Mirror symmetry for quiver stacks and machine learning
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Quiver representation emerges from Lie theory and mathematical physics. Its simplicity and beautiful theory have attracted a lot of
mathematicians and physicists. In this talk, | will explain localizations of a quiver algebra, and the relations with SYZ and
noncommutative mirror symmetry. | will also explore the applications of quivers to computational models in machine learning.

1. Motivation: sheaves < quiver representations
2. SYZ mirrors and quivers
3. Framed quivers as computers
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Motivation: sheaves < quiver representations

One important source: quiver resolution and quiver gauge theory.

For a local Calabi-Yau singularity X = Spec R,

let Y be a crepant resolution (f *wy = wy).

Van den Bergh has formulated quiver algebra

A, called noncommutative crepant resolution, such that

D"(coh(Y)) = D?(mod(A)).

A = Endz (M) where
M: a reflexive R-module (M™ = M).

Douglas-Moore use quiver to encode a system of D-branes
wrapping a Calabi-Yau threefold singularity.

Quiver is also useful in studying noncommutative deformations
|[Donovan-Wemyss)|.



Ex. conifold singularity {y,w; = y;wy}.
Crepant resolution:
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DP(coh(Y)) = D?(mod(4)).

Ex. Orbifold C3/Z,.
Crepant resolution:
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Another important source for sheaf <> quiver representation:
ADHM quiver [Atiyah-Drinfeld-Hitchin-Manin, Donaldson,
Nakajimal].

Yang-Mills instantons over $* (Fy =—x* F,)
< stable quiver representations over ADHM quiver \

- —_ xy—yx+1i=0

< framed torsion-free sheaves over (]P’z, loo).

Generalized to ALE surfaces C2/I" [Kronheimer-Nakajimalj.

We will use mirror symmetry to systematically construct the
algebro-geometric correspondence: sheaf <> quiver representation.

Theorem: there exists a triangle of functors:

Symplectic geometry
Fl.lk(M) 2 (.#J. SJ.L-&I‘- wthcM’Lﬁ - O.

‘Fﬁ fL
]:'U

Algebraic geometry — » Representation theory

Tw(Zx) dg — mod(A)

e FL is SYZ mirror functor.
e Fl s quiver mirror functor.
e FU is constructed from isomorphism £ < L.



SYZ mirror and quiver

e Mirror symmetry is duality
symplectic (M, w) < complex (X, ]).

e Found by string theorists in the 90's.

e Powerful prediction of Gromov-Witten invariants
proved by [Givental] and [Lian-Liu-Yau].

e Homological mirror symmetry [Kontsevich]:
DFuk(M) = DCoh(X).

e Mirror symmetry is T-duality [Strominger-Yau-Zaslow].
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SYZ singular fibers are the sources of quantum corrections, which form
wall-crossing and scattering [Kontsevich-Soibelman, Gross-Siebert,
Auroux, Gross-Hacking-Keel...]
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We glue deformation spaces of SYZ singular fibers to construct the
mirror.

|Cho-Hong-L., Hong-L.-Kim, L.-Nan-Tan]

eX. Deformation space of the nodal sphere is ‘
-
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Note: generally, SYZ singular fiber corresponds to
quiver algebra! [Cho-Hong-L.]




Gluing quiver algebras together produce a quiver stack.
(Algebroid stack was defined by [Kashiwara; O'brian-Toledo-Tong;

Holstein-Wei...])

Def. A quiver stack consists of the following:
(1) Anopen cover{U;:i€ I} of B.
(2) Asheafof algebras <f; over each U;, coming from localizations of a quiver algebra
of;(U;) =CQW/RW,
(3) A sheaf of representations G; j of Q%}” over «;(V) forevery i, j and Volgn Uij.
(4) An invertible element c; i (v) € (E’(}”(Gﬂ.{u)) 'LQf;(Ufjk.).eGr_Hv})x for every i, j,k
and v € Q{ng , that satisfies

(2.13) GijoGjk(a) = cijk (ha) - Gik (@) - ¢y (ta)

such that foranyi, j, k,l and v,
(2.14) ijk(ck{(l}))cl;“(l}) = G,‘j(Cj“(U)]C,'j](U).
In this paper, we always set G;; =1d,cjjx =1 = cjik.

different number of vertices).

The notion enables us to glue generic SYZ fibers with singular
Lagrangians via quasi-isomorphisms in the Fukaya category.



ex. Construction of K2 and quiver from mirror curve.

Seidel Lagrangians replacing the
singular SYZ fibers.

(Lu,bu) ~ (L, by):

'i_':'.-" \;1;3
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Theorem. [L.-Nan-Tan] There exists a quiver stack U such that
oo j, Ajo satisfy the isomorphism equations

Ut b _ n.
my (@) = 0;

Y, 61,0

m, (@i @ej) = 1,
Such a method helps us to glue three non-intersecting SYZ fibers - > KTP"

together via a middle agent!



Conclusion:

e Have mirror functor F~: F uk(M) - Tw(X) by gluing singular SYZ fibers
together.

e Have mirror functor FP): Fuk(M) - Mod(Q) by a single immersion L
and its deformations (from a Lagrangian skeleton of M).

o U= F*(L,b) gives FU = Homr,x) (U, —): Tw(X) = Mod(Q).

Symplectic geometry

Fuk(M)
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Ongoing work:
Use framed Lagrangian F U § to produce the ADHM quiver and sheaves.




Quivers and machine learning

Remarkably, quiver representation is the key object in Deep learning.

inputs output

Fix y € CQ that starts and ends with i, ioyt-

Have a canonical linear function
LY:W: Vii[l _> V

lout

associated to each w € R(Q),
by composing arrow linear maps along y.

Representation learning:
Given K c V;. and a continuous function

f:K =V, (statistically given),
minimize the cost function
2
Lyw = f|:R(Q) - R
by taking a stochastic gradient descent in R(Q).

= quiver representation that gives the best linear approximation.



Insight from neural network:
to get non-linear approximation, introduce
non-linear "activation functions’ at vertices.
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Some sigmoid functions compared. In the drawing all &
functions are normalized in such a way that their slope at
the origin is 1.
Compose with these activation functions and obtain
network function

Frwt Vi = Vigy
for every w € Rep(Q).

output

Do not occur in usual quiver theory.




We want to work with moduli space
rather than the vector space R(Q) of representations.

M(Q) = [R(Q)/G]

where
G = 1_[ GL(V,).
LEQo

[Mumford; Kings]
{0 — semistable pointsin R(Q)}// G.
GIT or slope stability: choose weights 8 € (Z%)".

Rep. V is 8-semi-stable if 6 (dim V’>) <40 (dim V) forV' c V.

(Can also be understood via symplectic quotient.)

Obstacles of running deep learning over M (Q):
Ly, is composed with activation functions o: V; — V;, which are

NOT G-equivariant: (g - v) # g - a(v).



This motivates us to use framed quiver representations
INakajima; Crawley-Boevey; Reineke].

Framed quiver representation: & /
usual quiver representation , /
(linear maps associated to arrows)

together with linear maps e;: C"i — V; (called framing).

RIr :— 69 Hom(Vt(a), Vh(a)) . @ Hom(C", V;) 3 (w,e). F

5, N Al

Mmtr .= {stable points in R'}/G.

Think of V; as state spaces; ﬂc (V. i)
C™ as spaces for input, output or memory. "

Key: put the activation functions ¢ on the framing, rather than on the
state spaces V.
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Moreover, the moduli space has
universal bundles V;, - M.
Each arrow a gives a vector-bundle map

Vi) = Vi)

Using these, together with metric,
can make well-defined learning algorithm over the quiver moduli.




Fix

e a graph 0,

e input and output vertices ijy, iout,

e the representation dimension vector,
e the framinge;: F; - V,,

e Non-linear functions o;: F; — F;,

e the "algorithm" y € CQ{oy, ..., on},

Compose

arrow maps Viq) = Vy(a)» |

framing mapse;: F; = V,, n o, W, out

their metric adjoints e;: V; — F;, and ¢ —>° —> ., —
0;. Fi — Fi! - wt

get a machine function ¢ e=(e" ¢, b) o

fo: V. =V, over M'T. d, d+1 bi Y
Y "lin Lout d: 6 Ue?jf:*- G:

Ex. A, -quiver.

f7 =5, _, o0 eout* o (Wn—l o ("_O (D S, © e(l)* o (Wl o el 4+ b(l)) ) + b(n_l)) .



To run the algorithm over M''*, need
(1) vector-bundle metric H; on universal bundle V;;
(2) Metric h, + on M.

Thm.
Fix i € Q.
e H;: R - End(C%),

(w,e) = ( Z (Wyet(y))(wyet(y))*)

h(y)=i
gives a well-defined metric on V; - M.

e Moreover, assuming Q has no oriented cycle,

the Ricci curvature v—13; 90 log det H;
of the resulting metric on ;¢ U; defines a Kaehler metric on mrr,



Moreover, can uniformize with the original Euclidean setup and
hyperbolic metric.

Assume 7t > d.
Write the framing as e®® = (e pW),

At points where € is invertible,
applying quiver automorphism = € = Id.

This gives a chart:
Rii—q,a(Q) = M5 (Q).

Uniformization gives a unified point of view towards
R;_4.4(Q), M;5(Q), and M ;(Q).



Ex. Hyperbolic disc D c CP?.
D, C and CP! can be uniformly understood:

f//,—’f//*?/zh/

CP! = {lines in C*4}.

If we equip C? with the quadratic form y? — x?, then

D = {spacelike lines in C*1}.

If we equip C* with the quadratic form H, = y?, then
C = {spacelike lines in (C?, Hy)}.

This is classically well understood for symmetric spaces, and
D < CP! is known as Borel embedding.

We generalize this to framed quiver moduli.

There exists spherical, hyperbolic, Euclidean moduli spaces
M, M ~, M which can be interpolated by a family of metrics.

(o (5 ,2)m)
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Conclusion

e Quiver near algebras give a uniform setup for machine learning
and quantum computing.

e Quiver gauge theory (resolution of local CY singularities) &
ADHM provide correspondence between sheaves and quivers.

e The correspondence can be realized by mirror symmetry.

e We are using quivers as fundamental building blocks in both
physical and computational models.

Symplectic geometry

Fuk(M)
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