) wdly = oA (Q, D) is the noncommutative resolution of the conifold —_’H where ®““H————-"'"/

[adyg) "
Dg 1= xyzw — wzyx.

(3)

1, 1

Wy = tb(q;[bJ[{xy}2+(wa2+{zy}2+(zw)2+{_1—'x}2+(wx)z+(yz}2+(wz}z)+w[q;rb}(xyzw+ wzyx)
lies in the center of <y, where ¢ and v are given in Theorem 8.7 and gy, =
exp [— Jr[Pé | w] is the Kéihler parameter.

1 T el
4) wig:,) ((p(q{;‘rh)J equals to the mirror map of[F"é2 50

orb

(5) We have Z»-graded, and 7 -graded A, -functors

THEOREM 8.2, There is a T2 -family (L;,A) of Lagrangians decorated by flat U(1)-
connections for (t — 1) e R/2Z and A € U(1) such that

(1) the corresponding mirror noncommautative algebras ) 1) takes the form

iy = ,P=ald, t) xyzw+b(A, 1) wzyx+%c{l, t) ([wx)2+[yz]2)+ Izd{l, t) ({xy)2+(zw)2]

AQ
(00x,1)
(sdiy oy Is the same as &y in Theorem 8.1 (2))
(2) Coefficients (a: b: c:d) defines an embedding T> — P* onto the complete in-
tersection of two quadrics given as follows. For [x,x2,x3,x4] € P ando = %.
X3 =221y

Al +ad+xd +oxx = 0.

This is isomorphic to the mirror elliptic curve E given by Hesse cubic in Theorem
5.1

(3) The family of noncommutative algebra & / (W, ;) near t = 0,1 = 1 gives a
quantization of the complete intersection given by above two quadratic equa-
tions in C! in the sense of [EG10].

The subalgebra & of & is obviously the quotient of C{xy, x5, xp, x;] by the ideal gener-

ated by these eight relations. Recall that a, b, ¢, d are functions in
r 1
U=—§—T———
2 4
{and A = 2"15). To emphasize the dependence of & in u, we write , from now on.

Note that o | , fepresents the commutative conifold since a(ug) = —b(uy) and c(uy) =
d(up) =0:

(8.13) o = Clxy, X2, x5, X4/ 21 X3 — X X,
Thus one may view &/ , as a noncommutative conifold. Let
f = X)Xz — XXy

be the defining equation of the conifold.
If we are given another function g on C*, we can define a Poisson structure in the
following way.

.14) T dx,;\dxjadfﬂ\dg ¢ ﬁa_g_a_gﬂ)
dxyndxs ndxsndxyg dxp dx;  dxy dxp

where (i, j, k, ) is equivalent to (1,2,3,4) up to an even permutation. { in (8.14) will be

some constant in our case though it could be a more complicated function in general.

Such a structure is in fact a special case of certain higher brackets among functions

called the Nambu bracket. (See for e.g. [OR02].) Choice of g will be fixed shortly.

One can check that (8.14) satisfies a Jacobi relation, and f and g lie in the Pois-
son center. Therefore il descends to the quotient algebra 28¢ » = Clxy, x2, x3, x4]/( [, &)
which is a coordinate ring of a hypersurface in the conifold defined by g = 0. Now we
provide some relation between our </, /W, and the deformation quantization of %y ,
associated with the Poisson structure (8.14).

First, we make the following specific choice of the second function g in (8.14). Re-
stricted to the loops based at the first vertex of Q, world sheet potential (W, )y (8.10)



THEOREM 8.10. The family of noncommutative algebra o | (W,) near v = 0 gives
a quantization of the complete intersection given by two quadratic equations f = 0 and
g=0in C! in the sense of [EG10].

We remark that {f = 0} n{g = 0} defines the mirror elliptic curve in P after pro-
jectivization. As in Theorem 5.15 [ATdB90, Ste97|, we expect that & /(W) is given
as a twisted homogeneous coordinate ring of the mirror elliptic curve embedded in
the quadric {xx3 = Xy} < P? (which can be identified as P! x P1) by the line bundle
L =G (1) Gy (1).

PrROOE. As ¢ — 0, we have
(W) — Claxy, X0, X3, X4]/{f, 8-

So it remains to check that the first order terms of the commultators for A, are equivalent
to the Poisson bracket induced by f and g with the formula (8.14). The first equation in
(8.12) gives rise to

r(xsxy —xaxs) = v(a (0)xgx3+ B (0)x3x4 + " (D) xax2 + ' (0) x4 1) + (),

where r:= a(0) = —b{0)) € C. Thus we obtain
XyXg—XgX3 1
(8.16) lim ST _((d'(0) + B (0) xaxg + €' (0) xaxz + ' (0) x4 1)
y—+ v r
since x3 and xy commute at v = 0 (and so do other variables).
On the other hand, the Poisson bracket between x; and x4 from (8.14) is given by
9 o8 _ 95 of
Elx] dxz GX] de
which is proportional to the right hand side of (8.16) since a'(0) + F (0) = {y and ¢'(0) =
d'(0) = 2{¢p. Similarly, the first order commutaror between x; and x;4; for other i's
agrees with the Poisson bracket of the corresponding variables.

fxa, 24t =( = (Wanxg + 2¢p(x3 22 + x427))

DEFINITION 9.1 (Extended quiver). Let {X(} be the set of even-degree immersed
generators. Moreover take a Morse function on each L; and let {Tg} be the set of their
critical points other than the maximum points (which correspond to the fundamental
classes 17,). The extended quiver Q is defined to be a directed graph whose vertices are
one-to-one corresponding to {L;}, and whose arrows are one-to-one corresponding to
{XeU{XfFtu{Tgh

DEFINITION 9.3. Take

[ f 1

Define degx, = 1 —degX,, degxy = 1 —deg X and degt, = 1 —deg T, such that b has
degree one.

The deformation parameter degx, is always even, but the other parameters may
not be. Hence we need to modify the sign rule of (2.3) in the definition 2.6 to the follow-
ing.

(9.1) my(fies, faeiy o+, fier) = (0 fefio1 -+ fofi-melen, -+ eq).

where ¢ is obtained from the usual Koszul sign convention. For example, if f; is the dual
variable of e forall j =1,... k, then we have

. . T degfj o
(9.2) mi(fiei, f2ei,,, freq) i= (=1)7i= Jefee1 o h-myles, -, ei),

since one can pull out fi, fk-1,..., fi one at a time and by assumption f;e;; will have
(shifted) degree 0. One can check that this defines an Ao-structure.
Then mé’ will additionally have odd-degree part, i.e,, it is of the form

my =Y Wilp, +Y PeXe+ Y. PrX;+Y PeTy. ded.
i e a g @
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The constructions in previous chapters generallze to this setting, to give the'non-
commutative ring A modulo the relations (P, P, Pg), and an extended A functor to
matrix factorizations of an extended potential function w.

Alternatively, we explain a construction which gives a curved dg algebra (A, d, W),
and an As-functor to the category of curved dg-modules over (A, d, W).

We will construct a curved dg-algebra from the extended deformations.

DEFINITION 9.4 ([KLO3]). A curved dg-algebra is a triple (A4,d, F), where A is a
graded associative algebra, d is a degree-one derivation of A, and F € A is a degree 2
element such that dF = 0 and d” = [F+] = F(-) = () F.

If d* = 0 (or equivalently F is central), a curved dg-algebra structure gives rise to a
noncommutative Landau-Ginzburg model on its d-cohomology with the cohomology
class [F] as a (worldsheet) superpotential. If the dg-algebra is formal, then d g-modules
over A (Definition 9.11 below) boils down to matrix factorizations of [F] over H(A). In
this section we don’t take this assumption and work with dg-modules.

Now take the path algebra AQ. It carries a natural curved dg structure as follows.

DEFINITION 9.5. Define the extended worldsheet superpotential to be W =Y; W;,
where W, are the coefficients of 17, in mg Define a derivation d of degree one on AQ

by t{.{e =Pg

dlagxe+bpxp+cglg) = agPe+ byPr+cgPy dx ,P
o |
dy =P,

for ae, by, cg € A, and extend it using Leibniz rule. (Our sign conventionis d(xy) = xd y+
(- 1)9°8Y (dx) y.)

Then the Ass-relations for L can be rewritten as follows.

PROPOSITION 9.6. dW = 0 and d° = [W,-]. In other words (AQ, d, W) is a curved dg
algebra.

REMARK9.7. Itis well-known (see [KS09]) that A,,-algebra structure on V is equiv-
alent to a codifferential d on the tensor coalgebra TV. And if V is finite dimensional (as
in our case), then one can take its dual algebra (TV)* with a differential d (with d? = 0).
We may regard {x¢, X, Xg} as dual generators of the dual algebra (TV)*. There is one
more generator x) that we have suppressed in the previous formulation. Turning it on
simply results in adding a multiple of unit in W. The desired identities can be obtained
from d? = 0 by setting x; = 0. But we show the direct proof below due to signs. These
two formulations are equivalent.

In general it is difficult to write down (AQ, d, W) explicitly since it requires comput-
ing all my.'sfor L. On the other hand, for Calabi-Yau threefolds with grading assumptions
(see below), a lot of terms automatically vanish by dimension reason, and (A Q,d, W)
can be recovered from the quiver Q with potential ® (and W =0). The resulting dg alge-
bra (AQ, d) is known as Ginzburg algebra.

DEFINITION 9.9 (|Gin]). Let (Q,®) be a quiver with potential. The Ginzburg algebra
associated to (Q,®) is defined as follows. Let Q be the doubling of Q by adding a dual
arrow € (in reversed direction) for each arrow e of  and a loop based at each vertex of
Q. Define the grading on the path algebra AQ as

degx, =0,degx; = —1,degt; = —
where ; corresponds to the loop at a vertex. Define the differential d by
dt; =) My, [Xe, X8) Ay, dxg=05,®P, dx.=0
e
where 7, denotes the constant path at the vertex v;. Then the dg algebra (AQ,d) is
called the Ginzburg algebra.

PROPO‘?ITID\J 9: 10 Suppose X is a (ﬂlabl Yau threefold, L! are graded Lagranglan

1 . 1 .1 A " s |

Better for homotopy theory:
working with complexes
rather than cohomology spaces.



called rhé Ginzburg algebra.

ProOPOSITION 9.10. Suppose X is a Calabi-Yau threefold, L; are graded Lagrangian
spheres (equipped with a Morse function with exactly one maximum point and one !
minimum pc_:int) §uch that deg X equals to either one or two for allimmersed generators wm,
X. Then (AQ,d, W = 0) produced from the above construction is the Ginzburg algebra

associated to (Q, D). ASSW CODW‘—‘) : H\j; = 2(8‘6(5) XE ' @ = (:"‘k(g IEXE o ZXPX:) ’ i-] IEXa)

DEFINITION 9.11. A curved dg-module over a curved dg-algebra (A, d, F) is a pair
(M, dy;) where M is a graded A-module and d; is a degree one linear endomorphism
of M such that

(9.4) dyilam) = aldym) + (=D (daym
and d2, =F.

Conclusion:

We have learnt the following topics about quivers:

1. Quiver representations (modules of path algebra)

2. Classification of indecomposable representations
(Gabriel and Katz)

3. Moduli space of stable quiver representations
[Kings]

4. Quiver moduli associated to complex varieties
(to understand the derived category, or to provide
ambient space of embeddings)

5. Cohomology:
resolutions of quiver modules to compute Ext and
HH

6. Framed moduli as iterated Grassmannian bundles
[Reineke]

7. Nakajima quiver variety

8. Quiver algebra constructed as mirror of symplectic
geometry

There are still several topics of quiver variety that we
have not got into, such as

- relation with cluster variety

- applications like persistence theory

Some of your reports are introducing these topics.



Wish you have enjoyed the course!



