Moduli theory of Lagrangian immersions and mirror symmetry

Siu-Cheong Lau
Boston University

December 2017

Joint work with Cheol-Hyun Cho and Hansol Hong
Section 1

Overview
Moduli theory in the B-side

- Moduli theory for vector bundles has been developed into a deep theory.

Theorem (Donaldson, Uhlenbeck-Yau)

A slope-semistable holomorphic vector bundle admits a Hermitian Yang-Mills metric.

- GIT and stability conditions were essential to the construction.
- Bridgeland developed a general mathematical theory of stability conditions for triangulated categories.
- Toda developed foundational techniques to construct Bridgeland stability conditions for derived categories of coherent sheaves.
- Moduli spaces undergo birational changes (such as flops) in a variation of stability conditions.
- How about moduli of Lagrangians in the mirror A-side?
Moduli theory in the B-side

- Moduli theory for vector bundles has been developed into a deep theory.

Theorem (Donaldson, Uhlenbeck-Yau)
A slope-semistable holomorphic vector bundle admits a Hermitian Yang-Mills metric.

- GIT and stability conditions were essential to the construction.
- Bridgeland developed a general mathematical theory of stability conditions for triangulated categories.
- Toda developed foundational techniques to construct Bridgeland stability conditions for derived categories of coherent sheaves.
- Moduli spaces undergo birational changes (such as flops) in a variation of stability conditions.

- How about moduli of Lagrangians in the mirror A-side?
Moduli theory in the B-side

- Moduli theory for vector bundles has been developed into a deep theory.

Theorem (Donaldson, Uhlenbeck-Yau)

A slope-semistable holomorphic vector bundle admits a Hermitian Yang-Mills metric.

- GIT and stability conditions were essential to the construction.
- Bridgeland developed a general mathematical theory of stability conditions for triangulated categories.
- Toda developed foundational techniques to construct Bridgeland stability conditions for derived categories of coherent sheaves.
- Moduli spaces undergo birational changes (such as flops) in a variation of stability conditions.
- How about moduli of Lagrangians in the mirror A-side?
Ingredients for moduli theory of Lagrangians

- **Complexification.** The classical moduli spaces are affine manifolds with singularities [Hitchin, McLean]. Complexification is needed in order to compactify. Technically we need to work over the Novikov ring.

- **Quantum correction.** The canonical complex structures need to be corrected using Lagrangian Floer theory [Fukaya-Oh-Ohta-Ono]. The combinatorial structure of quantum corrections for SYZ fibrations was deeply studied by Kontsevich-Soibelman and Gross-Siebert.

- **Landau-Ginzburg model.** The moduli in general are singular varieties. They are described as critical loci of holomorphic functions. It can also be noncommutative in general [Cho-Hong-L.].

- **Singular Lagrangians.** Kontsevich proposed to study them using cosheaves of categories. Nadler is developing a theory of arboreal singularities.
Ingredients for moduli theory of Lagrangians

- **Complexification.** The classical moduli spaces are affine manifolds with singularities [Hitchin, McLean]. Complexification is needed in order to compactify. Technically we need to work over the Novikov ring.

- **Quantum correction.** The canonical complex structures need to be corrected using Lagrangian Floer theory [Fukaya-Oh-Ohta-Ono]. The combinatorial structure of quantum corrections for SYZ fibrations was deeply studied by Kontsevich-Soibelman and Gross-Siebert.

- **Landau-Ginzburg model.** The moduli in general are singular varieties. They are described as critical loci of holomorphic functions. It can also be noncommutative in general [Cho-Hong-L.].

- **Singular Lagrangians.** Kontsevich proposed to study them using cosheaves of categories. Nadler is developing a theory of arboreal singularities.
Ingredients for moduli theory of Lagrangians

- **Complexification.** The classical moduli spaces are affine manifolds with singularities [Hitchin, McLean]. Complexification is needed in order to compactify. Technically we need to work over the Novikov ring.

- **Quantum correction.** The canonical complex structures need to be corrected using Lagrangian Floer theory [Fukaya-Oh-Ohta-Ono]. The combinatorial structure of quantum corrections for SYZ fibrations was deeply studied by Kontsevich-Soibelman and Gross-Siebert.

- **Landau-Ginzburg model.** The moduli in general are singular varieties. They are described as critical loci of holomorphic functions. It can also be noncommutative in general [Cho-Hong-L.].

- **Singular Lagrangians.** Kontsevich proposed to study them using cosheaves of categories. Nadler is developing a theory of arboreal singularities.
Ingredients for moduli theory of Lagrangians

- **Complexification.** The classical moduli spaces are affine manifolds with singularities [Hitchin, McLean]. Complexification is needed in order to compactify. Technically we need to work over the Novikov ring.

- **Quantum correction.** The canonical complex structures need to be corrected using Lagrangian Floer theory [Fukaya-Oh-Ohta-Ono]. The combinatorial structure of quantum corrections for SYZ fibrations was deeply studied by Kontsevich-Soibelman and Gross-Siebert.

- **Landau-Ginzburg model.** The moduli in general are singular varieties. They are described as critical loci of holomorphic functions. It can also be noncommutative in general [Cho-Hong-L.].

- **Singular Lagrangians.** Kontsevich proposed to study them using cosheaves of categories. Nadler is developing a theory of arboreal singularities.
Why care about Lagrangian immersions

- Lagrangian immersions have a well-defined Floer theory by Akaho-Joyce.
- They are the main sources of wall-crossing phenomenon in the SYZ setting.
- The deformation space of a Lagrangian immersion is ‘bigger’ than its smoothing and covers a local family of Lagrangians (including singular Lagrangians).
- It is hoped that every object in the Fukaya category can be represented by a Lagrangian immersion. If so we do not need to worry about singular Lagrangians.
Why care about Lagrangian immersions

- Lagrangian immersions have a well-defined Floer theory by Akaho-Joyce.
- They are the main sources of wall-crossing phenomenon in the SYZ setting.
- The deformation space of a Lagrangian immersion is ‘bigger’ than its smoothing and covers a local family of Lagrangians (including singular Lagrangians).
- It is hoped that every object in the Fukaya category can be represented by a Lagrangian immersion. If so we do not need to worry about singular Lagrangians.
Why care about Lagrangian immersions

- Lagrangian immersions have a well-defined Floer theory by Akaho-Joyce.
- They are the main sources of wall-crossing phenomenon in the SYZ setting.
- The deformation space of a Lagrangian immersion is ‘bigger’ than its smoothing and covers a local family of Lagrangians (including singular Lagrangians).
- It is hoped that every object in the Fukaya category can be represented by a Lagrangian immersion. If so we do not need to worry about singular Lagrangians.
Why care about Lagrangian immersions

- Lagrangian immersions have a well-defined Floer theory by Akaho-Joyce.
- They are the main sources of wall-crossing phenomenon in the SYZ setting.
- The deformation space of a Lagrangian immersion is ‘bigger’ than its smoothing and covers a local family of Lagrangians (including singular Lagrangians).
- It is hoped that every object in the Fukaya category can be represented by a Lagrangian immersion. If so we do not need to worry about singular Lagrangians.
SYZ and Family Floer theory

- Strominger-Yau-Zaslow proposed that mirror symmetry can be understood as dual special Lagrangian torus fibrations.
- It leads to many exciting developments. Gross-Siebert, Leung, Auroux, Chan . . .
- Fukaya proposed to study mirror symmetry by using $\text{CF}(L_b, \cdot)$ for fibers L_b of a Lagrangian torus fibration.
- Tu took this approach to construct mirror spaces away from singular fibers.
- Abouzaid constructed family Floer functors for torus bundles and showed that the functor is fully faithful.
- We construct mirror geometry as the moduli space of stable Lagrangian immersions which are not necessarily tori. This generalizes the SYZ setting.
- Instead of Fukaya trick, we consider pseudo-isomorphisms between Lagrangian immersions, and obtain the gluing maps from cocycle conditions. (In particular we do not need diffeomorphisms.)
SYZ and Family Floer theory

- **Strominger-Yau-Zaslow** proposed that mirror symmetry can be understood as dual special Lagrangian torus fibrations.
- It leads to many exciting developments. **Gross-Siebert, Leung, Auroux, Chan . . .**
- **Fukaya** proposed to study mirror symmetry by using $\text{CF}(L_b, \cdot)$ for fibers L_b of a Lagrangian torus fibration.
- **Tu** took this approach to construct mirror spaces away from singular fibers.
- **Abouzaid** constructed family Floer functors for torus bundles and showed that the functor is fully faithful.
- We construct mirror geometry as the moduli space of stable Lagrangian immersions which are not necessarily tori. This generalizes the SYZ setting.
- Instead of Fukaya trick, we consider pseudo-isomorphisms between Lagrangian immersions, and obtain the gluing maps from cocycle conditions. (In particular we do not need diffeomorphisms.)
SYZ and Family Floer theory

- **Strominger-Yau-Zaslow** proposed that mirror symmetry can be understood as dual special Lagrangian torus fibrations.
- It leads to many exciting developments. **Gross-Siebert, Leung, Auroux, Chan** . . .
- **Fukaya** proposed to study mirror symmetry by using $\text{CF}(L_b, \cdot)$ for fibers L_b of a Lagrangian torus fibration.
- **Tu** took this approach to construct mirror spaces away from singular fibers.
- **Abouzaid** constructed family Floer functors for torus bundles and showed that the functor is fully faithful.
- We construct mirror geometry as the moduli space of stable Lagrangian immersions which are not necessarily tori. This generalizes the SYZ setting.
- Instead of Fukaya trick, we consider pseudo-isomorphisms between Lagrangian immersions, and obtain the gluing maps from cocycle conditions. (In particular we do not need diffeomorphisms.)
SYZ and Family Floer theory

- **Strominger-Yau-Zaslow** proposed that mirror symmetry can be understood as dual special Lagrangian torus fibrations.
- It leads to many exciting developments. **Gross-Siebert, Leung, Auroux, Chan . . .**
- **Fukaya** proposed to study mirror symmetry by using $\text{CF}(L_b, \cdot)$ for fibers L_b of a Lagrangian torus fibration.
- **Tu** took this approach to construct mirror spaces away from singular fibers.
- **Abouzaid** constructed family Floer functors for torus bundles and showed that the functor is fully faithful.
- We construct mirror geometry as the moduli space of stable Lagrangian immersions which are not necessarily tori. This generalizes the SYZ setting.
- Instead of Fukaya trick, we consider pseudo-isomorphisms between Lagrangian immersions, and obtain the gluing maps from cocycle conditions. (In particular we do not need diffeomorphisms.)
SYZ and Family Floer theory

- **Strominger-Yau-Zaslow** proposed that mirror symmetry can be understood as dual special Lagrangian torus fibrations.
- It leads to many exciting developments. **Gross-Siebert, Leung, Auroux, Chan . . .**
- **Fukaya** proposed to study mirror symmetry by using $\text{CF}(L_b, \cdot)$ for fibers L_b of a Lagrangian torus fibration.
- **Tu** took this approach to construct mirror spaces away from singular fibers.
- **Abouzaid** constructed family Floer functors for torus bundles and showed that the functor is fully faithful.
- We construct mirror geometry as the moduli space of stable Lagrangian immersions which are not necessarily tori. This generalizes the SYZ setting.
- Instead of Fukaya trick, we consider pseudo-isomorphisms between Lagrangian immersions, and obtain the gluing maps from cocycle conditions. (In particular we do not need diffeomorphisms.)
The quantum-corrected moduli

- The moduli space is given as a superpotential W defined on $\{\text{Stable formally deformed immersed Lagrangians in a fixed phase}\} / \{\text{Isomorphisms in the Fukaya category}\}$ (in place of the set of special Lagrangians).

- Formal deformations are given by flat \mathbb{C}^\times-connections or smoothings of immersed points. They are required to be weakly unobstructed so that W is well-defined.

- Isomorphisms between objects in the Fukaya category are defined by counting holomorphic strips.

- We consider ‘pseudo-isomorphisms’. They provide gluings between the local ‘pseudo deformation spaces’.

- W is the superpotential given by counting holomorphic discs. The moduli is the critical locus of W.

- Stable Lagrangians are essentially special Lagrangians with respect to a meromorphic top-form.
The quantum-corrected moduli

- The moduli space is given as a superpotential W defined on
 \{Stable formally deformed immersed Lagrangians in a fixed
 phase\} / \{Isomorphisms in the Fukaya category\}
 (in place of the set of special Lagrangians).
- Formal deformations are given by flat \mathbb{C}^\times-connections or
 smoothings of immersed points. They are required to be
 \textit{weakly unobstructed} so that W is well-defined.
- Isomorphisms between objects in the Fukaya category are
 defined by counting holomorphic strips.
- We consider ‘\textit{pseudo-isomorphisms}’. They provide gluings
 between the local ‘pseudo deformation spaces’.
- W is the superpotential given by counting holomorphic discs.
 The moduli is the critical locus of W.
- Stable Lagrangians are essentially special Lagrangians with
 respect to a meromorphic top-form.
The quantum-corrected moduli

- The moduli space is given as a superpotential W defined on
 $\{\text{Stable } formally \text{ deformed} \text{ immersed Lagrangians in a fixed phase}\} / \{\text{Isomorphisms in the Fukaya category}\}$
 (in place of the set of special Lagrangians).

- Formal deformations are given by flat \mathbb{C}^\times-connections or smoothings of immersed points. They are required to be
 weakly unobstructed so that W is well-defined.

- Isomorphisms between objects in the Fukaya category are defined by counting holomorphic strips.

- We consider ‘pseudo-isomorphisms’. They provide gluings between the local ‘pseudo deformation spaces’.

- W is the superpotential given by counting holomorphic discs.
 The moduli is the critical locus of W.

- Stable Lagrangians are essentially special Lagrangians with respect to a meromorphic top-form.
The quantum-corrected moduli

- The moduli space is given as a superpotential W defined on
 \[\{ \text{Stable formally deformed immersed Lagrangians in a fixed phase} \} / \{ \text{Isomorphisms in the Fukaya category} \} \]
 (in place of the set of special Lagrangians).
- Formal deformations are given by flat \mathbb{C}^\times-connections or
 smoothings of immersed points. They are required to be
 weakly unobstructed so that W is well-defined.
- Isomorphisms between objects in the Fukaya category are
 defined by counting holomorphic strips.
- We consider ‘pseudo-isomorphisms’. They provide gluings
 between the local ‘pseudo deformation spaces’.
- W is the superpotential given by counting holomorphic discs.
 The moduli is the critical locus of W.
- Stable Lagrangians are essentially special Lagrangians with
 respect to a meromorphic top-form.
The quantum-corrected moduli

- The moduli space is given as a superpotential W defined on $\{\text{Stable formally deformed immersed Lagrangians in a fixed phase}\} / \{\text{Isomorphisms in the Fukaya category}\}$ (in place of the set of special Lagrangians).
- Formal deformations are given by flat \mathbb{C}^\times-connections or smoothings of immersed points. They are required to be weakly unobstructed so that W is well-defined.
- Isomorphisms between objects in the Fukaya category are defined by counting holomorphic strips.
- We consider ‘pseudo-isomorphisms’. They provide gluings between the local ‘pseudo deformation spaces’.
- W is the superpotential given by counting holomorphic discs. The moduli is the critical locus of W.
- Stable Lagrangians are essentially special Lagrangians with respect to a meromorphic top-form.
The quantum-corrected moduli

- The moduli space is given as a superpotential W defined on
 \{Stable formally deformed immersed Lagrangians in a fixed phase\} / \{Isomorphisms in the Fukaya category\}
 (in place of the set of special Lagrangians).
- Formal deformations are given by flat \mathbb{C}^\times-connections or
 smoothings of immersed points. They are required to be
 weakly unobstructed so that W is well-defined.
- Isomorphisms between objects in the Fukaya category are
 defined by counting holomorphic strips.
- We consider ‘pseudo-isomorphisms’. They provide gluings
 between the local ‘pseudo deformation spaces’.
- W is the superpotential given by counting holomorphic discs.
 The moduli is the critical locus of W.
- Stable Lagrangians are essentially special Lagrangians with
 respect to a meromorphic top-form.
Example: the two-sphere

- Consider \mathbb{P}^1 equipped with the meromorphic top-form dz/z. The S^1-moment map gives a special Lagrangian fibration.

- Fibers are stable. We can also perturb it by Hamiltonian, which is still stable.

- $\{(\text{fibers},\text{flat } U(1)\text{-connections } \nabla^t)\} = (0, 1) \times S^1$ as sets.

- Don’t have relations between different fibers yet!
Example: the two-sphere

- Consider \mathbb{P}^1 equipped with the meromorphic top-form dz/z. The S^1-moment map gives a special Lagrangian fibration.
- Fibers are stable. We can also perturb it by Hamiltonian, which is still stable.
 - $\{(\text{fibers, flat } U(1)\text{-connections } \nabla^t)\} = (0, 1) \times S^1$ as sets.
 - Don’t have relations between different fibers yet!
Consider \mathbb{P}^1 equipped with the meromorphic top-form dz/z. The S^1-moment map gives a special Lagrangian fibration.

Fibers are stable. We can also perturb it by Hamiltonian, which is still stable.

$\{(\text{fibers, flat } U(1)\text{-connections } \nabla^t)\} = (0, 1) \times S^1$ as sets.

Don’t have relations between different fibers yet!
Example: the two-sphere

- Consider \mathbb{P}^1 equipped with the meromorphic top-form dz/z. The S^1-moment map gives a special Lagrangian fibration.
- Fibers are stable. We can also perturb it by Hamiltonian, which is still stable.
- \{(fibers, flat $U(1)$-connections ∇^t)\} = (0, 1) \times S^1 as sets.
- Don’t have relations between different fibers yet!
Example: the two-sphere

- Enlarge the local deformation spaces:
 \[S^1 = \{ \text{flat } U(1)\text{-conn.} \} \subset \Lambda_*^0 \subset \Lambda^* \]
 \[\Lambda = \{ \sum_{i=0}^{\infty} a_i T^A : A_0 \leq A_1 \leq \ldots \} \]

- ‘Pseudo-deformations’: flat \(\Lambda^* \)-connections. ‘Pseudo’ because they are invalid in the Fukaya category.

- The two intersection points \((\alpha, \beta)\) between a Hamiltonian-perturbed fiber with a neighboring fiber provide a ‘pseudo-isomorphism’.

- \(m_1(\alpha) = 0 \) gives \(t = T^A t' \) where \(A \) is the area of the cylinder bounded by the two fibers. \(t \) is forced to be \(\Lambda^* \)-valued.

- \(\{ (\text{stable Lagrangians in fiber class, flat } \Lambda^*_0\text{-conn.}) \}/\text{Isom.} \) equals to \(\Lambda^*_{0<\text{val}<1} \) as rigid analytic spaces.
Example: the two-sphere

- Enlarge the local deformation spaces:
 \[S^1 = \{ \text{flat } U(1)-\text{conn.} \} \subset \Lambda^*_0 \subset \Lambda^* \text{ where } \Lambda = \{ \sum_{i=0}^{\infty} a_i T^{A_i} : A_0 \leq A_1 \leq \ldots \}. \]

- ‘Pseudo-deformations’: flat \(\Lambda^* \)-connections. ‘Pseudo’ because they are invalid in the Fukaya category.

- The two intersection points \((\alpha, \beta)\) between a Hamiltonian-perturbed fiber with a neighboring fiber provide a ‘pseudo-isomorphism’.

- \(m_1(\alpha) = 0 \) gives \(t = T^A t' \) where \(A \) is the area of the cylinder bounded by the two fibers. \(t \) is forced to be \(\Lambda^* \)-valued.

- \{\text{(stable Lagrangians in fiber class, flat } \Lambda^*_0\text{-conn. })\}/\text{Isom.} \text{ equals to } \Lambda^*_{0<\text{val}<1} \text{ as rigid analytic spaces.}
Example: the two-sphere

- Enlarge the local deformation spaces:
 \[S^1 = \{ \text{flat } U(1)\text{-conn.} \} \subset \Lambda^*_0 \subset \Lambda^* \text{ where} \]
 \[\Lambda = \{ \sum_{i=0}^{\infty} a_i T^{A_i} : A_0 \leq A_1 \leq \ldots \} \].

- ‘Pseudo-deformations’: flat \(\Lambda^* \)-connections. ‘Pseudo’ because they are invalid in the Fukaya category.

- The two intersection points \((\alpha, \beta)\) between a Hamiltonian-perturbed fiber with a neighboring fiber provide a ‘pseudo-isomorphism’.

- \(m_1(\alpha) = 0 \) gives \(t = T^A t' \) where \(A \) is the area of the cylinder bounded by the two fibers. \(t \) is forced to be \(\Lambda^* \)-valued.

- \(\{(\text{stable Lagrangians in fiber class, flat } \Lambda^*_0\text{-conn.})\}/\text{Isom.} \) equals to \(\Lambda^*_{0<\text{val}<1} \) as rigid analytic spaces.
Example: the two-sphere

- Enlarge the local deformation spaces:
 \[S^1 = \{ \text{flat } U(1)-\text{conn.} \} \subset \Lambda^*_0 \subset \Lambda^* \text{ where} \]
 \[\Lambda = \{ \sum_{i=0}^{\infty} a_i T^{A_i} : A_0 \leq A_1 \leq \ldots \} \].

- ‘Pseudo-deformations’: flat \(\Lambda^* \)-connections. ‘Pseudo’ because they are invalid in the Fukaya category.

- The two intersection points \((\alpha, \beta)\) between a Hamiltonian-perturbed fiber with a neighboring fiber provide a ‘pseudo-isomorphism’.

- \(m_1(\alpha) = 0 \) gives \(t = T^A t' \) where \(A \) is the area of the cylinder bounded by the two fibers. \(t \) is forced to be \(\Lambda^*-\text{valued} \).

- \(\{ (\text{stable Lagrangians in fiber class, flat } \Lambda^*_0\text{-conn.}) \}/\text{Isom.} \) equals to \(\Lambda^*_{0<\text{val}<1} \) as rigid analytic spaces.
Example: the two-sphere

- Enlarge the local deformation spaces:
 \[S^1 = \{ \text{flat } U(1)-\text{conn.} \} \subset \Lambda^*_0 \subset \Lambda^* \text{ where } \Lambda = \{ \sum_{i=0}^{\infty} a_i T^{A_i} : A_0 \leq A_1 \leq \ldots \} \].
- ‘Pseudo-deformations’: flat \(\Lambda^* \)-connections. ‘Pseudo’ because they are invalid in the Fukaya category.
- The two intersection points \((\alpha, \beta)\) between a Hamiltonian-perturbed fiber with a neighboring fiber provide a ‘pseudo-isomorphism’.
- \(m_1(\alpha) = 0 \) gives \(t = T^A t' \) where \(A \) is the area of the cylinder bounded by the two fibers. \(t \) is forced to be \(\Lambda^* \)-valued.
- \(\{(\text{stable Lagrangians in fiber class, flat } \Lambda^*_0\text{-conn.})\}/\text{Isom.} \) equals to \(\Lambda^*_{0<\text{val}<1} \) as rigid analytic spaces.
Section 2

Pair-of-pants decompositions
Homological mirror symmetry was proved for punctured Riemann surface by Abouzaid-Auroux-Efimov-Katzarkov-Orlov, Bocklandt, and Heather Lee.

Our focus is on the construction of mirror as the moduli space rather than HMS. The construction comes with a natural functor which derives HMS.

Consider a pair-of-pants decomposition of a punctured Riemann surface. We have a class of Lagrangian immersions as shown in the figure.

$\dim = 1$ contains the essential ingredients. In higher dimensions, Seidel’s Lagrangians are replaced by Sheridan’s Lagrangians.
Homological mirror symmetry was proved for punctured Riemann surface by Abouzaid-Auroux-Efimov-Katzarkov-Orlov, Bocklandt, and Heather Lee.

Our focus is on the construction of mirror as the moduli space rather than HMS. The construction comes with a natural functor which derives HMS.

Consider a pair-of-pants decomposition of a punctured Riemann surface. We have a class of Lagrangian immersions as shown in the figure.

dim = 1 contains the essential ingredients. In higher dimensions, Seidel’s Lagrangians are replaced by Sheridan’s Lagrangians.
Homological mirror symmetry was proved for punctured Riemann surface by Abouzaid-Auroux-Efimov-Katzarkov-Orlov, Bocklandt, and Heather Lee.

Our focus is on the construction of mirror as the moduli space rather than HMS. The construction comes with a natural functor which derives HMS.

Consider a pair-of-pants decomposition of a punctured Riemann surface. We have a class of Lagrangian immersions as shown in the figure.

\(\text{dim} = 1 \) contains the essential ingredients. In higher dimensions, Seidel’s Lagrangians are replaced by Sheridan’s Lagrangians.
Homological mirror symmetry was proved for punctured Riemann surface by Abouzaid-Auroux-Efimov-Katzarkov-Orlov, Bocklandt, and Heather Lee.

Our focus is on the construction of mirror as the moduli space rather than HMS. The construction comes with a natural functor which derives HMS.

Consider a pair-of-pants decomposition of a punctured Riemann surface. We have a class of Lagrangian immersions as shown in the figure.

dim $= 1$ contains the essential ingredients. In higher dimensions, Seidel’s Lagrangians are replaced by Sheridan’s Lagrangians.
First consider a pair-of-pants, with Seidel’s Lagrangian immersion L.

- $\text{CF}(L, L) = \text{Span}\{1, X, Y, Z, \bar{X}, \bar{Y}, \bar{Z}, \text{pt}\}$.
- We proved that $xX + yY + zZ$ is weakly unobstructed.
- The local moduli is (\mathbb{C}^3, W), where $W = xyz$.
- The pair-of-pants can be compactified to $\mathbb{P}^1_{a,b,c}$. We used this to construct the mirror, and derived homological mirror symmetry. We also constructed noncommutative deformations. In an ongoing work with Amorim we prove closed-string mirror symmetry. For elliptic orbifolds the coefficients of W are modular forms [L.-Zhou].
- In higher dimensions Sheridan used this and proved HMS for Fermat-type hypersurfaces.
First consider a pair-of-pants, with Seidel’s Lagrangian immersion L.

- $\text{CF}(L, L) = \text{Span}\{1, X, Y, Z, \bar{X}, \bar{Y}, \bar{Z}, \text{pt}\}$.
- We proved that $xX + yY + zZ$ is weakly unobstructed.
- The local moduli is (\mathbb{C}^3, W), where $W = xyz$.
- The pair-of-pants can be compactified to $\mathbb{P}^1_{a,b,c}$. We used this to construct the mirror, and derived homological mirror symmetry. We also constructed noncommutative deformations. In an ongoing work with Amorim we prove closed-string mirror symmetry. For elliptic orbifolds the coefficients of W are modular forms [L.-Zhou].
- In higher dimensions Sheridan used this and proved HMS for Fermat-type hypersurfaces.
First consider a pair-of-pants, with Seidel’s Lagrangian immersion L.

$\text{CF}(L, L) = \text{Span}\{1, X, Y, Z, \bar{X}, \bar{Y}, \bar{Z}, \text{pt}\}$.

We proved that $xX + yY + zZ$ is weakly unobstructed.

The local moduli is (\mathbb{C}^3, W), where $W = xyz$.

The pair-of-pants can be compactified to $\mathbb{P}^1_{a,b,c}$. We used this to construct the mirror, and derived homological mirror symmetry. We also constructed noncommutative deformations. In an ongoing work with Amorim we prove closed-string mirror symmetry. For elliptic orbifolds the coefficients of W are modular forms [L.-Zhou].

In higher dimensions Sheridan used this and proved HMS for Fermat-type hypersurfaces.
Consider the four-punctured sphere as shown above.

We need to glue the deformation spaces of the two Seidel Lagrangians S_1 and S_2.

There are two main processes: smoothing and gauge change.

Let’s pretend to work over \mathbb{C} at this stage. The gluing we need is

$$(\mathbb{C}^3, W) \xrightarrow{\text{smoothing}} (\mathbb{C} \times \mathbb{C}^2) \xrightarrow{\text{gauge change}} (\mathbb{C} \times \mathbb{C}^2) \xrightarrow{\text{smoothing}} \mathbb{C}^3.$$
Consider the four-punctured sphere as shown above.

We need to glue the deformation spaces of the two Seidel Lagrangians S_1 and S_2.

There are two main processes: smoothing and gauge change.

Let’s pretend to work over \mathbb{C} at this stage. The gluing we need is

$$
(C^3, W) \xleftrightarrow{\text{smoothing}} (\mathbb{C} \times \times \mathbb{C}^2) \xleftrightarrow{\text{gauge change}} (\mathbb{C} \times \times \mathbb{C}^2) \xleftrightarrow{\text{smoothing}} C^3.
$$
Choice of gauge change

- There is a vanishing sphere in a smoothing at an immersed point of S. In this case it is simply the union of two points.
- Put a flat \mathbb{C}^\times connection on the smoothing C, which is acting by $t \in \mathbb{C}^\times$ when passing through the two points.
- The position of the two points are different for smoothings on the left and on the right.
- When a gauge point T is moved across the immersed point Y, the A_∞ algebras are related by $\tilde{y} = ty$.
- There are different ways of moving the gauge points to match them. This results in $\tilde{y} = t^a y$, $\tilde{z} = t^b z$ with $a + b = 2$.
Choice of gauge change

- There is a vanishing sphere in a smoothing at an immersed point of S. In this case it is simply the union of two points.
- Put a flat \mathbb{C}^\times connection on the smoothing C, which is acting by $t \in \mathbb{C}^\times$ when passing through the two points.
- The position of the two points are different for smoothings on the left and on the right.
- When a gauge point T is moved across the immersed point Y, the A_∞ algebras are related by $\tilde{y} = ty$.
- There are different ways of moving the gauge points to match them. This results in $\tilde{y} = t^a y$, $\tilde{z} = t^b z$ with $a + b = 2$.
There is a vanishing sphere in a smoothing at an immersed point of S. In this case it is simply the union of two points.

Put a flat \mathbb{C}^\times connection on the smoothing C, which is acting by $t \in \mathbb{C}^\times$ when passing through the two points.

The position of the two points are different for smoothings on the left and on the right.

When a gauge point T is moved across the immersed point Y, the A_∞ algebras are related by $\tilde{y} = ty$.

There are different ways of moving the gauge points to match them. This results in $\tilde{y} = t^ay$, $\tilde{z} = t^bz$ with $a + b = 2$.
Choice of gauge change

- There is a vanishing sphere in a smoothing at an immersed point of S. In this case it is simply the union of two points.
- Put a flat \mathbb{C}^\times connection on the smoothing C, which is acting by $t \in \mathbb{C}^\times$ when passing through the two points.
- The position of the two points are different for smoothings on the left and on the right.
- When a gauge point T is moved across the immersed point Y, the A_∞ algebras are related by $\tilde{y} = ty$.
- There are different ways of moving the gauge points to match them. This results in $\tilde{y} = t^a y$, $\tilde{z} = t^b z$ with $a + b = 2$.
Smoothing

- We need to glue the deformation spaces of S and C.
- They are given by $(x, y, z) \in \mathbb{C}^3$ and $(t, y_0, z_0) \in \mathbb{C}^\times \times \mathbb{C}^2$ respectively.
- Intuitively to match the superpotentials xyz and ty_0z_0, we simply put $x = t$, $y = y_0$, $z = z_0$.
- S and C are disjoint to each other!
- We take S_1 to be the deformed Seidel Lagrangian which intersects C as in the figure.
- Then we use cocycle conditions to deduce the gluing between S and C.
Smoothing

- We need to glue the deformation spaces of S and C.
- They are given by $(x, y, z) \in \mathbb{C}^3$ and $(t, y_0, z_0) \in \mathbb{C}^\times \times \mathbb{C}^2$ respectively.
- Intuitively to match the superpotentials xyz and ty_0z_0, we simply put $x = t, y = y_0, z = z_0$.
- S and C are disjoint to each other!
- We take S_1 to be the deformed Seidel Lagrangian which intersects C as in the figure.
- Then we use cocycle conditions to deduce the gluing between S and C.
Isomorphisms in smoothing

- We consider $a_1 + b_1 \in \text{CF}((C, \nabla_t), (S, xX))$ and $c_2 + d_2 \in \text{CF}((S, xX), (C, \nabla_t))$.

- Consider cocycle conditions on $a_1 + b_1$ and $c_2 + d_2$. Once the cocycle conditions are satisfied, they give isomorphisms between the two objects.
A paradox

- S is isomorphic to S_1, and (S_1, xX) is isomorphic to (C, ∇_t) for $t = x \neq 0$. Thus (S, xX) is isomorphic to C.
- But S and C are disjoint, and hence there is no morphism between them!
- We need to take a closer look at areas of holomorphic discs.
- Following Fukaya-Oh-Ohta-Ono, we shall use the Novikov ring $\Lambda_0 = \{\sum_{i=0}^{\infty} a_i T^{A_i} : 0 \leq A_0 \leq A_1 \leq \ldots\}$ to filter deformations into different energy levels.
A paradox

- S is isomorphic to S_1, and (S_1, xX) is isomorphic to (C, ∇_t) for $t = x \neq 0$. Thus (S, xX) is isomorphic to C.
- But S and C are disjoint, and hence there is no morphism between them!
- We need to take a closer look at areas of holomorphic discs.
- Following **Fukaya-Oh-Ohta-Ono**, we shall use the Novikov ring $\Lambda_0 = \{\sum_{i=0}^{\infty} a_i T^{A_i} : 0 \leq A_0 \leq A_1 \leq \ldots\}$ to filter deformations into different energy levels.
Area constraints for isomorphisms

For the cocycle conditions on $(S_1, x_1 X_1) \to (C, \nabla_t)$, indeed we have $t = T^{A_1 + \ldots + A_5 - A_7} x_1$.

Note that $t \in \mathbb{C}^\times$ while $x_1 \in \Lambda_0$. When $A_1 + \ldots + A_5 > A_7$, the condition is never satisfied.

Hence $(S_1, x_1 X_1)$ can only be isomorphic to (C, ∇_t) if $A_1 + \ldots + A_5 \leq A_7$.

When $A_1 + \ldots + A_5 = A_7$, the change of coordinates $x_1 = t$ does not involve Novikov parameters.

For the cocycle conditions on $(S, xX) \to (S_1, x_1 X_1)$, we have $x_1 = T^A x$ for certain $A > 0$. Thus $\text{val}(x_1) \geq A > 0$ in order to have them to be isomorphic.

The two regions $\text{val}(x_1) = 0$ and $\text{val}(x_1) \geq A > 0$ are disjoint. This solves the paradox.
Area constraints for isomorphisms

For the cocycle conditions on \((S_1, x_1 X_1) \rightarrow (C, \nabla t)\), indeed we have \(t = T^{A_1 + \ldots + A_5 - A_7} x_1\).

Note that \(t \in \mathbb{C}^\times\) while \(x_1 \in \Lambda_0\). When \(A_1 + \ldots + A_5 > A_7\), the condition is never satisfied.

Hence \((S_1, x_1 X_1)\) can only be isomorphic to \((C, \nabla t)\) if \(A_1 + \ldots + A_5 \leq A_7\).

When \(A_1 + \ldots + A_5 = A_7\), the change of coordinates \(x_1 = t\) does not involve Novikov parameters.

For the cocycle conditions on \((S, xX) \rightarrow (S_1, x_1 X_1)\), we have \(x_1 = T^A x\) for certain \(A > 0\). Thus \(\text{val}(x_1) \geq A > 0\) in order to have them to be isomorphic.

The two regions \(\text{val}(x_1) = 0\) and \(\text{val}(x_1) \geq A > 0\) are disjoint. This solves the paradox.
Area constraints for isomorphisms

For the cocycle conditions on \((S_1, x_1 X_1) \rightarrow (C, \nabla_t)\), indeed we have \(t = T^{A_1 + \ldots + A_5 - A_7 x_1}\).

Note that \(t \in C^\times\) while \(x_1 \in \Lambda_0\). When \(A_1 + \ldots + A_5 > A_7\), the condition is never satisfied.

Hence \((S_1, x_1 X_1)\) can only be isomorphic to \((C, \nabla_t)\) if \(A_1 + \ldots + A_5 \leq A_7\).

When \(A_1 + \ldots + A_5 = A_7\), the change of coordinates \(x_1 = t\) does not involve Novikov parameters.

For the cocycle conditions on \((S, xX) \rightarrow (S_1, x_1 X_1)\), we have \(x_1 = T^A x\) for certain \(A > 0\). Thus \(\text{val}(x_1) \geq A > 0\) in order to have them to be isomorphic.

The two regions \(\text{val}(x_1) = 0\) and \(\text{val}(x_1) \geq A > 0\) are disjoint. This solves the paradox.
The gluing $x = t$, $y = y_0$, $z = z_0$ looks pretty trivial. Let’s compactify to get more interesting gluing.

As an example, compactify the four-punctured sphere to a sphere. We still consider the moduli of double-circles.

The gluing is further quantum-corrected by discs emanated from infinite divisors.

The new gluing is $t = x$, $y_0 = y_1 + t_1^{-1}$, $z_0 = z_1 - t_1^{-1}$.

$W = xyz - y_1 + x_1 + z_1$. (The Novikov parameter is suppressed for simplicity.)

Unlike the case for anti-canonical divisors, gluing needs to be corrected upon compactification.
A compactification

The gluing $x = t$, $y = y_0$, $z = z_0$ looks pretty trivial. Let’s compactify to get more interesting gluing.

As an example, compactify the four-punctured sphere to a sphere. We still consider the moduli of double-circles.

The gluing is further quantum-corrected by discs emanated from infinite divisors.

The new gluing is $t = x$, $y_0 = y_1 + t_1^{-1}$, $z_0 = z_1 - t_1^{-1}$. $W = xyz - y_1 + x_1 + z_1$. (The Novikov parameter is suppressed for simplicity.)

Unlike the case for anti-canonical divisors, gluing needs to be corrected upon compactification.
The gluing $x = t, y = y_0, z = z_0$ looks pretty trivial. Let’s compactify to get more interesting gluing.

As an example, compactify the four-punctured sphere to a sphere. we still consider the moduli of double-circles.

The gluing is further quantum-corrected by discs emanated from infinite divisors.

The new gluing is $t = x, y_0 = y_1 + t_1^{-1}, z_0 = z_1 - t_1^{-1}$. $W = xyz - y_1 + x_1 + z_1$. (The Novikov parameter is suppressed for simplicity.)

Unlike the case for anti-canonical divisors, gluing needs to be corrected upon compactification.
Let’s go back to the four-punctured sphere. We can take another pair-of-pants decomposition.

It corresponds to another choice of a quadratic differential.

This results in a flop of the moduli space $(\mathcal{O}(-1) \oplus \mathcal{O}(-1), W)$.

We can also consider a quadratic differential with double zeros. Then the moduli is the non-commutative resolution of the conifold corresponding to a quiver ([Cho-Hong-L. 15]).

In [Fan-Hong-L.-Yau] we studied a 3d version of this (T^*S^3).
Let’s go back to the four-punctured sphere. We can take another pair-of-pants decomposition.

It corresponds to another choice of a quadratic differential.

This results in a flop of the moduli space $(\mathcal{O}(-1) \oplus \mathcal{O}(-1), W)$.

We can also consider a quadratic differential with double zeros. Then the moduli is the non-commutative resolution of the conifold corresponding to a quiver ([Cho-Hong-L. 15]).

In [Fan-Hong-L.-Yau] we studied a 3d version of this (T^*S^3).
Let’s go back to the four-punctured sphere. We can take another pair-of-pants decomposition.

It corresponds to another choice of a quadratic differential.

This results in a flop of the moduli space \((O(-1) \oplus O(-1), W)\).

We can also consider a quadratic differential with double zeros. Then the moduli is the non-commutative resolution of the conifold corresponding to a quiver ([Cho-Hong-L. 15]).

In [Fan-Hong-L.-Yau] we studied a 3d version of this \((T*S^3)\).
Section 3

Wall-crossing in SYZ
Immersed sphere

The two-dimensional immersed sphere leads to wall-crossing phenomenons for SYZ Lagrangian fibrations.

Fukaya studied this immersion and the relation with the mirror equation. Here we realize it from cocycle conditions.

- It has two degree-one immersed generators U and V. It gives the deformations $b = uU + vV$ where $(u, v) \in (\Lambda_0 \times \Lambda_+) \cup (\Lambda_+ \times \Lambda_0)$.
- There are constant holomorphic discs with corners U, V, \ldots, U, V. To ensure there are only finitely many terms under every energy level, we only allow one of u, v having valuation zero.
The two-dimensional immersed sphere leads to wall-crossing phenomena for SYZ Lagrangian fibrations.

Fukaya studied this immersion and the relation with the mirror equation. Here we realize it from cocycle conditions.

It has two degree-one immersed generators U and V. It gives the deformations $b = uU + vV$ where $(u, v) \in (\Lambda_0 \times \Lambda_+) \cup (\Lambda_+ \times \Lambda_0)$.

There are constant holomorphic discs with corners U, V, \ldots, U, V. To ensure there are only finitely many terms under every energy level, we only allow one of u, v having valuation zero.
Immersed sphere

- The two-dimensional immersed sphere leads to wall-crossing phenomena for SYZ Lagrangian fibrations.

- **Fukaya** studied this immersion and the relation with the mirror equation. Here we realize it from cocycle conditions.

- It has two degree-one immersed generators U and V. It gives the deformations $b = uU + vV$ where $(u, v) \in \left(\Lambda_0 \times \Lambda_+ \right) \cup \left(\Lambda_+ \times \Lambda_0 \right)$.

- There are constant holomorphic discs with corners U, V, \ldots, U, V. To ensure there are only finitely many terms under every energy level, we only allow one of u, v having valuation zero.
Immersed sphere

- It has two degree-one immersed generators U and V. It gives the deformations $b = uU + vV$ where $(u, v) \in (\Lambda_0 \times \Lambda_+) \cup (\Lambda_+ \times \Lambda_0)$.

- There are constant holomorphic discs with corners U, V, \ldots, U, V. To ensure there are only finitely many terms under every energy level, we only allow one of u, v having valuation zero.

- The constant discs with corners U, V, \ldots, U, V contributing to pt of m_b^0 cancel with that with corners V, U, \ldots, V, U. Thus $b = uU + vV$ is weakly unobstructed.
Consider the immersed sphere S and a Chekanov torus T. S is made by deforming the immersed fiber.

We glue the deformations $(u, v) \in \Lambda_0 \times \Lambda_+$ with the deformations $(x, y) \in (\mathbb{C}^\times \oplus \Lambda_+)^2$ of T.
We glue the deformations \((u, v) \in \Lambda_0 \times \Lambda_+\) with the deformations \((x, y) \in (\mathbb{C}^\times \oplus \Lambda_+)^2\) of \(T\).

The cocycle conditions give \(u = y\) and \(x = uv - 1\). Note that the second equation is on the region \(x = -1 + \Lambda_+\).

In other words, \(\text{CF}(T, T)\) gives an extension of \(\text{CF}(S, S)\) from \(v \in \Lambda_+\) to \(v \in \Lambda_0\) with \(uv \neq 1\).

Similarly we can glue the immersed sphere \(S\) (with \((u, v) \in \Lambda_+ \times \Lambda_0\)) with a Clifford torus \(T'\). It is \(v = y'\) and \(x' = uv - 1\).

The resulting moduli is \(\{(u, v) \in \Lambda_0 \times \Lambda_0 : uv \neq 1\}\).
We glue the deformations \((u, v) \in \Lambda_0 \times \Lambda_+\) with the deformations \((x, y) \in (\mathbb{C}^\times \oplus \Lambda_+)^2\) of \(T\).

The cocycle conditions give \(u = y\) and \(x = uv - 1\). Note that the second equation is on the region \(x = -1 + \Lambda_+\).

In other words, \(\text{CF}(T, T)\) gives an extension of \(\text{CF}(S, S)\) from \(v \in \Lambda_+\) to \(v \in \Lambda_0\) with \(uv \neq 1\).

Similarly we can glue the immersed sphere \(S\) (with \((u, v) \in \Lambda_+ \times \Lambda_0\)) with a Clifford torus \(T'\). It is \(v = y'\) and \(x' = uv - 1\).

The resulting moduli is \(\{(u, v) \in \Lambda_0 \times \Lambda_0 : uv \neq 1\}\).
Grassmannians

- With **Hansol Hong and Yoosik Kim**, we are applying this to construct the compactified mirror of $\text{Gr}(2, n)$.
- Flag manifolds have Gelfand-Cetlin systems serving as Lagrangian torus fibrations.
- Immersed spheres are important in that case because they appear as critical fibers of the superpotential.
- For instance, by **Nohara-Ueda** for $\text{Gr}(2, 4)$ there is a critical point $(0, 0)$ which corresponds to a certain fiber $S^3 \times S^1$ of the Gelfand-Cetlin system.
- The trouble is S^3 is rigid!
Consider the symplectic reduction picture on S^2. We push in one singular point and consider the corresponding moduli.

- There is one monotone Lagrangian torus above and below the wall respectively.
- The deformation spaces $(\mathbb{C}^\times)^2$ of these two tori provide the cluster charts of the mirror. However there is still one point missing, which is crucial since a critical point of W lies there.
- We glue the deformation spaces of an immersed sphere (times T^2) with that of the two monotone tori like in the last slide.
- This recovers the Rietsch Lie theoretical mirror for $Gr(2, 4)$.