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Abstract. In this talk, I explain a Morse model for the equivariant
Lagrangian Floer theory, and apply it to SYZ fibers to construct an
equivariant SYZ mirror. This method computes equivariant disc poten-
tials for immersed SYZ fibers of toric Calabi-Yau manifolds, which are
closely related to the potentials of Aganagic-Vafa branes.

1. Introduction

Since the discovery of mirror symmetry in the 90’s, Gromov-Witten the-
ory has made tremendous developments. Via mirror symmetry, it gives an
enumerative meaning for important hypergeometric functions. Mirror sym-
metry and Gromov-Witten theory have stimulated the rapid growth of many
fundamental subjects, including moduli theory, PDE in gauge theory, and
symplectic geometry.

Strominger-Yau-Zaslow [SYZ96] proposed that mirror symmetry can be
understood via T-duality. Namely, it asserts that a mirror pair of Calabi-
Yau manifolds admits dual special Lagrangian torus fibrations. The recon-
struction problem in mirror symmetry was studied by Kontsevich-Soibelman
[KS01, KS06] and Gross-Siebert [GS06, GS10, GS11]. They have motivated
a lot of important developments in symplectic and algebraic geometry, in-
cluding [Aur07, Aur09, CLL12, FOOO10, AAK16, CHL17, GK15, Abo17,
PT].

Current literature in the SYZ program has mostly focus on non-equivariant
mirrors. On the other hand, equivariant torus action plays a key role in the
formulation of Givental [Giv98] and Hori-Vafa [HV], and the mirror theo-
rem for Gromov-Witten invariants in [LLY97, LLY99a, LLY99b, LLY00]. In
the early days, localization by S1-actions was the most important tool in
the computation of Gromov-Witten invariants and the discovery of mirror
symmetry.

The mirrors of equivariant Gromov-Witten invariants are oscillatory inte-

grals of an equivariant superpotential W (~λ, ~x), where ~λ is the equivariant
parameter for a torus action1. We may regard W as a family of superpoten-
tials over the equivariant parameter space. In view of this, Teleman [Tel14]
proposed that for a Kähler manifold X with a Hamiltonian G-action, its
G-equivariant mirror is a holomorphic fibration. Moreover for a symplectic
quotient X//G, its mirror is given by a fiber of this holomorphic fibration.
It gives a mathematical formulation of the gauged linear sigma model of
Hori-Vafa [HV], and also suggests a relation with Langlands duality.

1It is denoted by ~ or z in the literature.
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The aim of this talk is to understand the equivariant mirrors from the
SYZ perspective. By [CO06, Aur07, CL10, FOOO10, CLLT17, CHL17,
CHKL17, CHLb], the non-equivariant Landau-Ginzburg superpotential can
be understood as a generating function of one-pointed open Gromov-Witten
invariants. We would like to have a similar understanding for the equivariant
superpotential.

The setting is the following. Given a symplectic manifold (X,ω), suppose
there is a compact Lie group G preserving ω. Let’s say we have constructed
a collection of Lagrangians in the same deformation class, which usually
come from fibers of a Lagrangian torus fibration, and assume that they are
G-invariant.

We shall construct a family of Landau-Ginzburg models over equivariant
parameters, together with a functor from the equivariant Fukaya category to
the category of matrix factorizations over the family. The Landau-Ginzburg
superpotential will be glued from the non-trivial curved terms mG

0 of the
G-equivariant Lagrangians that we begin with.

Equivariant Lagrangian Floer theory is the main tool for the construction.
Different versions of such a theory were developed by [SS10, HLS16, Woo11,
HLS, DFb, DFc] in various unobstructed situations. In order to work in the
weakly unobstructed setting, and to treat the curved term mG

0 in a more
explicit way, we have developed a Morse model formulation [KLZ]. We will
introduce this model in the next section. Then we apply this model for the
equivariant mirror construction and computing equivariant open Gromov-
Witten invariants in the later two sections. In this talk we will focus on the
case G = T is a torus.
G-equivariance has also been studied in the B-side. For instance, the work

of [FLTZ11] studied T -equivariant coherent sheaves on toric varieties and
their mirror objects. Moreover, Lian-Yau [LY13] has used G-equivariance
to study Picard-Fuchs equations for period integrals.

On the other hand, the curved term mG
0 is a distinguished object on the

A-side that has a lot of important applications. In Section 2, we intro-
duce a Morse model for the equivariant Lagrangian Floer theory. In Section
3, we explain an equivariant version of the gluing between the (quantum-
corrected) deformation spaces of G-invariant Lagrangians. In Section 4, we
apply to toric Calabi-Yau manifolds to formulate and compute its equivari-
ant open Gromov-Witten invariants.
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2. Equivariant disc potential for a smooth SYZ fiber

2.1. Floer theory for a smooth SYZ fiber. An essential ingredient of
the SYZ program is quantum correction, which is contributed from holo-
morphic discs emanated from singular fibers of the Lagrangian fibration.
Fukaya-Oh-Ohta-Ono [FOOO09b] defines the deformations and obstructions
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of Lagrangian submanifolds by a detailed study of the Floer theory of pseu-
doholomorphic disc moduli. The family Floer theory of Lagrangian torus
fibers [Fuk02, Tu14, Abo17] was extensively studied to understand homo-
logical mirror symmetry[Kon95] in the SYZ setting.

We briefly review as follows. The A∞ algebra (C∗(L),mk) encodes the
deformation and obstruction theory of a Lagrangian L. C∗(L) denotes the
space of chains in L, which can be taken to be singular chains, differential
forms, or linear combinations of critical points of a Morse function on L. The
virtual fundamental classes of moduli spaces of stable discs constructed by
[FOOO09b] is the main technical tool. mk : (C∗(L))⊗k → C∗(L) is defined
from the moduli of stable discs with several input marked points and one
output marked point. The precise definition depends on which model of
C∗(L) one takes.

The space of (degree-one) weak bounding cochains b, modulo gauge equiv-
alence, gives the local deformation space of L. Given b ∈ C1(L), one has a
deformed A∞ algebra (C∗(L),mb

k). b is a weak bounding cochain if

(2.1) mb
0 = W (b) · 1L

for some W (b), where 1L denotes the unit (which is essentially the funda-
mental class of L). This gives a Landau-Ginzburg model, namely the disc
potential W (b) defined over the space of weak bounding cochains. Such
a formulation was used in [FOOO10, FOOO11, FOOO16] to derive mirror
symmetry for compact toric manifolds.

In [CHL17], we construct local mirrors from Lagrangian immersions for-
mally deformed by weak bounding cochains, and an A∞ functor

Fuk(X)→ MF(W )

where MF(W ) denotes the dg category of matrix factorizations [Eis80, Orl09].
More specifically we studied the immersed Lagrangian curve found by

Seidel [Sei11] (see Figure 2a), classified its weak bounding cochains, and
used them to construct homological mirror symmetry for the orbifold spheres
P1
a,b,c. The orbifold spheres have a very interesting Gromov-Witten theory

(see for instance [ST11, ET13, MT08, MS16, SZ18]).

2.2. Equivariant Floer theory of a smooth SYZ fiber. We develop a
similar formulation to construct (local) equivariant mirrors out of a La-
grangian L preserved by a symplectic G-action on X. In a joint work
with Yoosik Kim and Xiao Zheng [KLZ], we formulated a G-equivariant
Lagrangian Floer theory. In the case of a torus action, we computed the
equivariant disc potential. The result can be stated as follows.

Theorem 2.1. Suppose T k acts on (X,ω, J). Let D be an anti-canonical
divisor preserved by T , and L ⊂ X−D a graded Lagrangian preserved by T .
Suppose the T -action restricted to L is free. Then for degree-one boundary
deformations

b = x1X1 + . . .+ xkXk

where X1, . . . , Xk are degree-one cycles dual to the orbit loops of the T k-
action, the equivariant obstruction term for L ⊂ X equals to

(2.2) mT, b⊗1BT
0 = mb

0⊗1BT +(x1+h1(x))1L⊗λ1+. . .+(xk+hk(x))1L⊗λk
3



where λi are the equivariant parameters, and hi(x) are contributed by non-
constant Maslov-zero holomorphic discs.

In particular if L is weakly unobstructed (meaning mb
0 = W (x) · 1L for

some W ), then mT, b⊗1BT
0 = W T · 1LT , where the equivariant disc potential

equals to

(2.3) W T = W (x) + (x1 + h1(x))λ1 + . . .+ (xk + hk(x))λk.

The above theorem gives an efficient way to construct a (local) mirror for
a symplectic quotient. Namely, the fiber

(2.4) Y0 := {x1 + h1(x) = . . . = xk + hk(x) = 0}
together with the superpotential W |Y0 can be taken to be a (local) Landau-
Ginzburg mirror of X � G probed by the Lagrangian L/G. Daemi-Fukaya
[DFa] asserted that in the unobstructed case, by using Lagrangian corre-
spondence, there exists a homotopy equivalence between the G-equivariant
Fukaya category of X and that of (a bulk deformation of) the symplec-
tic quotient X � G. Woodward-Xu [WX] have formulated a gauged Floer
theory for (L,G) and constructed an equivalence with the Floer theory of
L ⊂ X �G.

For instance, consider the simplest example P1, the symplectic quotient
of X = C2 by G = U(1). For a suitable moment-map torus L ⊂ C2,
its disc potential can be written as TA(z1 + z2z

−1
1 ) for certain choice of

parametrization (z1, z2) for the flat C×-connections on L. By [KLZ], the
equivariant disc potential equals to

W equiv = TA
(
z1 + z2z

−1
1

)
+ λ · x2

where z2 = ex2 . In other words, the obstruction term equals to hλ = x2.
Setting x2 = 0, we obtain

TA
(
z1 + z−11

)
which is exactly the disc potential of L/G ⊂ P1, the quotient. This easily
generalizes to other toric manifolds.

Now let’s consider general compact toric semi-Fano manifolds. The (non-
equivariant) disc potential W in this case has been computed in terms of the
mirror map [CLLT17, GI]. Combining, we obtain the following corollary.

Corollary 2.2. Let Xn be a compact semi-Fano toric manifold. The Tn-
equivariant disc potential equals to

W T =
m∑
l=1

(exp(gl(q̌(q)))) ·T
∫
βl
ω
e(x,vl) +

n∑
j=1

xjλj

where v1, . . . , vm are the primitive generators of the rays of the fan, q is the
Kähler parameter (which can be expressed in terms of the Novikov parameter
T), q̌ = q̌(q) is the inverse of the mirror map q(q̌), and

(2.5) gl(q̌) :=
∑
d

(−1)(Dl·d)(−(Dl · d)− 1)!∏
p 6=l(Dp · d)!

q̌d,

in which the summation is over all effective curve classes d ∈ Heff
2 (X) sat-

isfying
−KX · d = 0, Dl · d < 0 and Dp · d ≥ 0 for all p 6= l.
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Below we briefly describe our Morse model for the equivariant Floer
theory. We consider a family Morse theory [Hut08] on the fiber bundle
L ↪→ LG → BG, where BG = EG/G is the classifying space of G, and
LG := (L× EG)/G is the standard Borel construction. Let’s take a Morse
function f on L and a perfect Morse function fBG on BG, and cook up a
function on LG using a partition of unity (with respect to a bundle trivial-
ization), such that the function restricted to a fiber over a critical point of
fBG equals to f up to adding a constant. Then the Morse generators are of
the form X ⊗ λ, where X is a critical point of f and λ is a critical point of
fBG.2 C∗G(L) is taken to be the formal span of these generators X ⊗ λ.

The Morse model for LG counts pearl trajectories to define the A∞ oper-
ations mG

k : C∗G(L)⊗k → C∗G(L). Pearl trajectories were formulated by Oh
[Oh05, OZ11] and Biran-Cornea [BC12]. In this situation, a pearl trajec-
tory is a (connected) union of negative gradient flow line segments of the
family Morse model on LG, together with stable discs contained in fibers of
LG → BG. See Figure 1a.

(a) (b)

Figure 1. The left shows a pearl trajectory for the definition of a
Morse model of Lagrangian Floer theory. The right shows a Morse

flow on the equivariant space LS1 the free S1-action on L ∼= S1.

Below are some technical points. First, the moduli spaces of pearl trajec-
tories have highly non-trivial Kuranishi structures. In the work of [FOOO09a],
a chain homotopy between the classical Morse and singular complexes is
used, so that the definition of mk reduces to the singular chain model
[FOOO09b]. This formulation requires to include degenerate singular sim-
plices, and we have defined such a version of the chain homotopy in Section
2.2 of [KLZ].

Another important ingredient is the unit. The unit 1LG = 1L ⊗ 1BG
is important for defining weak bounding cochains (2.1). Strictly speaking,
the fundamental class, or correspondingly the maximum point 1H

LG
of the

Morse function, are not exactly the unit, since the Kuranishi structures
chosen inductively to satisfy transversality may not be compatible with the
forgetful map for marked points. [FOOO09b] has defined the notion of a

2More precisely we take a finite dimensional approximation L
(N)
G → B

(N)
G , consider

a family Morse theory for each N respecting the inclusions L
(N)
G ⊂ L

(N+1)
G and B

(N)
G ⊂

B
(N+1)
G , and let N →∞.
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homotopy unit in the singular chain model. We use the chain homotopy
mentioned in the last paragraph to construct a homotopy unit 1H

LG
in the

Morse model. The deg = −1 element 1H
LG

and the (degree zero) unit 1LG
are generators added to the space of Morse chains, and they satisfy

mG
1 (1H

LG) = 1LG − 1H
LG + h

where h is contributed from pearl trajectories consisting of Maslov-zero sta-
ble discs appeared in the homotopy. Such a homotopy unit was constructed
by Charest-Woodward [CW] in another setting.

For the purpose of equivariant Floer theory, we also construct a ‘partial
unit’ λLG = 1L ⊗ λBG for every λ ∈ H∗(BG). They have the property that

mG
1 (λLG) = 0;

mG
2 (λLG , X) = λLG ·X and mG

2 (X,λLG) = X · λLG ∀X ∈ C∗G(L);

mG
k (. . . , λLG , . . .) = 0 ∀k ≥ 3.

Using this, we can derive the module structure of the equivariant Floer
theory over equivariant parameters in H∗(BG).

Theorem 2.3 (Theorem 2.14 of [KLZ]).

mG
k (X1, . . . , λ ·Xi, . . . , Xk) = λ ·mG

k (X1, . . . , Xk).

So far we have focused on a local equivariant mirror from one single
Lagrangian. In the next section, we explain the gluing construction in the
equivariant setting.

3. Equivariantly gluing for singular SYZ fibers

3.1. Gluing in the non-equivariant setting. First, let us recall our glu-
ing construction [CHLa, HL18, HKL] in the non-equivariant setting. In the
SYZ reconstruction program, past literature has mostly focused on smooth
Lagrangian torus fibers. We need to (partially) compactify by gluing in
deformation spaces of singular fibers.

The best possible singular objects are Lagrangian immersions. Sei-
del was the first one who used Lagrangian immersion to derive homological
mirror symmetry [Sei11]. Sheridan extended his method to prove homolog-
ical mirror symmetry for all Fermat-type Calabi-Yau hypersurfaces [She15].
Their groundbreaking discoveries revealed the importance of Lagrangian
immersion. Floer theory has been extensively studied by Fukaya-Oh-Ohta-
Ono [FOOO09b]. Akaho-Joyce [AJ10] extended the theory for Lagrangian
immersions. Figure 2 shows two important examples of Lagrangian immer-
sions.

The key idea is to find a suitable collection of Lagrangian immersions,
and glue up their deformation spaces to construct a global mirror. In moduli
theory, compactification of the (regular) moduli by singular objects is the
essential step. The choice of singular objects to add in is determined by the
stability condition.

The most typical singular SYZ fiber is the immersed two-sphere with a
single nodal point. In [HKL], we solved the Maurer-Cartan equation (2.1)
for its formal deformations. There are two degree-one immersed generators
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(a) (b)

Figure 2. The left shows the immersed curve invented by Seidel
which triggers a lot of recent developments. The right shows a
typical singular SYZ fiber, which is an immersed two-sphere with
a single nodal point.

U, V for the immersed two-sphere S2. We proved that uU + vV for all
u, v ∈ Λ0 with val(uv) > 0 are unobstructed bounding cochains. Thus we
can think of

{(u, v) ∈ Λ2
0 : val(uv) > 0}

as the local mirror for the immersed two-sphere.
To make the computation explicit, we have used a symplectic S1-reduction.

Consider X = C2 − {ab = 1}, with the S1-action

(3.1) (a, b) 7→ (eiθa, e−iθb).

It has a moment map |a|2− |b|2, and the quotient map to the reduced space
can be identified as ab : X → C− {1}. Then S2 ⊂ X is obtained by taking
the intersection of the preimage of a circle passing through 0 in the reduced
space and the level |a|2 − |b|2 = 0. See Figure 3.

Figure 3. The images of the immersed sphere S2 and a
Chekanov torus TCh.

Next, we glue this deformation space with those of smooth tori (which are
smoothings of S2) via isomorphisms in the Fukaya category. An isomorphism
between two objects L1, L2 in the Fukaya category is a pair α ∈ CF 0(L1, L2),
β ∈ CF 0(L2, L1) satisfying
(3.2)
m1(α) = 0, m1(β) = 0, m2(β, α) = 1L1 +m1(γ1), m2(α, β) = 1L2 +m1(γ2)

for some γ1, γ2.
We solved the above equations for an isomorphism between S2 and

a Chekanov torus TCh (and also a Clifford torus). The tori are also
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constructed by taking the intersection of preimages of circles in the reduced
space with the level {|a|2−|b|2 = 0}, see Figure 3. We proved that Equation
(3.2) is satisfied if and only if the immersed deformations (u, v) of S2 and

the formal deformations of TCh by flat connections ∇(z,w) satisfy the gluing
formula

(3.3) u = w, uv = 1 + z.

Such a formula patches the formal deformation spaces of the two Lagrangians
S2 and TCh together which is crucial to construct a global mirror. The
gluing equation uv = 1 + z was also formulated by a different method in the
monotone setting via Legendrian topology in [DRET].

It easily follows from A∞ relations that the isomorphism has the nice
property that it preserves disc potentials:

Proposition 3.1. Let bi be weak bounding cochains of Li for i = 1, 2, and
Wi(bi) the corresponding disc potentials. Suppose (Li, bi) are isomorphic.
Then W1(b1) = W2(b2).

By the above proposition, if W1 and the gluing relation between b1 and
b2 are known, we can deduce W2.

As an application, we constructed the Floer theoretical mirror of the
Grassmannian Gr(2, n). The disc potential of a smooth torus fiber of the
Gelfand-Cetlin system in this case was computed by Nishinou-Nohara-Ueda
[NNU10]. Gluing in the immersed spheres (times tori) is important since
they correspond to missing critical points not covered by torus charts (C×)N

in general. This provides an enumerative meaning for the Lie-theoretical
mirror superpotential of Rietsch [Rie08].

An advantage of such a geometric gluing construction is that, the asso-
ciated local mirror functors [CHL17] are glued by the isomorphisms in a
canonical way [CHLa]. This is important in deriving homological mirror
symmetry.

3.2. Gluing in the Equivariant setting. All the constructions in the last
subsection can be lifted to the equivariant setting. In Section 2, we have
explained a local equivariant mirror for a Lagrangian torus under a free
T k-action, which is

(Λ×0 )n−k × Λk+ × Spec(Λ[λ1, . . . , λk])

together with a superpotential W T . The Λk+ factor comes from boundary

deformations appeared in Theorem 2.1. The (Λ×0 )n−k factor comes from
deformations by flat connections in the remaining factor. Below we explain
how we can construct equivariant mirrors via Lagrangian Floer theory.

(1) First we take a suitable collection {Li : i ∈ I} of G-invariant
Lagrangian immersions in X. Typically, Li are obtained as the
inverse images of (possibly degenerate) Lagrangian tori in X//G.

(2) For each Li, we construct a formal family of curved A∞ algebras(
C∗(Li)⊗H∗(BG),

{
m
G,(Li,bi⊗1BG)
k

}∞
k=0

)
for (Novikov convergent) weak Maurer-Cartan formal deformations

bi ∈MCweak(Li) = Spec(Ai).
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In general Ai can be a (noncommutative) quiver algebra with rela-
tions. The obstruction term

m
G,(Li,bi⊗1BG)
0 =

(
W (i)(bi) +

∑
λ

h
(i)
λ (bi) · λ

)
1Li

gives the equivariant disc potential of Li, where λ runs over the
equivariant parameters in H2(BG). Then the local equivariant
mirror of each Li is given by

(3.4)

(
Spec(Ai ⊗ Λ[H2(BG)]), W (i)(bi) +

∑
λ

h
(i)
λ (bi) · λ

)
which is a family of Landau-Ginzburg models over H2(BG) (where

the fibration map is given by h
(i)
λ ).

(3) We fix a tree of isomorphisms (3.2) among the objects (Li, bi), which
are valid under gluing equations bi = Φ(bj). These gluing equations
patch the above local charts (3.4) together to form a global equi-
variant LG mirror X̌equiv over H2(BG).

(4) The subvariety defined by the system of equations

h
(i)
λ (bi) = 0 ∀λ

is the mirror of the quotient X//G.

In (3), we have used the fact that each isomorphism has an equivariant
lifting as follows.

Proposition 3.2. Let G act on (X,ω, J), D an anti-canonical divisor pre-
served by T , and L1, L2 ⊂ X − D graded Lagrangians preserved by G.
Let b1 and b2 be degree-one weak bounding cochains of L1 and L2 respec-
tively. If α ∈ CF 0

G((L1, b1), (L2, b2)) is an isomorphism, then α ⊗ 1BG ∈
CF 0

G((L1, b1 ⊗ 1BG), (L2, b2 ⊗ 1BG)) is also an isomorphism.

Example 3.3. Consider C2 − {ab = 1}, in which we have the immersed
sphere S2 and the Chekanov torus TCh as explained in the last subsection.
The corresponding deformation spaces {(u, v) ∈ Λ2

0 : val(uv) > 0} and
{(z, w) ∈ Λ : val(z) = val(w) = 0} are glued together by Equation (3.3).
This gives the mirror space

{(u, v) ∈ Λ2
0 : val(uv − 1) = 0}.

If we take the complex part (namely the intersection of the above space with
C2 ⊂ Λ2

0), then we get

C2 − {uv = 1}
which equals the space we start with. (C2 is self-mirror in this sense.)

Now consider the S1-action (3.1) which preserves both S2 and TCh. By
Proposition 3.2, the isomorphism relation (3.3) is still valid. More precisely,
we fix a non-trivial spin structure of TCh in the direction of the S1-action,
and take a boundary deformation b = xX by a dual cycle of the S1-action.
Then the variable z is replaced by −ex, and hence we have the gluing equation
ex = 1− uv. Thus the equivariant mirror is simply

{(u, v) ∈ Λ2
0 : val(uv) > 0} × Spec(Λ[λ])
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with the equivariant disc potential [KLZ, Section 4]

W S1 = xλ = −λ
∞∑
j=1

(uv)j

j
.

4. Equivariant open Gromov-Witten invariants of Lagrangian
immersions

4.1. Open Gromov-Witten invariants. Open GW invariants play an
important role in mirror symmetry. They form the source of quantum cor-
rections. Moreover their generating functions give a canonical way to con-
struct the mirror map [CKYZ99, AZ06, GS11, CLT13, CCLT16, CLLT17,
GPS, CHKL17]. Furthermore the generating functions produce important
modular forms in many interesting situations [LZ15, KL, FRZZ19].

Open GW invariants can be divided into two types. The first type con-
cerns about stable discs without any output boundary marked point. They
contribute to the so-called spacetime superpotential, whose differential gives
the obstruction term of the Lagrangian Floer theory. The definition of this
type of open Gromov-Witten invariants typically relies on additional sym-
metries, such as anti-symplectic involutions [PSW08] or S1-actions [KL01].
They are particularly adapted to the case of threefolds. They behave more
similarly to closed Gromov-Witten invariants, and may be computed by
localization [GZ02, FLT, FLZ] and open WDVV equations [HS].

The second type comes from stable discs with one output boundary
marked point. They are systematically recorded by a generating function
called the disc potential, which is the curved term m0 of Lagrangian Floer
theory. L is called to be weakly unobstructed [FOOO09b] if the curved
term m0 equals to WL1L for some WL. We have invented techniques to
compute WL in various situations, including local Calabi-Yau manifolds
[CLT13, CCLT16, KL], semi-Fano toric manifolds [CL14, CLLT17], ellip-
tic and hyperbolic orbifolds [CHKL17], and Grassmannians Gr(2, n) [HKL].

In this section, we focus on (non-compact) toric Calabi-Yau manifolds
and explain how to apply the theory in the last two sections to compute
one-pointed equivariant open Gromov-Witten invariants, which should be
closely related to unmarked (equivariant) open GW invariants via the divisor
axiom.

4.2. Open Gromov-Witten invariants of toric Calabi-Yau mani-
folds. Toric Calabi-Yau manifolds are local building blocks of a compact
Calabi-Yau manifold. Recall that a toric manifold is encoded combinatori-
ally by a fan. It is a toric Calabi-Yau manifold if all the primitive generators
of the fan are contained in a hyperplane defined by (ν, ·) = 1 for some dual
lattice point ν. In this case there exists a global holomorphic nowhere-zero
top form.

Open Gromov-Witten invariants for the Lagrangian branes defined by
Aganagic-Vafa in toric Calabi-Yau threefolds were predicted by physicists
[AVb, AVa, AKV02, BKMnP09]. The works [KL01, LLLZ09, GZ02] used S1-
equivariant localization to formulate and compute these invariants. There
have been a lot of recent developments [FL13, FLT, FLZ] in formulating
and proving the physicists’ predictions using localization technique. There
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are also vast conjectural generalizations of these invariants in relation with
knot theory, see for instance [AENV14, TZ].

Let’s illustrate by the typical example of a toric Calabi-Yau manifold
KPn−1 , the total space of the canonical line bundle of the projective space.
There is a Tn−1-action on KPn−1 preserving the holomorphic volume form,
whose symplectic quotient is identified with the complex plane. The Aganagic-
Vafa Lagrangian brane LAV for n = 3 can be realized as a ray, See Figure
4.

Figure 4. The Aganagic-Vafa brane and the Lagrangian fibra-
tion on KP2 .

In dimension n = 3, Aganagic-Klemm-Vafa predicted that the genus-zero
open Gromov-Witten potential of LAV equals to the integral

(4.1)

∫
log(−z1(z2, q))dz2

where z1(z2, q) is obtained by solving the mirror curve equation

z1 + z2 +
q

z1z2
+ exp(φ(q)/3) = 0.

In the expression, φ(q) is the inverse mirror map on the Kähler parameter
q, which has an explicit expression by solving the Picard-Fuchs differential
equation. The statement was proved by [FL13] via localization.

On the other hand, in [CLL12, CLT13, CCLT16], we used the T -duality
approach of [SYZ96] and wall-crossing [KS01, KS06, GS06, GS10, GS11,
Aur07] to understand mirror symmetry for toric Calabi-Yau manifolds in
general dimensions. We constructed the mirror dual of the Lagrangian fi-
bration [Gro01, Gol01]. Moreover, we proved that the generating function
of open Gromov-Witten invariants for a Lagrangian toric fiber equals to the
inverse mirror map. It states as follows for KPn−1 .

Theorem 4.1 ([CLL12, LLW11, CCLT16, Lau15]). The SYZ mirror of
KPn−1 equals to

(4.2) uv = z1 + . . .+ zn−1 +
q

z1 . . . zn−1
+ (1 + δ(q))

11



where 1 + δ(q) is the generating function of one-pointed Gromov-Witten
invariants of a moment-map fiber. Moreover, (1+δ(q)) equals to the inverse
mirror map exp(φ(q)/n), which also equals to the Gross-Siebert normalized
slab function.

For instance, let’s take the dimension to be n = 4. The mirror map for
KP3 is given by q = Qef(Q), where q is the Kähler parameter for the primitive
curve class in KP3 , Q is the corresponding mirror complex parameter, and
f(Q) is the hypergeometric series

f(Q) =
∞∑
k=1

(4k)!

k(k!)4
Qk.

For more about Hodge structures and period integrals for toric Calabi-Yau
manifolds, see for instance [Hos06, KM10].

Taking the inverse of the mirror map, we get

Q(q) = q − 24q2 − 396q3 − 39104q4 − 4356750q5 −O(q6).

Then the generating function of open Gromov-Witten invariants of a La-
grangian toric fiber is given by

1 + δ(q) = exp(f(Q(q))/4) = 1 + 6q+ 189q2 + 14366q3 + 1518750q4 +O(q5).

This counts stable discs with one marked point bounded by a moment-map
torus fiber.

The relation between the Aganagic-Vafa branes and the SYZ approach
was not clear. Our equivariant version of the SYZ construction can explain
the relation.

In Section 2, we have formulated and computed the equivariant open
Gromov-Witten potential for a smooth SYZ torus fiber. Applying to a
toric Calabi-Yau manifold (with an anti-canonical divisor taken away), the
equivariant disc potential simply reads

W T = x · λ
where T = S1, λ is the corresponding equivariant parameter, and x parametrizes
the boundary deformations by a degree-one cycle dual to an orbit loop of
the S1-action.

Moreover, in Section 3, we have explained our gluing method and its
equivariant lift. For a toric Calabi-Yau manifold, by studying the pearl
trajectories and making use of suitable equivariant Kuranishi perturbations
developed by [FOOO10, FOOO11, FOOO16], we can deduce the gluing for-
mula between the torus and an immersed fiber S2 × Tn−2 as follows. This
is a joint work with Hansol Hong, Yoosik Kim and Xiao Zheng.

Theorem 4.2 (Gluing formula [HKLZ]). Let S2 × Tn−2 be an immersed
SYZ fiber in KPn−1 depicted in Figure 4. The isomorphism equation (3.2) for
S2×Tn−2 and the Chekanov torus TCh is satisfied if and only if the immersed

deformations (u, v) and the flat connections ∇(zimm
2 ,...,zimm

n−1) on S2 × Tn−2,

the boundary deformations xX and the flat connections ∇(z2,...,zn−1,w) on
Tn satisfy the following gluing formula:

u = w, zimm
i = zi for i = 2, . . . , n−1, uv = −ex+z2+. . .+zn−1+

q

z1 . . . zn−1
+(1+δ(q)).

12



By Proposition 3.2, the above isomorphism can be lifted to the equivariant
setting. Since an isomorphism preserves the equivariant disc potential, the
potential for S2 × Tn−2 can be derived from that for the Chekanov torus
TCh and the gluing formula.

Theorem 4.3 (Equivariant disc potential [HKLZ]). For X = KPn−1, the
S1-equivariant disc potential of S2 × Tn−2 equals to

(4.3) m
S1,b⊗1BS1
0 = λ · log g(uv, z2, . . . , zn−1)

where λ is the S1-equivariant parameter, and −z1 = g(uv, z2, . . . , zn−1) is a
solution to the mirror equation (4.2).

We have focused on the immersed S2× Tn−2. We may compare with the
Aganagic-Vafa brane LAV . First, note that S2 × Tn−2 bounds holomorphic
polygons which have one or more corners lie in the immersed sectors. These
are not present in LAV which is smooth. Thus the equivariant disc po-
tential we obtain for S2 × Tn−2 has more terms than the potential
for LAV : the coefficients of (uv)k in Equation (4.3) are counting polygons
with 2k corners.

Setting u = v = 0 takes away the contribution from these polygons.
The stable discs bounded by LAV are exactly the same as those bounded
by S2 × Tn−2. The only difference is that, S2 × Tn−2 has two ‘branches’
around the immersed locus, while LAV is smooth. This is the main reason
that S2 × Tn−2 is unobstructed: the contribution of the stable discs to
the obstruction term of S2 × Tn−2 appear in pairs and cancel within each
other. The equivariant obstruction term of LAV should coincide with that
for S2 × Tn−2 given in Equation (4.3).

For instance when the dimension n = 4, some of the coefficients ajklp of

the equivariant disc potential (4.3), written in the form
∑
−ajklpzj1zk2ql(uv)p,

of KP3 are given by the following table (for p = 0).

ord(q) = 0
ord(z2)

ord(z1) 0 1 2 3
0 0 1 1/2 1/3
1 1 1 1 1
2 1/2 1 3/2 2
3 1/3 1 2 10/3

ord(q) = 1
ord(z2)

ord(z1) −1 0 1 2
−1 1 2 3 4
0 2 6 12 20
1 3 12 30 60
2 4 20 60 140

ord(q) = 2
ord(z2)

ord(z1) −2 −1 0 1 2
−2 3/2 6 15 30 105/2
−1 6 36 108 246 480
0 15 108 387 1020 2250
1 30 246 1020 3060 7560
2 105/2 480 2250 7560 20685
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270, Birkhäuser Boston Inc., Boston, MA, 2009, pp. 503–531.

18



[OZ11] Y.-G. Oh and K. Zhu, Floer trajectories with immersed nodes
and scale-dependent gluing, J. Symplectic Geom. 9 (2011),
no. 4, 483–636.

[PSW08] R. Pandharipande, J. Solomon, and J. Walcher, Disk enumera-
tion on the quintic 3-fold, J. Amer. Math. Soc. 21 (2008), no. 4,
1169–1209.

[PT] J. Pascaleff and D. Tonkonog, The wall-crossing
formula and Lagrangian mutations, preprint,
https://arxiv.org/abs/1711.03209.

[Rie08] K. Rietsch, A mirror symmetric construction of qH∗T (G/P )(q),
Adv. Math. 217 (2008), no. 6, 2401–2442.

[Sei11] P. Seidel, Homological mirror symmetry for the genus two
curve, J. Algebraic Geom. 20 (2011), no. 4, 727–769.

[She15] N. Sheridan, Homological mirror symmetry for Calabi-Yau hy-
persurfaces in projective space, Invent. Math. 199 (2015), no. 1,
1–186.

[SS10] P. Seidel and I. Smith, Localization for involutions in Floer co-
homology, Geometric and Functional Analysis 20 (2010), no. 6,
1464–1501.

[ST11] I. Satake and A. Takahashi, Gromov-Witten invariants for mir-
ror orbifolds of simple elliptic singularities, Ann. Inst. Fourier
(Grenoble) 61 (2011), no. 7, 2885–2907.

[SYZ96] A. Strominger, S.-T. Yau, and E. Zaslow, Mirror symmetry is
T -duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259.

[SZ18] Y. Shen and J. Zhou, LG/CY correspondence for elliptic orb-
ifold curves via modularity, J. Differential Geom. 109 (2018),
no. 2, 291–336.

[Tel14] C. Teleman, Gauge theory and mirror symmetry, Proceedings
of the International Congress of Mathematicians—Seoul 2014.
Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 1309–1332.

[Tu14] J. Tu, On the reconstruction problem in mirror symmetry, Adv.
Math. 256 (2014), 449–478.

[TZ] D. Treumann and E. Zaslow, Cubic planar graphs and Legen-
drian surface theory, preprint, arXiv:1609.04892.

[Woo11] C. T. Woodward, Gauged Floer theory of toric moment fibers,
Geom. Funct. Anal. 21 (2011), no. 3, 680–749.

[WX] C. T. Woodward and G. Xu, An open quantum Kirwan map,
preprint, https://arxiv.org/abs/1806.06717.

19

https://arxiv.org/abs/1711.03209
https://arxiv.org/abs/1609.04892
https://arxiv.org/abs/1806.06717

	1. Introduction
	Acknowledgment
	2. Equivariant disc potential for a smooth SYZ fiber
	2.1. Floer theory for a smooth SYZ fiber
	2.2. Equivariant Floer theory of a smooth SYZ fiber

	3. Equivariantly gluing for singular SYZ fibers
	3.1. Gluing in the non-equivariant setting
	3.2. Gluing in the Equivariant setting

	4. Equivariant open Gromov-Witten invariants of Lagrangian immersions
	4.1. Open Gromov-Witten invariants
	4.2. Open Gromov-Witten invariants of toric Calabi-Yau manifolds

	References

