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Section 1

Overview



Moduli theory in the B-side

I Moduli theory for vector bundles has been developed into a
deep theory.

Theorem (Donaldson, Uhlenbeck-Yau)

A slope-semistable holomorphic vector bundle admits a Hermitian
Yang-Mills metric.

I GIT and stability conditions were essential to the construction.

I Bridgeland developed a general mathematical theory of
stability conditions for triangulated categories.

I Toda developed foundational techniques to construct
Bridgeland stability conditions for derived categories of
coherent sheaves.

I Moduli spaces undergo birational changes (such as flops) in a
variation of stability conditions.

I How about moduli of Lagrangians in the mirror A-side?
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Ingredients for moduli theory of Lagrangians

I Complexification. The classical moduli spaces are affine
manifolds with singularities [Hitchin,McLean].
Complexification is needed in order to compactify. Technically
we need to work over the Novikov ring.

I Quantum correction. The canonical complex structures need
to be corrected using Lagrangian Floer theory
[Fukaya-Oh-Ohta-Ono]. The combinatorial structure of
quantum corrections for SYZ fibrations was deeply studied by
Kontsevich-Soibelman and Gross-Siebert.

I Landau-Ginzburg model. The moduli in general are singular
varieties. They are described as critical loci of holomorphic
functions. It can also be noncommutative in general
[Cho-Hong-L.].

I Singular Lagrangians. Kontsevich proposed to study them
using cosheaves of categories. Nadler is developing a theory
of arboreal singularities.
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Why care about Lagrangian immersionsSaturday, December 9, 2017 6:25 PM

I Lagrangian immersions have a well-defined Floer theory by
Akaho-Joyce.

I They are the main sources of wall-crossing phenomenon in the
SYZ setting.

I The deformation space of a Lagrangian immersion is ‘bigger’
than its smoothing and covers a local family of Lagrangians
(including singular Lagrangians).

I It is hoped that every object in the Fukaya category can be
represented by a Lagrangian immersion. If so we do not need
to worry about singular Lagrangians.
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SYZ and Family Floer theory
I Strominger-Yau-Zaslow proposed that mirror symmetry can

be understood as dual special Lagrangian torus fibrations.
I It leads to many exciting developments. Gross-Siebert,

Leung, Auroux, Chan . . .
I Fukaya proposed to study mirror symmetry by using CF(Lb, ·)

for fibers Lb of a Lagrangian torus fibration.
I Tu took this approach to construct mirror spaces away from

singular fibers.
I Abouzaid constructed family Floer functors for torus bundles

and showed that the functor is fully faithful.
I We construct mirror geometry as the moduli space of stable

Lagrangian immersions which are not necessarily tori. This
generalizes the SYZ setting.

I Instead of Fukaya trick, we consider pseudo-isomorphisms
between Lagrangian immersions, and obtain the gluing maps
from cocycle conditions. (In particular we do not need
diffeomorphisms.)
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The quantum-corrected moduli

I The moduli space is given as a superpotential W defined on
{Stable formally deformed immersed Lagrangians in a fixed
phase} / {Isomorphisms in the Fukaya category}
(in place of the set of special Lagrangians).

I Formal deformations are given by flat C×-connections or
smoothings of immersed points. They are required to be
weakly unobstructed so that W is well-defined.

I Isomorphisms between objects in the Fukaya category are
defined by counting holomorphic strips.

I We consider ‘pseudo-isomorphisms’. They provide gluings
between the local ‘pseudo deformation spaces’.

I W is the superpotential given by counting holomorphic discs.
The moduli is the critical locus of W .

I Stable Lagrangians are essentially special Lagrangians with
respect to a meromorphic top-form.
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Example: the two-sphere

α

β

L1L2
L1L2

L1’

I Consider P1 equipped with the meromorphic top-form dz/z .
The S1-moment map gives a special Lagrangian fibration.

I Fibers are stable. We can also perturb it by Hamiltonian,
which is still stable.

I {(fibers,flat U(1)-connections ∇t)} = (0, 1)× S1 as sets.

I Don’t have relations between different fibers yet!
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Example: the two-sphere

α

β

L1L2
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L1’

I Enlarge the local deformation spaces:
S1 = { flat U(1)-conn.} ⊂ Λ∗0 ⊂ Λ∗ where
Λ = {

∑∞
i=0 aiT

Ai : A0 ≤ A1 ≤ . . .}.
I ‘Pseudo-deformations’: flat Λ∗-connections. ‘Pseudo’ because

they are invalid in the Fukaya category.
I The two intersection points (α, β) between a

Hamiltonian-perturbed fiber with a neighboring fiber provide a
‘pseudo-isomorphism’.

I m1(α) = 0 gives t = TAt ′ where A is the area of the cylinder
bounded by the two fibers. t is forced to be Λ∗-valued.

I {(stable Lagrangians in fiber class, flat Λ∗0-conn. )}/Isom.
equals to Λ∗0<val<1 as rigid analytic spaces.
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Section 2

Pair-of-pants decompositions



Punctured Riemann surfaces

X1
T1 T2

Y1

Y0
Y0 Y2

X2

Z2
Z1 Z0 Z0

I Homological mirror symmetry was proved for punctured
Riemann surface by
Abouzaid-Auroux-Efimov-Katzarkov-Orlov, Bocklandt,
and Heather Lee.

I Our focus is on the construction of mirror as the moduli space
rather than HMS. The construction comes with a natural
functor which derives HMS.

I Consider a pair-of-pants decomposition of a punctured
Riemann surface. We have a class of Lagrangian immersions
as shown in the figure.

I dim = 1 contains the essential ingredients. In higher
dimensions, Seidel’s Lagrangians are replaced by Sheridan’s
Lagrangians.
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Review on local moduli construction

I First consider a pair-of-pants, with Seidel’s Lagrangian
immersion L.

I CF(L, L) = Span{1,X ,Y ,Z , X̄ , Ȳ , Z̄ ,pt}.
I We proved that xX + yY + zZ is weakly unobstructed.
I The local moduli is (C3,W ), where W = xyz .
I The pair-of-pants can be compactified to P1

a,b,c . We used this
to construct the mirror, and derived homological mirror
symmetry. We also constructed noncommutative
deformations. In an ongoing work with Amorim we prove
closed-string mirror symmetry. For elliptic orbifolds the
coefficients of W are modular forms [L.-Zhou].

I In higher dimensions Sheridan used this and proved HMS for
Fermat-type hypersurfaces.
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Gluing
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I Consider the four-punctured sphere as shown above.

I We need to glue the deformation spaces of the two Seidel
Lagrangians S1 and S2.

I There are two main processes: smoothing and gauge change.

I Let’s pretend to work over C at this stage. The gluing we
need is

(C3,W )
smoothing←→ (C××C2)

gauge change←→ (C××C2)
smoothing←→ C3.
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Choice of gauge change

X1
T1 T2

Y1
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Y0 Y2

X2

Z2
Z1 Z0 Z0

gauge 
change

I There is a vanishing sphere in a smoothing at an immersed
point of S . In this case it is simply the union of two points.

I Put a flat C× connection on the smoothing C , which is acting
by t ∈ C× when passing through the two points.

I The position of the two points are different for smoothings on
the left and on the right.

I When a gauge point T is moved across the immersed point
Y , the A∞ algebras are related by ỹ = ty .

I There are different ways of moving the gauge points to match
them. This results in ỹ = tay , z̃ = tbz with a + b = 2.
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by t ∈ C× when passing through the two points.

I The position of the two points are different for smoothings on
the left and on the right.

I When a gauge point T is moved across the immersed point
Y , the A∞ algebras are related by ỹ = ty .
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them. This results in ỹ = tay , z̃ = tbz with a + b = 2.



Choice of gauge change

X1
T1 T2

Y1

Y0
Y0 Y2

X2

Z2
Z1 Z0 Z0

gauge 
change

I There is a vanishing sphere in a smoothing at an immersed
point of S . In this case it is simply the union of two points.

I Put a flat C× connection on the smoothing C , which is acting
by t ∈ C× when passing through the two points.

I The position of the two points are different for smoothings on
the left and on the right.

I When a gauge point T is moved across the immersed point
Y , the A∞ algebras are related by ỹ = ty .
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Smoothing
I We need to glue the deformation spaces of S and C .
I They are given by (x , y , z) ∈ C3 and (t, y0, z0) ∈ C× × C2

respectively.
I Intuitively to match the superpotentials xyz and ty0z0, we

simply put x = t, y = y0, z = z0.
I S and C are disjoint to each other!
I We take S1 to be the deformed Seidel Lagrangian which

intersects C as in the figure.
I Then we use cocycle conditions to deduce the gluing between

S and C .

X1T1
T1

Y1

Y0

Z1

Z0

A1 A2

A3

A4

A3A6

A5 A5

A6

A1

A7
A7



Smoothing
I We need to glue the deformation spaces of S and C .
I They are given by (x , y , z) ∈ C3 and (t, y0, z0) ∈ C× × C2

respectively.
I Intuitively to match the superpotentials xyz and ty0z0, we

simply put x = t, y = y0, z = z0.
I S and C are disjoint to each other!
I We take S1 to be the deformed Seidel Lagrangian which

intersects C as in the figure.
I Then we use cocycle conditions to deduce the gluing between

S and C .

X1T1
T1

Y1

Y0

Z1

Z0

A1 A2

A3

A4

A3A6

A5 A5

A6

A1

A7
A7



Isomorphisms in smoothing
I We consider a1 + b1 ∈ CF((C ,∇t), (S , xX )) and

c2 + d2 ∈ CF((S , xX ), (C ,∇t)).
I Consider cocycle conditions on a1 + b1 and c2 + d2. Once the

cocycle conditions are satisfied, they give isomorphisms
between the two objects.
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A paradox

Paradox
Saturday, December 9, 2017 7:19 PM

I S is isomorphic to S1, and (S1, xX ) is isomorphic to (C ,∇t)
for t = x 6= 0. Thus (S , xX ) is isomorphic to C .

I But S and C are disjoint, and hence there is no morphism
between them!

I We need to take a closer look at areas of holomorphic discs.
I Following Fukaya-Oh-Ohta-Ono, we shall use the Novikov

ring Λ0 = {
∑∞

i=0 aiT
Ai : 0 ≤ A0 ≤ A1 ≤ . . .} to filter

deformations into different energy levels.
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I For the cocycle conditions on (S1, x1X1)→ (C ,∇t), indeed
we have t = TA1+...+A5−A7x1.

I Note that t ∈ C× while x1 ∈ Λ0. When A1 + . . .+ A5 > A7,
the condition is never satisfied.

I Hence (S1, x1X1) can only be isomorphic to (C ,∇t) if
A1 + . . .+ A5 ≤ A7.

I When A1 + . . .+ A5 = A7, the change of coordinates x1 = t
does not involve Novikov parameters.

I For the cocycle conditions on (S , xX )→ (S1, x1X1), we have
x1 = TAx for certain A > 0. Thus val(x1) ≥ A > 0 in order
to have them to be isomorphic.

I The two regions val(x1) = 0 and val(x1) ≥ A > 0 are disjoint.
This solves the paradox.
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A compactification
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I The gluing x = t, y = y0, z = z0 looks pretty trivial. Let’s
compactify to get more interesting gluing.

I As an example, compactify the four-punctured sphere to a
sphere. we still consider the moduli of double-circles.

I The gluing is further quantum-corrected by discs emanated
from infinite divisors.

I The new gluing is t = x , y0 = y1 + t−11 , z0 = z1 − t−11 .
W = xyz − y1 + x1 + z1. (The Novikov parameter is
suppressed for simplicity.)

I Unlike the case for anti-canonical divisors, gluing needs to be
corrected upon compactification.
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Changing stability and flop

I Let’s go back to the four-punctured sphere. We can take
another pair-of-pants decomposition.

I It corresponds to another choice of a quadratic differential.

I This results in a flop of the moduli space
(O(−1)⊕O(−1),W ).

I We can also consider a quadratic differential with double
zeros. Then the moduli is the non-commutative resolution of
the conifold corresponding to a quiver ([Cho-Hong-L. 15]).

I In [Fan-Hong-L.-Yau] we studied a 3d version of this (T ∗S3).
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Section 3

Wall-crossing in SYZ



Immersed sphere
Immersed sphere
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I The two-dimensional immersed sphere leads to wall-crossing
phenomenons for SYZ Lagrangian fibrations.

I Fukaya studied this immersion and the relation with the
mirror equation. Here we realize it from cocycle conditions.

I It has two degree-one immersed generators U and V . It gives
the deformations b = uU + vV where
(u, v) ∈ (Λ0 × Λ+) ∪ (Λ+ × Λ0).

I There are constant holomorphic discs with corners
U,V , . . . ,U,V . To ensure there are only finitely many terms
under every energy level, we only allow one of u, v having
valuation zero.
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I It has two degree-one immersed generators U and V . It gives
the deformations b = uU + vV where
(u, v) ∈ (Λ0 × Λ+) ∪ (Λ+ × Λ0).

I There are constant holomorphic discs with corners
U,V , . . . ,U,V . To ensure there are only finitely many terms
under every energy level, we only allow one of u, v having
valuation zero.

I The constant discs with corners U,V , . . . ,U,V contributing
to pt of mb

0 cancel with that with corners V ,U, . . . ,V ,U.
Thus b = uU + vV is weakly unobstructed.



Gluing
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I Consider the immersed sphere S and a Chekanov torus T . S
is made by deforming the immersed fiber.

I We glue the deformations (u, v) ∈ Λ0 × Λ+ with the
deformations (x , y) ∈ (C× ⊕ Λ+)2 of T .
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I We glue the deformations (u, v) ∈ Λ0 × Λ+ with the
deformations (x , y) ∈ (C× ⊕ Λ+)2 of T .

I The cocycle conditions give u = y and x = uv − 1. Note that
the second equation is on the region x = −1 + Λ+.

I In other words, CF(T ,T ) gives an extension of CF(S ,S)
from v ∈ Λ+ to v ∈ Λ0 with uv 6= 1.

I Similarly we can glue the immersed sphere S (with
(u, v) ∈ Λ+ × Λ0) with a Clifford torus T ′. It is v = y ′ and
x ′ = uv − 1.

I The resulting moduli is {(u, v) ∈ Λ0 × Λ0 : uv 6= 1}.
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Grassmannians
Deform G-C system
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I With Hansol Hong and Yoosik Kim, we are applying this to
construct the compactified mirror of Gr(2, n).

I Flag manifolds have Gelfand-Cetlin systems serving as
Lagrangian torus fibrations.

I Immersed spheres are important in that case because they
appear as critical fibers of the superpotential.

I For instance, by Nohara-Ueda for Gr(2, 4) there is a critical
point (0, 0) which corresponds to a certain fiber S3 × S1 of
the Gelfand-Cetlin system.

I The trouble is S3 is rigid!
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I Consider the symplectic reduction picture on S2. We push in
one singular point and consider the corresponding moduli.

I There is one monotone Lagrangian torus above and below the
wall respectively.

I The deformation spaces (C×)2 of these two tori provide the
cluster charts of the mirror. However there is still one point
missing, which is crucial since a critical point of W lies there.

I We glue the deformation spaces of an immersed sphere (times
T 2) with that of the two monotone tori like in the last slide.

I This recovers the Rietsch Lie theoretical mirror for Gr(2, 4).
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