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ABSTRACT. This article introduces the past and ongoing works on quantum
corrections in SYZ from the author’s perspective. It emphasizes on a method
of gluing local pieces of mirrors using isomorphisms between immersed La-
grangians, which is an ongoing joint work with Cho and Hong. It gives a
canonical construction of mirrors and generalizes the SYZ setting.

1. INTRODUCTION: SYZ, QUANTUM CORRECTIONS AND WALL-CROSSING

Let (X ,ω) be a symplectic manifold. Roughly speaking, a mirror of (X ,ω) is a
variety X̌ whose complex geometry reflects the symplectic geometry of (X ,ω). In
terms of homological mirror symmetry (HMS) formulated by Kontsevich [Kon95],
we should have

DπFuk(X ) ∼= Db(X̌ ).

Mirror symmetry transforms symplectic geometry, which stems from Hamilton-
ian dynamics and its quantizations, to complex geometry, which is more well-
understood and computable.

Strominger-Yau-Zaslow [SYZ96] proposed to understand mirror symmetry by
using Lagrangian fibrations. Suppose the mirror X̌ is a smooth complex mani-
fold. Tautologically X̌ is the moduli space of p ∈ X̌ . The endomorphism space
is Ext∗(Op ,Op ) ∼=∧∗Cn ∼= H∗(T,C), the cohomology of a torus T . It suggests that
Op is likely to be mirror to a Lagrangian torus in X (whose Floer cohomology
equals to the usual cohomology). A nice assumption is that deformations of a
certain Lagrangian torus produce a Lagrangian fibration, and the moduli space
of such tori is simply the base of the fibration.1

Now assume that X has a Lagrangian torus fibration. The dual torus fibra-
tion should be a mirror of X . Moreover it asserted that there should be a real
version of Fourier-Mukai transform [LYZ00] which realizes homological mirror
symmetry. The SYZ program leads to a lot of important developments in mir-
ror symmetry, including Gross-Siebert program [GS11] and family Floer theory
[Fuk02, Tu14, Tu15, Aboa, Abob].

Quantum correction coming from singular fibers of the Lagrangian fibration
is the most interesting part of the SYZ program. Torus duality away from singular
fibers give only the first-order approximation of the mirror variety. We need to

1Note that when the mirror is a Landau-Ginzburg model (a singularity defined by a super-
potential), this derivation breaks down and we should consider deformations of more general
vanishing cycles or even immersed Lagrangians.
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correct it by holomorphic discs emanated from singular fibers, which roughly
speaking probe the geometry of singular fibers. They lead to the famous wall-
crossing phenomenon, whose algebraic aspect has been studied extensively by
Kontsevich-Soibelman [KS, KS06] and Gross-Siebert [GS06, GS10, GS11] in the
SYZ context.

In this article, I will introduce a symplectogeometric method of capturing the
quantum corrections in an ongoing joint work of the author with Cho and Hong.
There are several existing methods to capture quantum corrections (for instance
the works of Fukaya [Fuk02], Auroux [Aur07, Aur09], Chan-Lau-Leung [CLL12],
Pascaleff [Pas14], Abouzaid-Auroux-Katzarkov [AAK16], Lin [Lin17], and Yu [Yu16]).
The method introduced here can be explicitly carried out in many cases, di-
rectly related to HMS, and can be applied to a more general setting involving
immersed Lagrangians (rather than SYZ tori). In the example of C2, this method
was introduced by Seidel [Sei, Prop. 11.8] to deduce the wall-crossing function.

We shall stick with the following two examples throughout the article. In later
sections we will use various perspectives to explain how the mirrors come up
from the first principle.

Example 1.1 (KP1 ). Let X be the total space of the canonical line bundle over
P1. It is a toric Calabi-Yau 2-fold whose fan is generated by the primitive vectors
(−1,1), (0,1), (1,1). Toric Calabi-Yau manifolds and their mirrors serve as impor-
tant local models for Lagrangian fibrations on compact Calabi-Yau manifolds.
In [CnBM09], Castaño-Bernard and R. and Matessi glued these local models and
constructed a Lagrangian fibration on the Fermat Calabi-Yau threefold (see also
the works of Ruan [Rua01, Rua02, Rua03] and Gross [Gro01b]).

Let µ1 be the moment map of the S1-action corresponding to the vector (1,0).
Let w be the toric holomorphic function corresponding to the covector (0,1). X
has the Lagrangian fibration (µ1, |w −1|) which was found by Gross [Gro01a] and
Goldstein [Gol01] in a more general context. See Figure 1.

wall

B

FIGURE 1. A Lagrangian fibration on KP1 .

The ‘wall’ in this example is given by R× {1} in the base of the fibration. It
contains two singular points of the fibration. In terminology of Gross-Siebert
[GS11], one singular point should give the slab function 1+z and the other should
give 1+ qz−1 (where q is the Kähler parameter associated with the zero section
P1 ⊂ KP1 . Thus the overall slab function of this wall is (1+ z)(1+ qz−1), and the
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mirror should be

uv = (1+ z)(1+qz−1)

which agrees with Hori-Vafa mirror [HV, HIV] (via the mirror map).
Geometrically, the wall is the collection of Lagrangian fibers which bound holo-

morphic discs of Maslov index zero, namely the discs contained in the divisor
w = 0. Unfortunately counting of Maslov-zero holomorphic discs is hard to de-
fine, since disc bubbling occurs and produces codimension-one boundaries of
their moduli spaces. In this article we shall explain methods to extract the in-
formation.

Example 1.2 (Four-punctured sphere). Let X =P1−{a,b,c,d} where a,b,c,d are
four chosen points in P1. [AAE+13] proved HMS for punctured spheres (and later
[Lee15] proved HMS for punctured Riemann surfaces). In particular

DπFuk(X ) ∼= DbMF(W )

where W is a holomorphic function defined on the resolved conifold; it is toric
whose fan is generated by the primitive vectors (0,0,1), (1,0,1), (0,1,1), (1,1,1). W
is the toric holomorphic function corresponding to the covector (0,0,1).

We would like to understand why W defined above is the mirror of X more
systematically. More precisely, we would like to develop a general geometric recipe
of constructing mirrors such that homological mirror symmetry naturally follows.
This example is particularly interesting to us since SYZ cannot be applied directly.
(Note that X has a Lagrangian fibration whose base is a trivalent graph which
is not a manifold.) A mirror construction by using SYZ on conic fibrations was
found by [AAK16].

In this article we shall see that the method in Section 3 which uses isomor-
phisms of Lagrangians can be applied to a pair-of-pants decomposition and gives
a canonical way to construct mirrors. For this example it produces the above W
defined on the resolved conifold.

Another way is to use the noncommutative mirror construction developed in
[CHLb]. The recipe produces W defined on the noncommutative resolution of
the resolved conifold. It is explained in Section 4. The results produced by the
two methods agree to each other in the sense that they have equivalent derived
categories.

2. CAPTURING QUANTUM CORRECTIONS BY MASLOV-TWO DISCS

In Example 1.1, we have seen that Maslov-zero holomorphic disc is the key
ingredient in SYZ mirror symmetry. Maslov-zero disc is a central object in the
theory of topological vertex [AKMnV05, LLLZ09, FL13] for toric Calabi-Yau man-
ifolds which has a very rich structure.

Unfortunately the moduli spaces of Maslov-zero discs have codimension-one
boundaries and it is very difficult to define the associated countings (and usually
auxiliary data is needed). In the case of K3 surfaces, Lin [Lin17] defined and
computed their open Gromov-Witten invariants by hyper-Kähler techniques.
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In the following we review a method used in [Aur07, Aur09, CLL12] to detect
the contribution of Maslov-zero discs by using holomorphic discs of Maslov in-
dex two. In the next section I shall introduce a more canonical method which is
also applicable to Lagrangian immersions.

We can consider holomorphic discs of Maslov index two bounded by torus
fibers. This produces a superpotential W defined above and below the wall.
(W is not quite well-defined right on the wall since it depends on the choice
of Kuranishi perturbations due to the existence of Maslov-zero discs.) From the
expressions of W above and below the wall, we can read off the wall-crossing
effect and obtain the slab function.2

The main idea is, the Maslov-two discs interact with the Maslov-zero discs
and hence detect the effect of walls. Namely, it could happen that

β′ =β+β0

where β′,β,β0 are holomorphic disc classes of Maslov index 2,2,0 respectively,
bounded by a fiber at the wall. The superpotential jumps across the wall and it
detects the slab function.

Let’s take Example 1.1 to illustrate. There is only one holomorphic disc class
bounded by a fiber below the wall. It is emanated from the boundary divisor w =
0. It propagates and gives a holomorphic disc class bounded by a fiber above
the wall. During the propagation, it can also interact with holomorphic discs
of Maslov index zero over the wall. It turns out that three more holomorphic
disc classes are produced, corresponding to the terms z, qz−1 and q in the slab
function 1+q + z +qz−1. (Note that holomorphic disc classes corresponding to
other terms zk for k 6= 0,1,−1 could also occur. It is a non-trivial computation
that all other contributions are zero [FOOO12, CL10].)

In order to compute all the disc contributions precisely, we used virtual tech-
nique and compactified stable discs to stable spheres [Cha11, LLW11, LLW12,
CL10]. [FOOO12] gave another method to compute them using degeneration.
We fully carry out the computation for all toric Calabi-Yau orbifolds [CCLT16]
and compact semi-Fano toric manifolds [CLLT], and showed that they exactly
coincide with the mirror map and Seidel representation.

Note that this method requires the presence of Maslov-two discs. In partic-
ular it works when the Lagrangian fibration has boundary divisors where the
Maslov-two discs are emanated from. In the case of surfaces, the work of Yu
[Yu16] counted holomorphic cylinders (and hence does not need boundary di-
visors) in the setting of non-Archimedian geometry.

Another drawback of this method is that, it is not directly connected to HMS.
Namely, we match the m0-terms of torus fibers by hand, and one has to prove
HMS separately. The method of Fukaya [Fuk02, Tu14, Aboa, Abob] is more canon-
ical. Namely, he used a diffeomorphism which is isotopic to identity to identify
one Lagrangian torus fiber above and one below the wall. It gives a family of

2More precisely we should take the generating function of discs emanated from each bound-
ary divisor D , namely those disc classes β with intersection number 1 for D and 0 for all other
divisors.
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almost complex structures and a homotopy between the two associated A∞ al-
gebras. This gives an isomorphism between their (weak) Maurer-Cartan spaces.
However the isomorphism is abstract and it is hard to make it explicit. In the
next section, we introduce a simpler method to obtain and compute the iso-
morphism (which does not even require that the two Lagrangians are diffeo-
morphic.)

3. GLUING BY ISOMORPHISMS BETWEEN LAGRANGIANS

In an ongoing work with Cho and Hong, we are developing a method to cap-
ture quantum corrections by establishing isomorphisms between formally de-
formed Lagrangian branes. An isomorphism is simply a morphism (given by an
intersection point) from a Lagrangian brane to another one which has an inverse
morphism (in the strict sense) in the Fukaya category.

An advantage is that the method works uniformly for both Example 1.1 and
1.2. It works for all toric Calabi-Yau manifolds and punctured Riemann surfaces
(and indeed many more other interesting examples). Moreover, it canonically
induces a mirror functor realizing HMS which will be studied in another paper.

The method of deducing the wall-crossing function by considering morphisms
between Lagrangian tori above and below the wall has been used by Seidel [Sei,
Prop. 11.8] in the example ofC2. We will apply this method to all toric Calabi-Yau
manifolds and their mirrors.

3.1. Isomorphism between Lagrangian torus fibers in KP1 . Recall that we have
the Lagrangian fibration (µ1, |w −1|) on KP1 . Fix b1 ∈ (c1,c2), where c1 and c2 are
the singular values of µ1. The symplectic reduction µ−1

1 {b1}/S1 can be identified
with C by the S1-invariant function w . The Lagrangian fiber at (b1,b2) is the
preimage in µ−1

1 {b1} of a circle centered at w = 1 with radius b2 in the symplectic
reduction.

We shall consider the deformation spaces of two Lagrangian torus fibers, one
is above and one is below the wall b2 = 1. The two Lagrangians are the preimages
of the two circles with radius b2 > 1 and b2 < 1 respectively. We will glue their de-
formation spaces (which are treated as local pieces of the mirror) by establishing
an isomorphism between them as objects in the Fukaya category.

An advantage of this method over considering wall-crossing of Maslov-two
holomorphic discs in Section 2 is that, we do not need the boundary divisor
{w = 1}. In particular it is better adapted to general Calabi-Yau settings (where
there is no boundary divisor at all). From now on we consider KP1 − {w = 1} with
the Lagrangian fibration (µ1, |w −1|).

Now the trick is, we move the two Lagrangians by an isotopy such that they
intersect with each other. See Figure 2. This method was invented by Seidel [Sei,
Prop. 11.8] to understand the wall-crossing for C2. We call the two Lagrangian
tori to be L1 and L2 respectively. Since the isotopy never hits the wall (and hence
no Maslov-zero holomorphic disc is involved in the process), it does not change
the gluing. We shall use their clean intersections to produce the isomorphism
we need for gluing.
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w=1w=0

below the wallabove the wall

FIGURE 2. Images of L1 and L2 in the symplectic reduction.

The deformation space of Li is given by the set of flat C×-connections on Li .
To fix the gauge, we take the two hyper-tori in L1 which are the circle fiber over z2

and the section marked by z1 in Figure 2. This is similar to the setting of [CHL14]
for compact toric manifolds. The parallel transport along a path passing through
the hypertorus marked by zi is the multiplication by zi . We do the same thing
for L2 and denote the corresponding holonomies by z ′

i for i = 1,2.
In short, we have two local pieces of mirrors (C×)2 whose coordinates are zi

and z ′
i for i = 1,2 respectively. Moreover we have the A∞ algebras(

H∗(L1),
{
mz1,z2

k : k ≥ 0
})

and
(
H∗(L2),

{
m

z ′
1,z ′

2

k : k ≥ 0
})

which are given by counting stable discs with one output marked point bounded
by Li weighed by the holonomies along their boundaries. In the following, we
shall find isomorphisms between the objects (L1,~z) and (L2,~z ′).

L1 and L2 intersect cleanly along two disjoint circles marked by αL1,L2 and
βL1,L2 in Figure 2. The Morse-Bott Floer complex CF((L1,~z), (L2,~z ′)) is generated
by cochains of these circles. To reduce to usual transverse situation, one may
further perturb one of the Lagrangian Li to produce the transversal intersec-
tion pointsα0,α1 and β1,β2. The subscripts 0,1,2 denote the degrees when they
are treated as morphisms from L1 to L2. Take αL1,L2

0 as a degree-zero chain in

CF((L1,~z), (L2,~z ′)).

Theorem 3.1. αL1,L2
0 is an isomorphism

(L1,~z)
∼=−→ (L2,~z ′)

in the Fukaya category if and only if z ′
1 = z1 and z ′

2 =−z2(1+ z1)(1+qz−1
1 ).

Proof. Let’s compute the Floer differential d of the complex CF((L1,~z), (L2,~z ′))
applied toαL1,L2

0 , which is counting stable strips from an input intersection point

to an output intersection point. The result is a degree-one element in CF((L1,~z), (L2,~z ′)),
which is a linear combination of αL1,L2

1 and βL1,L2
1 .
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Over the point marked by αL1,L2 in Figure 2, there are two holomorphic strips
with the same area, say ε. They give the term Tε

(
z1 − z ′

1

)
α

L1,L2
1 in d(αL1,L2

0 ). (Here
T is the formal parameter in the Novikov ring. Indeed we do not have conver-
gence issue here and so the reader can replace it by e−1.) There is no other strip
from α

L1,L2
0 to αL1,L2

1 .

Next consider the holomorphic strips fromα
L1,L2
0 toβL1,L2

1 . By topological rea-
son, these strips must project to either the left or the right region bounded by the
two circles in the w-plane (see Figure 2). (Note that it cannot project to the mid-
dle region since the divisor w = 1 has been removed in the current setting.)

The region on the right does not contain any singular point of the holomor-
phic fibration. There is exactly one rigid holomorphic strip (which is a constant
section) from α

L1,L2
0 to βL1,L2

1 over this region. (It does not pass through any ho-

lonomy hypertorus.) It gives the term −T∆βL1,L2
1 where ∆ is its symplectic area.

The region on the left contains the singular point w = 0. By Riemann mapping
theorem (which is used to smooth out the corners of the strips), stable strips
over this region are one-to-one corresponding to holomorphic discs bounded by a
toric fiber of the toric Calabi-Yau manifold KP1 passing through a generic marked
point α0. We already know that four stable discs are contributing from the disc
pontential of KP1 . They give

−T∆z2(z ′
2)−1(1+ z1)(1+qz−1

1 )βL1,L2
1 .

In summary, we have

d(αL1,L2
0 ) = Tε(z1 − z ′

1)αL1,L2
1 −T∆

(
1+ z2(z ′

2)−1(1+ z1)(1+qz−1
1 )

)
β

L1,L2
1

Thus d(αL1,L2
0 ) = 0 if and only if{

z ′
1 = z1

z ′
2 =−z2(1+ z1)(1+qz−1

1 ).

We have m2(αL1,L2
0 ,βL2,L1

0 ) = T∆1 (contributed from the strip over the region on
the right passing through a generic marked point), and hence the degree zero el-
ement βL2,L1

0 ∈ HF0((L2,~z ′), (L1,~z)) gives the inverse ofαL1,L2
0 . ThusαL1,L2

0 defines
an isomorphism. �

By the above theorem, we glue the two copies of (C×)2 by

z ′
1 = z1 and z ′

2 =−z2(1+ z1)(1+qz−1
1 ).

It gives {
(u, v, z1) ∈C×C×C× : uv + (1+ z1)(1+qz−1

1 ) = 0
}− {u = v = 0}

where the copy SpecC
[
z±1

1 , z±1
2

]
is embedded by u = z−1

2 , and the copy SpecC
[
(z ′

1)±1, (z ′
2)±1

]
is embedded by z1 = z ′

1, v = z ′
2. 3

3It differs from the Hori-Vafa mirror uv = (1+ z1)(1+ qz−1
1 ) by a negative sign, which can be

easily absorbed away by taking u1 7→ −u1.
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Remark 3.2. Note that we have lost two points {u = v = 0, z1 =−1 or −q} in this
construction. It corresponds to the two immersed Lagrangian

L0, j = {µ1 = c j , |w −1| = 1}

for j = 1,2 (recall that c j are the singular values of µ1). To recover these points, we
need to glue the deformation spaces C×C of L0, j to the deformation spaces of L1

and L2. This is an ongoing joint work with Cho and Hong.

3.2. Mirror construction for a punctured sphere. This method also works for
gluing in the mirror construction for a pair-of-pants decomposition. Let’s illus-
trate by the 4-punctured sphere in Example 1.2.

Consider the pair-of-pants decomposition as shown in Figure 3. We have two
pair-of-pants in the decomposition. In each pair-of-pants, we take an immersed
Lagrangian as shown in the figure. This is the Lagrangian used by Seidel [Sei11]
for proving HMS for the pair-of-pants and genus-two Riemann surfaces. We
make a family of immersed Lagrangians in X in which the Seidel Lagrangian
in each pair-of-pants is a member. To do this, we smooth out one of the im-
mersed points in one of the Seidel Lagrangian (labeled by X1 in Figure 3). The
immersed Lagrangian becomes a union of two circles after the smoothing, and
we move it to a neighboring pair-of-pants, degenerating it to a Seidel Lagrangian
by forming another immersed point (labeled by X2). As a result a pair-of-pants
decomposition induces a family of immersed Lagrangians over a graph.

X1
T1 T2

Y1

Y0
Y0 Y2

X2

Z2
Z1 Z0 Z0

FIGURE 3. A pair-of-pants decomposition induces a family of
immersed Lagrangians over a polyhedral complex.

The formal deformation space is spanned by degree-one Floer generators of
a Seidel Lagrangian in a pair-of-pants is C3. Namely we have three immersed
points, and each point gives one deg = 1 and one deg = 0 generators. (Here the
degree is Z2-valued since we use Z2 grading for the Floer theory.) Let’s call these
generators to be X ,Y , Z and X̄ , Ȳ , Z̄ respectively. Then the formal deformation
space consists of the elements b = x X + yY + z Z where x, y, z ∈C3.
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If the Seidel Lagrangian L is exact (such that the front and back triangles
bounded by the Seidel Lagrangian have the same symplectic area), then each
formal deformation b = x X+yY +z Z is weakly unobstructed [CHLa] in the sense
of [FOOO09], namely mb

0 =W (x, y, z) ·1L . Roughly speaking it means the super-
potential W is well-defined.

Let’s denote their deformations by

bi = xi Xi + yi Yi + zi Zi

for i = 1,2. Then we have two copies of C3 coming from the Seidel Lagrangians
Li in the two pair-of-pants.

We also have an immersed Lagrangian L0, which is a smoothing of L1 at the
immersed generator X1 and can also be described as a smoothing of L2 at the
immersed generator X2. It is a union of two circles intersecting each other at
two points. The two intersection points give two deg = 1 generators Y0, Z0 and
two deg = 0 generators Ȳ0, Z̄0. Moreover we have flat C× connections taken as
deformations of the circles. Let’s fix the gauge by taking the two points marked
by T1 in Figure 3 where the parallel transport are given by multiplication by t1 ∈
C× when passing through the points (in the indicated direction). T1 corresponds
to the immersed point X1 of L1. Alternatively we can take the gauge to be the two
points marked by T2, corresponding to the immersed point X2 of L2. It is easy to
check that these deformations are weakly unobstructed if we take L0 to be exact.
Thus for L0 we have the deformations

(b0 = y0Y0 + z0Z0,∇t1 )

parametrized by C××C2, and the deformations

(b′
0 = y ′

0Y0 + z ′
0Z0,∇t2 )

parametrized by C××C2.
We need to glue the deformation spaces of L1,L0,L2 together to form a global

geometry. In this simple example, we can use the method in Section 2 to de-
termine the gluing. Namely we compute the local superpotentials defined by
counting Maslov-two discs bounded by each Lagrangian and extract the gluing
data from the jump of the superpotential. This is done in Section 3.2.1 below.

However, the gluing data that we obtain in this way is not quite canonical.
Namely, there may be more than one ways of gluing to match the local super-
potentials. In Section 3.2.2, we shall use isomorphisms between immersed La-
grangians to extract the gluing data. It incorporates the whole Fukaya algebras
rather than just the m0-parts of the algebras.

3.2.1. Gluing by Maslov-two discs. First consider the effect of smoothing of L1.
The superpotential of L1 is x1 y1z1 corresponding to the two triangles bounded
by L1. For L0, the superpotential of L0 is t1 y0z0 corresponding to the two bigons
bounded by L0 (and they pass through the holonomy points marked by T1 once).
From this we infer that the gluing should be given by

t1 = x1, y0 = y1, z0 = z1.
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Similarly the gluing between L2 and L0 is t2 = x2, y ′
0 = y2, z ′

0 = z2. Here we as-
sume that the triangles and bigons have the same areas and have ignored the
area contribution for simplicity.

Then we consider the effect of gauge change for L0. The holonomy points
T1 and T2 describe two different gauges for flat C× connections. Let’s take a
homotopy from the gauge given by T1 to that given by T2 as follows.

(1) There are two holonomy points marked by T1. Move the one in the front
part of the surface to the back through the immersed point Z0 along one
of the circles in L0.

(2) Similarly move the other holonomy point in the back to the front through
the immersed point Y0.

(3) Take the inverse of the holonomy in order to match with that given by
T2.

When a holonomy point moves across an immersed point of the Lagrangian,
there is a non-trivial change of coordinates in the Floer theory. In the first step
the superpotential changes from t1 y0z0 to y0z ′

0. Thus we should have the co-
ordinate change z ′

0 = t1z0. In the second step the superpotential changes from
y0z0 to t−1

1 y ′
0z0. Thus we should have the coordinate change y ′

0 = t1 y0. In the
final step we have t2 = t−1

1 .
Combing the above change of coordinates, the gluing of the two deformation

spaces C3 is
t2 = t−1

1 , y2 = t1 y1, z2 = t1z1.

on C××C2. The resulting manifold is the resolved conifold OP1 (−1)⊕OP1 (−1),
see Figure 4. The mirror is the Landau-Ginzburg model (OP1 (−1)⊕OP1 (−1),W )
that we have described in Example 1.2.

x1 x2
z1

y1 y2=x1y1

z2=x1z1

FIGURE 4. The resulting mirror space by gluing the deformation
spaces of the immersed Lagrangians is OP1 (−1)⊕OP1 (−1). The
right hand side is its toric diagram.

Note that the gluing depends on the choice of homotopy for gauge change.
Different choices result in different mirror models. For instance, there is another
choice which results in the Landau-Ginzburg model (OP1 (−2)⊕OP1 (0),W ′). Nev-
ertheless the critical loci of the superpotentials are isomorphic and so they have
the same derived category of singularities.
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3.2.2. Gluing by isomorhpism of objects. The above method finds the coordinate
changes by hand in order to match the local superpotentials. However it does
not derive the coordinate changes from the first principle. When we consider
more complicated examples (such as compact symplectic manifolds), it is hard
to find coordinate changes by hand. Below we give a canonical method to de-
termine the coordinate change.

We shall only focus on smoothing of the immersed point X1 in L1. Gauge
change is indeed conceptually more standard and hence omitted.

To have explicit isomorphisms, we deform the Seidel Lagrangian L1 such that
it intersects with L0. See Figure 5. The figure shows the pair-of pants containing
L0 and L1. (One of the three punctures is the infinity point of the figure.) We also
label the areas of the regions bounded by L0 and L1 by Ai for i = 1, . . . ,7.

X1T1
T1

Y1

Y0

Z1

Z0

A1 A2

A3

A4

A3A6

A5 A5

A6

A1

A7
A7

FIGURE 5. The Seidel Lagrangian L1 and the double-circle L0.
They intersect at eight points marked by ai ,bi ,ci ,di for i = 1,2
respectively.

The Seidel Lagrangian L1 and the double-circle L0 intersect at eight points
marked by ai ,bi ,ci ,di for i = 1,2 respectively. Take a1 +b1 as an element in

CF0((L0,b0,∇t1 ), (L1,b1)).

(Recall that b1 = x1X1 + y1Y1 + z1Z1 and b0 = y0Y0 + z0Z0.)

Proposition 3.3. For the 4-punctured sphere, a1 +b1 ∈ CF0((L0,b0,∇t1 ), (L1,b1))
gives an isomorphism from (L0,b0,∇t1 ) to (L1,b1) if and only if t1 = TA1+A2+A3+A4+A5−A7 x1, y0 =
TA7−A2−2A1 y1, z0 = TA7−A4−2A5 z1 (where x1 6= 0).

Proof. Consider d(a1+b1), which is a linear combination of the deg = 1 elements
a2,b2,c2,d2. There is no strip from b1 to c2, and so the coefficient of c2 is merely
contributed from strips from a1 to c2, which equals to TA1+A2+A3+A4+A5 t−1

1 x1 −
TA7 . See the top two strips in Figure 6. In order to have d(a1 +b1) = 0, we need
t1 = TA1+A2+A3+A4+A5−A7 x1.

Now consider the coefficient of a2. The contribution from a1 is −TA1 y0, and
the contribution from b1 is TA3+A4+A5 y1x1t−1

1 = TA3+A4+A5−(A1+A2+A3+A4+A5−A7) y1.
See the middle two strips in Figure 6. In order to have d(a1 +b1) = 0, we need
y0 = TA7−A2−2A1 y1. Similarly the output to b2 equals to zero implies that z0 =
TA7−A4−2A5 z1. See the bottom two strips in Figure 6.
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We have m2(a1 +b1,c2 +d2) = TA1+A2+A3+A4+A5 t−1
1 x11L0 = TA7 1L0 (where c2 +

d2 is regarded as an element in CF0((L1,b1), (L0,b0))). (Fixing a generic marked
point, there is either one strip from a1 to c2 or one from b1 to d2 passing through
it. There is no strip from a1 to d2 nor from b1 to c2.) Hence c2 +d2 serves as the
inverse of a1 +b1 (up to the multiple TA7 ). �

X1
T1 T1

Y1

Y0

Z1

Z0

X1
T1 T1

Y1

Y0

Z1

Z0

X1
T1 T1

Y1

Y0

Z1

Z0

X1
T1 T1

Y1

Y0

Z1

Z0

X1
T1 T1

Y1

Y0

Z1

Z0

X1
T1 T1

Y1

Y0

Z1

Z0

FIGURE 6. The strips contributing to the differential of a1 +b1.

By the above proposition, we obtain the gluing

t1 = TA1+A2+A3+A4+A5−A7 x1, y0 = TA7−A2−2A1 y1, z0 = TA7−A4−2A5 z1

between the deformation space C3 of L1 and C××C2 of L0. Note that it automat-
ically matches the superpotential, namely, we have

TA1+A6+A5 t1 y0z0 = TA3+A6+A7 x1 y1z1.

In general the coordinate changes receive much more complicated quantum
corrections coming from holomorphic discs in non-exact situations. For in-
stance, consider the compactification X̄ = S2 by filling in the four punctures,
which still contains the family of immersed Lagrangians depicted in Figure 3.
Even for this simple example, the gluing is already rather non-trivial and it is
better to use our systematic method to deduce the gluing.

Since the method is the same as above, we skip the detail and state the result
below.
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Proposition 3.4. For the compact sphere, the above method gives the gluing

t1 =TA1+A2+A3+A4+A5−A7 x1,

y0 =TA7−A2−2A1 y1 +TA3+A4+A5+A8−A1 t−1
1 ,

z0 =TA7−A4−2A5 z1 −TA1+A2+A3+A9−A5 t−1
1

between the deformation spaces C3 and C××C2 of L1 and L0 respectively.

The additional terms t1 and t−1
1 are contributed by the extra strip from a1

to b2 (see Figure 7) and that from b1 to a2 respectively. They pass through the
punctures (in the region A8 and A9) and hence were not counted in the four-
punctured sphere before.

X1T1 T1

Y1

Y0

Z1

Z0

A8

A9

FIGURE 7. An extra strip contributing to the term t1 in Proposition 3.4.

One can directly verify that the above change of coordinates matches the local
superpotentials, namely

TA3+A6+A7 x1 y1z1 −TA3+A6+A7+A9 y1 +T2A1+A2+A3+A4+2A5+A6+A7+A10 x1 +TA3+A6+A7+A8 z1

=TA1+A5+A6 t1 y0z0 +TA1+A6+A5+2A7+A10 t1 +TA1+A2+2A3+A4+A5+A6+A8+A9 t−1
1

where the first expression is the superpotential for L1 and the second one is that
for L0. A10 is the area of the outer region in Figure 7 in the sphere. The terms t1

and t−1
1 in the second expression correspond to the left and right hemispheres

bounded by one of the circles in L0. It is rather amazing that the area terms all
match automatically in our method.

Since the gluing constructed in this way is canonical, we should have a natural
mirror functor for HMS. This will be studied in a separate paper.

4. LANDAU-GINZBURG MIRROR FROM A FINITE COLLECTION OF LAGRANGIANS

In [CHLa, CHLb], we developed a program of constructing noncommuta-
tive mirrors using a finite collection of Lagrangians. The construction naturally
comes with a mirror functor realizing HMS. It was applied to derive mirror sym-
metry for elliptic and hyperbolic orbifolds, punctured Riemann surfaces and lo-
cal Calabi-Yau threefolds associated to Hitchin systems. It also has applications
to deformation quantizations [Kon03]. In this section, we will briefly explain
how to use this method to capture quantum corrections.



14 LAU

4.1. General framework. The procedure is the following. Let L = {L1, . . . ,LN }
be a collection of spin oriented connected compact Lagrangian immersions in
X which intersect each other transversely. We use the deformation and ob-
struction theory of L to construct a non-commutative Landau-Ginzburg model
(A ,W ), together with a non-trivial functor from Fuk(X ) to the category of matrix
factorizations (W -twisted complexes) of (A ,W ). The functor is automatically
injective on the morphism space HF(L,L). In particular if L and its image under
the functor are both generators, and their endomorphism spaces have the same
dimension, then the functor derives homological mirror symmetry.

The formal deformation space of L are given by degree one endomorphisms.
(If we just haveZ2 grading, ‘degree one’ means ‘odd degree’.) They are described
by a directed graph Q (so-called a quiver). The path algebra ΛQ is regarded as
the noncommutative space of formal deformations of L. Each edge e of Q corre-
sponds to an odd-degree Floer generator Xe and a formal dual variable xe ∈ΛQ.
We take the formal deformation b =∑

e xe Xe , where xe is taken as an element in
the path algebraΛQ.

Obstruction of b is defined by counting of holomorphic polygons bounded
by L. Roughly speaking, it is captured by the superpotential W , which is defined
as a weighted count of holomorphic polygons passing through a marked point:

(4.1) W =∑
β

nβqβx∂β

where nβ is the counting of holomorphic polygons in class β passing through

a marked point, qβ records the symplectic area of β, and x∂β records the self-
intersection points hit by the corners of the polygon. Note that x∂β is an element
in the path algebra ΛQ; in particular we also record the order of the corners of
each polygon.

However such a counting is not well-defined in general, since it depends on
the position of the marked point. We need to consider weakly-unobstructed de-
formations, and W is only well-defined for such deformations. Weakly unob-
structedness was introduced by Fukaya-Oh-Ohta-Ono [FOOO09].

We extend the notion of weakly unobstructedness by Fukaya-Oh-Ohta-Ono
[FOOO09] to the current noncommutative setting. The corresponding Maurer-
Cartan equation is

mb
0 :=

∞∑
k=0

mk (b, . . . ,b) =
k∑

i=1
Wi (b)1Li

where mk is the A∞ operations defined by counting holomorphic polygons bounded
by L, and 1Li is the Floer-theoretical unit corresponding to the fundamental
class of Li . mb

0 is an analog of the exponential map, which integrates infinitesi-
mal deformations to actual small deformations. Essentially the equation means
that the counting W is well-defined and in particular does not depend on the
position of the marked point.

The solution space is given by the quiver algebra with relations A = ΛQ/R
where R is the two-sided ideal generated by weakly unobstructed relations. The
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relations are coefficients of mb
0 in all generators other than 1Li . As a result, we

obtain a noncommutative Landau-Ginzburg model(
A ,W =∑

i
Wi

)
.

Theorem 4.1 ([CHLb]). There exists an A∞-functor F L : Fuk(X ) → MF(A ,W ),
which is injective on H•(Hom(L,U )) for any object U in Fuk(X ).

An important feature is that the Landau-Ginzburg superpotential W constructed
in this way is automatically a central element in A . In particular we can make
sense of A /〈W 〉 as a hypersurface singularity defined by ‘the zero set’ of W .

4.2. Landau-Ginzburg mirror of a toric Calabi-Yau manifold. Take KP1 − {w =
1} as an example. In Section 2 and 3.1 we have given two methods to construct
its mirror. Here we sketch the third method which produces a Landau-Ginzburg
mirror using an immersed Lagrangian. It is an ongoing work with Cho and Hong.

The immersed Lagrangian L we use is the inverse image in µ−1
1 {b1} of the im-

mersed curve C in the w-plane shown in Figure 8a, where b1 is taken in the
interval (c1,c2) where c1,c2 are the two singular values of µ1. L has clean self-
intersections which are circles over the three points marked by u, v,h in C .

C

0 1u v h

(A) The curve C .

C

0 1u v h

(B) The uvh-polygon.

C

0 1u v h

(C) The polygons in h f (z).

FIGURE 8. The curve C and polygons bounded by C .

We equip L with a non-trivial spin structure by fixing a generic point in the
curve C (which is not any of its immersed points). Denote the three generators
which has base degree 1 and fiber degree 0 by U ,V , H corresponding to the three
immersed points. Take the formal deformations b = uU+vV +hH for u, v,h ∈C.
We also have a flat C× connection in the fiber circle direction over C ; let’s denote
its holonomy by z ∈C×.

Using cancellation in pairs of holomorphic polygons due to symmetry along
the dotted line shown in Figure 8a, we can show that

Proposition 4.2. (L,b,∇z ) is weakly unobstructed.

Thus the superpotential associated to (L,b,∇z ) is well-defined. We can com-
pute it explicitly.
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Theorem 4.3. The superpotential of (L,b,∇z ) is

W =−uvh +h(1+ z)(1+qz−1)

defined on ((u, v,h), z) ∈C3 ×C×. Its critical locus is

X̌ = {
((u, v), z) ∈C2 ×C× : uv = (1+ z)(1+qz−1)

}
.

Proof. Since the smooth fibers are conics which topologically do not bound any
non-constant discs, the image of a Maslov-two disc must be either one of the
regions shown in Figure 8. For the region with corners u, v,h, there is no singular
conic fiber and hence there is only one holomorphic polygon over it passing
through a generic marked point (corresponding to the constant section). This
gives the term −uvh. For the region with one corner h, by Riemann mapping
theorem the polygons over it are one-to-one corresponding to those bounded
by a toric fiber of KP1 . They contribute h(1+ z)(1+qz−1) to W . �

4.3. Non-commutative mirror of the 4-punctured sphere. We can also apply
the method in this section to the 4-punctured sphere in Example 1.2. By [CHLb],
the result is a noncommutative resolution of the conifold (with a superpoten-
tial), which agrees with the resolved conifold constructed in Section 3.2 using
the method of pair-of-pants decomposition, in the sense that their derived cat-
egories are equivalent.

Consider a collection of two circles L = {L1,L2} shown in Figure 9. This collec-
tion arises from the coamoeba of {1+ x + y +ax y = 0} ⊂ (C×)2 for a 6= 1. This is a
special case of the branes studied by a lot of physics literature (see for instance
[FHKV08, OY09, NY10, UY11]) on dimer models and brane tilings. Moreover,
HMS using dimer models for punctured Riemann surface was proved by Bock-
landt [Boc16].

FIGURE 9. A collection of Lagrangian circles on the sphere.

By the construction described in Section 4.1, we obtain the following.

Theorem 4.4 ([CHLb]). The formal weakly unobstructed deformation space of L
is given by A with the superpotential W ∈A where (A ,W ) is defined as follows.

(1) Q is the directed graph with two vertices v1, v2, two arrows {y, w} from v1

to v2 and two arrows {x, z} from v2 to v1.
(2) A = ΛQ

(∂Φ0) is the noncommutative resolution of the conifold, where

Φ := x y zw −w z y x.

(3) The superpotential W = x y zw +w z y x lies in the center of A .
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Moreover we have the A∞-functor

F L : WF(P1 − {a,b,c,d}) → MF(A ,W )

deriving HMS. (Here WF denotes the wrapped Fukaya category.)

In this way we can also construct mirrors of the orbifolded compactifications
P1(p, q,r, s) where p, q,r, s ∈ N denote the isotropy orders. We have the same
quiver Q, but the spacetime superpotential Φ and the worldsheet superpoten-
tial W become much more complicated. The case p = q = r = s = 2 is of par-
ticular interest: it is the elliptic orbifold E/Z2 and the expression of W involves
important modular forms. The readers are referred to [CHLb, LZ15, BRZ15] for
more detail.

Theorem 4.5 ([CHLb]). ForP1(2,2,2,2) = E/Z2, there is a T 2-family of Lagrangian
branes (Lt ,∇λ) where (t −1) ∈R/2Z and λ ∈U (1) such that

(1) the associated noncommutative algebras are A(λ,t ) = ΛQ
(∂Φ(λ,t )) where

Φ= a(λ, t ) x y zw+b(λ, t ) w z y x+1

2
c(λ, t ) ((w x)2+(y z)2)+1

2
d(λ, t ) ((x y)2+(zw)2).

(2) The coefficients (a(λ, t ) : b(λ, t ) : c(λ, t ) : d(λ, t )) defines an embedding
T 2 → P3 onto the complete intersection of two quadrics (which is an el-
liptic curve) defined by

x1x3 = x2x4

x2
1 +x2

2 +x2
3 +x2

4 +σx1x3 = 0

where σ= ψ
φ (which is the inverse mirror map) and

φ(qd ) =
∞∑

k,l≥0
(4k +1)q (4k+1)(4l+1)

d +
∞∑

k,l≥0
(4k +3)q (4k+3)(4l+3)

d ,

ψ(qd ) =
∞∑

k,l≥0
(k + l +1)q (4k+1)(4l+3)

d .

(3) The family of noncommutative algebra Aλ,t /(Wλ,t ) near t = 0,λ= 1 gives
a quantization of the complete intersection given by the above two qua-
dratic equations in C4 in the sense of [EG10].

5. AN APPLICATION: MIRROR OF ATIYAH FLOP AND STABILITY CONDITIONS

As an application, we can use SYZ and its generalization to study mirror sym-
metry over a global moduli. There are three important geometric scenarios: flop,
crepant resolution, and geometric transition. In this section we focus on Atiyah
flop in the work of [FHLY]. The readers are referred to [CCLT14] for crepant res-
olution and [Lau14, KL] for geometric transition in this approach.

The Atiyah flop contracts a (−1,−1) curve and resolves the resulting conifold
singularity by a small blow-up, getting a (−1,−1) curve in another direction, see
Figure 10. We would like to answer the question: what is the mirror operation of
the Atiyah flop?
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FIGURE 10. The Atiyah flop.

Consider the SYZ mirror of a conifold singularity, which is well-known by the
works of [Gro01a, CLL12, CnBM14, AAK16, CPU, KL]. A conifold singularity is
given by u1v1 = u2v2 in C4. There are two different choices of anti-canonical
divisors which turn out to be mirror to each other, namely D1 = {u2v2 = 1} and
D2 = {(u2−1)(v2−1) = 0}. Now consider the resolved conifold OP1 (−1)⊕OP1 (−1),
with the divisor D2 deleted. Its SYZ mirror is given by the deformed conifold

X = {(u1, v1,u2, v2, z) ∈C4 ×C× : u1v1 = z +q,u2v2 = z +1}

The deformed conifold contains a Lagrangian sphere whose image in the z-
coordinate projection is the interval [−q,−1] ⊂ C. See Figure 11. (Here we just
consider q > 1 to be a real parameter.) The Lagrangian sphere is mirror to the
holomorphic sphere in the resolved conifold.

Now take the Atiyah flop. The Kähler moduli of the resolved conifold is the
punctured real line R− {0}, consisting of two Kähler cones R+ and R− of the re-
solved conifold and its flop respectively. A serves as the standard coordinate
and flop takes A ∈ R+ to −A ∈ R−. Thus the Atiyah flop amounts to switching
A to −A, or equivalently q to q−1. As a result, the SYZ mirror changes from
X = {u1v1 = z +q,u2v2 = z +1} to {u1v1 = z +q−1,u2v2 = z +1}.

However the above two manifolds are symplectomorphic to each other, and
hence they are just equivalent from the viewpoint of symplectic geometry. Un-
like Atiyah flop in complex geometry, the mirror operation does not produce a
new symplectic manifold. It is not very surprising since symplectic geometry is
much softer than complex geometry.

We need to endow a symplectic threefold with additional geometric struc-
tures in order to make it more rigid, so that the effect of the mirror flop can be
seen. In [FHLY] we considered two kinds of geometric structures, namely La-
grangian fibrations, and Bridgeland stability conditions on the derived Fukaya
category. Let’s focus on stability conditions here.

Suppose we have a Bridgeland stability condition (Z ,S ) on the derived Fukaya
category, where Z is a homomorphism of the K group to C known as the central
charge, and S is a collection of objects in the derived Fukaya category which are
said to be stable. (It satisfies some axioms [Bri07], the most important one be-
ing the Harder-Narasimhan property.) In an ideal geometric situation, S is the
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collection of graded special Lagrangians with respect to a certain holomorphic
volume formΩ, and Z is given by the period

∫
·Ω.

Then the mirror flop (along a certain Lagrangian sphere S) should be under-
stood as a change of stability conditions (Z ,S ) 7→ (Z †,S †). Namely given a La-
grangian L ∈ S , the mirror flop is a certain surgery L† of L (along the sphere
S). Thus we obtain another collection of Lagrangians S †, and we impose that
Z †(L†) = Z (L). The mirror flop should be realized as an involution on the moduli
space of stability conditions.

Unfortunately it is hard to construct stability conditions in general. Using the
methods of mirror construction introduced in previous sections, we can con-
struct stability conditions via mirror symmetry. In [FHLY] we focused on the
deformed conifold and the result is the following. We will study deformed gen-
eralized conifolds and cotangent bundles of lens spaces in ongoing papers.

Theorem 5.1 ([FHLY]). The mirror construction in [CHLb] applied to the de-
formed conifold X produces the noncommutative resolved conifold A = ΛQ

(∂Φ0)
given in Theorem 4.4. In particular we have the equivalence of triangulated cate-
gories

DFuk(X ) ∼= Dmod(A ).

The collection of Lagrangians we use to construct the mirror in the above the-
orem is depicted in Figure 11. It consists of two Lagrangian spheres, whose im-
ages in the base of the double conic fibration z : X = {u1v1 = z+q,u2v2 = z+1} →
C are curves shown in the figure.

-q -1

FIGURE 11. The two Lagrangians in the deformed conifold to
construct the mirror.

Note that the mirror of the deformed conifold X is the noncommutative re-
solved conifold A rather than the Landau-Ginzburg model (A ,W ) (which is
mirror to the 4-punctured sphere in Section 4.3).

Stability conditions on Dmod(A ) have been extensively studied by Toda [Tod08]
and Nagao-Nakajima [NN11]. Combining with the above mirror statement, we
proved the following.

Theorem 5.2 ([FHLY]). Let X be the deformed conifold {u1v1 = z + q,u2v2 =
z + 1, z 6= 0} (where q 6= 1). Equip X with the holomorphic volume form Ω =
d z ∧du1 ∧du2. There exists a collection S of graded special Lagrangians which
defines a stability condition (Z ,S ) on DFuk(X ).
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The flop (Z †,S †) is another stability condition respecting the holomorphic vol-
ume form ρ∗ΩX † , where ρ is a symplectomorphism from X to

X † = {u1v1 = z +1,u2v2 = z +1/q : z 6= 0}

andΩX † = d z ∧du1 ∧du2 on X †.
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