Generalized SYZ and Homological Mirror Symmetry

joint work with Cheol-Hyun Cho, Hansol Hong and Sang-Hyun Kim

Siu-Cheong Lau Harvard University Ultimate goal: to develop a unified geometric approach to construct and understand mirror symmetry

- Homological mirror symmetry (category)
- Genus-zero closed-string mirror symmetry (Frobenius structure)
- Higher-genus mirror symmetry (quantization)
- Global mirror symmetry (stability conditions)
- Non-commutative versions of mirror symmetry
- Mirror symmetry for non-Kaehler Calabi-Yau manifolds

An overview to SYZ mirror symmetry

Strominger-Yau-Zaslow: Mirror symmetry is T-duality

Torus duality:

$$V'/\Lambda^* = T | V/\Lambda = T (b)$$

Semi-flat mirror symmetry: (Leung-Yau-Zaslow)
 $T^*V/\Lambda^* = V \times V^*/\Lambda^*$
with canonical symplectic form $V/\Lambda = V \times V/\Lambda$
with canonical symplectic form

For semi-Fano toric manifolds,
sphere bubbling may occur for discs of Maslw index two.
ITz
Thm. (Chan-L. - Leung-Tseng):
bubbling tern

$$1 + \delta_{d(q)} = \exp(g(q(q))),$$

 $g(q) := \sum_{d} \frac{(-1)^{(D_{1}-d)}(-D_{1}-1)!}{\prod_{p \neq l}(D_{p}-d)!}g^{d}} \leftarrow hypogeometric series appearing in minor map.$
by using Seidel representation and minor theorem [Givental, Lian-Lin-Tau]

Gross-Siebert program

SYZ for toric Calabi-Yau manifolds using symplectic geometry

Gross-Siebert conjecture

(normalized)
Slab functions = generating functions of open GW invariants
and they produce the inverse micror map.
e.g.
$$K_{p^2}$$
.
 $q = q' exp(-3 \sum_{k=1}^{\infty} \frac{(3k-1)!}{(k!)^3} q'^k)$
 $q = q' exp(-3 \sum_{k=1}^{\infty} \frac{(3k-1)!}{(k!)^3} q'^k)$

Insights of Seidel and Sheridan

Cho-Hong-L.: introduced a generalized version of SYZ mirror symmetry based on (immersed) Lagrangian Floer theory

Immersed Lagrangian Floer theory

(house $Z \xrightarrow{2} (X, w)$ Lagrangian immersion. (infinitestimal) deformation space: $H(\tilde{L} \times \tilde{L})$. θ . B^{ℓ} $H(\tilde{L}) \oplus Span{X.X}.$ obstruction term: $m_{b}^{b} = \sum_{k \ge 0} m_{k}(b, \dots, b) \frac{b}{b \times 1/1/1} \frac{b}{b}$ Weakly unobstructed: $m_{b}^{b} = W(b) \cdot 1_{L}$.

$$\begin{array}{c|c} STZ & Generalized STZ \\ \hline U & Lograngian torms fibration & immersed & Lagrangian L \\ \hline U & Lograngian torms fibration & deformation space of L \\ \hline U & dual torms fibration & deformation space of L \\ \hline U & counting discs & counting polygons \\ for quantum corrections & for quantum corrections \\ m_{o}^{L_{Z}} &= W(Z) \cdot 1_{L_{Z}} & m_{o}^{b} &= W(b) \cdot 1_{L_{Z}} \\ W &= \sum_{p} \eta_{p} q^{p} Z^{2p} & W &= \sum_{p} \eta_{p} q^{p} Z^{2p} & \end{array}$$

MIRTOR FUNCTOR [Cho-Hong-L.]] A a functor (Yoneda embedding in the) procence of m^b. $F_{uk_{o}}(M) \longrightarrow M.F.(W) \xrightarrow{\text{singularity}} W$ $\mathcal{U} \longrightarrow m_{1}^{((\mathcal{L},b),\mathcal{U})} \triangleq \check{\mathcal{U}}: \operatorname{Span}(\operatorname{LOU}) \Im$ $A_{\infty} - \operatorname{relations} \Rightarrow \check{\mathcal{U}}^{2} = W(b).$ To m. U V. \sqrt{b} m_2 P Higher terms of the functor come from $m_{k>1}$.

Homological mirror symmetry

Theorem (Cho-Hung-L.): Let
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq 1$$
.
The A^{∞} functor mirror map is explicitly involved
Fuk $(|P_{(a,b,c)}^{1}) \longrightarrow MF(W)$
induces an equivalence of triangulated categories
 $DFuk (|P_{(a,b,c)}^{1}) \longrightarrow DMF(W)$.

Conclusion

· Choose a weakly unobstructed (immersed) Lagrangian LCX. $\cdot \left(\check{X} = \{ b : m_{o}^{(L,b)} \propto 1 \}, W \triangleq m_{o}^{(L,b)} / 1 \right)$ is the mirror localized to L. $\{\mathcal{M}_{>0}\}\$ gives A_{∞} functor $F_{uk}(X) \longrightarrow MF(W)$. · Can produce explicit matrix factorizations for toric minor W.

Example: Elliptic curve quotient

elliptic curve with
complex multiplication
$$e^{2\pi i/3}$$

E with flat metric
of total area
 $E/R_3 = P_{3.3.3}^1$

· Label the vertices by . A. . . · Record the labels of vertices of each triangle by a monomial.

·
$$g_{\alpha} \triangleq e^{-t/_{24}}$$
. (α stands for the minimal triangle)
· Record $\exp(- \operatorname{area} v_{f} \operatorname{each} \operatorname{triangle})$ in terms of g_{α} .

 $W \doteq \sum_{\beta}^{7} n_{\beta} q^{\beta} z^{\beta\beta}$ $= -q_{\alpha} x y z - q_{\alpha}^{q} x^{3} - q_{\alpha}^{q} y^{3} + q_{\alpha}^{q} z^{3} + \dots$

$$W = -q_{\alpha}xyz - q_{\alpha}^{q}x^{3} - q_{\alpha}^{q}y^{3} + q_{\alpha}^{q}z^{3} +$$
$$= \oint \cdot (-x^{3} - y^{3} + z^{3}) - \psi \cdot xyz$$
where $\phi = \sum_{k=0}^{\infty} (-1)^{3k+1}(2k+1)q_{\alpha}^{3(12k^{2}+12k+3)}$

Consider
$$\{x^3+y^3+z^3+\sigma xyz=0\} \subset \mathbb{P}^2$$
.
Family of elliptic curves
mirror to E.

Flat coordinate is
$$q(\sigma) = \exp\left(-\frac{\Pi_{\mathcal{B}}(\sigma)}{\Pi_{\mathcal{A}}(\sigma)}\right)$$
, where
 $\Pi_{\mathcal{A}}, \Pi_{\mathcal{B}}$ satisfies Picard-Fuchs equation $u'' + \frac{3\sigma^2}{\sigma^3 + 27}u' + \frac{\sigma}{\sigma^3 + 27}u = 0$.
periods

$$q(\sigma)$$
 is called the mirror map.

SYZ map equals to the mirror map

$$\frac{\text{Theorem}\left(\text{Cho-Hmg-L.}\right):}{-\frac{4(q_{\alpha})}{\phi(q_{\alpha})}} = \sigma(q = q_{\alpha}^{8})}$$

$$\frac{\psi(q_{\alpha})}{\psi(q_{\alpha})}$$
where $\sigma(q)$ is the inverse mirror map.
 $\Rightarrow \text{Coefficients of } \sigma(q)$ are integers.

Orbifolding

• The construction works for general
$$\mathbb{P}_{(abc)}^{1}$$
 $\forall a, b, c \ge 1$:
 $W = -q_{u} xy^{2} + (-1)^{a} q_{u}^{3a} x^{a} + (-1)^{b} q_{j}^{3b} y^{b} + (-1)^{c} q_{j}^{3c} y^{c} + \dots$
which is a formal power series.
• [Cho-Hong-Kim-L.]:
Construct an algorithm to compute W $\forall a, b, c.$
• When $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$,
 $\mathbb{P}_{(ab,c)}^{1} = (\sum_{g>1})/G$, $W(x, y, \aleph, q)$ is an infinite series.
Then: W is convergent in a neighborhood of $(x, y, \varrho, q) = 0$.
SYZ map is convergent even for general-type case!

Modularity of open Gromov-Witten invariants

$$\begin{bmatrix} L & -Zhou \end{bmatrix}^{\text{(Similar for matrix factorizations minor to L)}} \eta = q^{\text{fat}} \prod_{n=1}^{\infty} (1-q^n).$$

$$E_{\text{Z}_3} : W = \phi \cdot (x^3 + y^3 + 2^3) - f \cdot xy_2 \text{ where}$$

$$\phi = \eta (q^3)^3, f = \eta (q^{1/3})^3 + 3\eta (q^3)^3 \qquad \text{sum of divises}$$

$$e T^{(3)} - \text{modular forms.} \qquad E_2 = 1 - 24 \sum_{d=1}^{\infty} \sigma_1(d) q^d$$

$$E_{\text{Z}_4} : W = \phi \cdot (x^4 + y^4) + \psi \cdot y^2 z^2 \text{ where}$$

$$\phi = -\frac{E_2(q^{3/2})}{24} + \frac{E_2(q)}{8} - \frac{1}{12} E_2(q^2)$$

$$\psi = \frac{1}{4} + \frac{E_2(q)}{44} - \frac{E_2(q^2)}{24} \quad \text{(are T^{(4)})-modular forms.}$$

Global mirror symmetry

