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ABSTRACT

Image segmentation persists as a major statistical problem, with the volume and com-

plexity of data expanding alongside new technologies. Land cover classification, one of the

most studied problems in Remote Sensing, provides an important example of image seg-

mentation whose needs transcend the choice of a particular classification method. That is,

the challenges associated with land cover classification pervade the analysis process from

data pre-processing to estimation of a final land cover map. Many of the same challenges

also plague the task of land cover change detection. Multispectral, multitemporal data

with inherent spatial relationships have hardly received adequate treatment due to the

large size of the data and the presence of missing values.

In this work we propose a novel, concerted application of methods which provide a

unified way to estimate model parameters, impute missing data, reduce dimensionality,

classify land cover, and detect land cover changes. This comprehensive analysis adopts

a Bayesian approach which incorporates prior knowledge to improve the interpretability,

efficiency, and versatility of land cover classification and change detection. We explore

a parsimonious, parametric model that allows for a natural application of principal com-

ponents analysis to isolate important spectral characteristics while preserving temporal

information. Moreover, it allows us to impute missing data and estimate parameters via

expectation-maximization (EM). A significant byproduct of our framework includes a suite

of training data assessment tools. To classify land cover, we employ a spanning tree ap-
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proximation to a lattice Potts prior to incorporate spatial relationships in a judicious way

and more efficiently access the posterior distribution of pixel labels. We then achieve exact

inference of the labels via the centroid estimator. To detect land cover changes, we develop

a new EM algorithm based on the same parametric model. We perform simulation studies

to validate our models and methods, and conduct an extensive continental scale case study

using MODIS data. The results show that we successfully classify land cover and recover

the spatial patterns present in large scale data. Application of our change point method

to an area in the Amazon successfully identifies the progression of deforestation through

portions of the region.
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Chapter 1

Introduction

1.1 Motivation

Interaction with and manipulation of the surface of the Earth necessitates an understanding

of the processes and environments potentially affected. Understanding of global and local

systems in both the biosphere and the atmosphere, as well as how they interact, continues

to grow in importance as a foundation for resource management and land-use policies.

The role of humans as members of many of Earth’s ecosystems and contributors to many

others has become less difficult to study in recent decades. Multitemporal, remotely sensed

data of the entire Earth has become ubiquitous and with certain technological advances

during the 1990s, continental and global scale land cover was mapped for the first time

using remotely sensed data [21, 22, 47, 66, 105]. As newer remote sensing data sources

have emerged (e.g. MODIS, SPOT-VEGETATION, MERIS), beyond older sensors such

as AVHRR and Landsat, resulting data sets have grown in spectral, temporal, and spatial

resolution. To continue informing Earth system models [8, 27, 94, 104] and providing Earth

scientists with an accurate picture of global land cover, methods for land cover classification

and change detection need to adapt to and mirror the sophistication of remote sensing data

and technology.

The processes of land cover classification and change detection both involve a series of

procedures built to deal with missing data, perform some sort of data compression, and

finally conduct land cover inference. Therefore, attempts at these particular Remote Sens-

ing tasks necessarily pursue a full analysis pipeline to overcome all of these obstacles. The
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Figure 1.1: MODIS tile map.

contributions detailed throughout this document comprise a series of models and methods,

which addresses each one of these sub-issues in a novel way. We aim at computationally

feasible and yet representative approach which results in a pipeline that can be applied to

these two problems in a number of ways. Before we review existing approaches to these

problems, the following section introduces the nature of our data.

1.2 The Data

We focus our attention on a fairly new sensor launched aboard the Terra (1999) and Aqua

(2002) spacecraft, called MODIS (Moderate Resolution Imaging Spectroradiometer). This

instrument images the entire surface of the Earth every 1-2 days in 36 spectral bands

at three different spatial resolutions: 250 meter, 500 meter, and 1,000 meter [1]. Thus,

we possess land surface data at roughly 1.8 billion pixels world-wide for around 11 years.

Figure 1.1 shows the globe broken down into MODIS tiles. MODIS tiles can be used to

partition analysis of the surface of the Earth into more manageable sub-problems, with the

caveat that tile boundaries can persist into analysis results.

A host of issues plague these raw data such as noise, atmospheric contamination, and

variable view geometry. Our collaborators made a series of decisions in pre-processing
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Table 1.1: MODIS bands 1-7 (land bands) [1].

Band Range (nm) Key Use

1 620-670 Absolute Land Cover Transformation, Vegetation Chlorophyll

2 841-876 Cloud Amount, Vegetation Land Cover Transformation

3 459-479 Soil/Vegetation Differences

4 545-565 Green Vegetation

5 1230-1250 Leaf/Canopy Differences

6 1628-1652 Snow/Cloud Differences

7 2105-2155 Cloud Properties, Land Properties

these data to circumvent these issues, consistent with traditional methods and approaches

as we will see in the next section. We use the MODIS 500 meter Nadir BRDF-adjusted

Reflectance (NBAR) product, which is designed to minimize noise due to bidirectional

reflectance effects arising from varying solar and view geometry [95]. Additionally, we

composite the daily data to 8-day weekly observations. For the purposes of land cover

inference, we restrict our attention to the 7 MODIS land bands given in Table 1.1.

We begin work with a multispectral, multitemporal observation (7 spectral values

recorded at 46 times points) at each pixel, for each year in our dataset. Land cover

classification and detection of changes in land cover require a scheme of land cover classes

which encompasses all major land cover types. We employ a carefully established set of

land cover classes constructed under the International Geosphere-Biosphere Programme

(IGBP) [18]. According to the IGBP this collection of land cover classes “was chosen to be

exhaustive,” mutually exclusive, and “structured so that [they] were equally interpretable

with 1 km data.” Detailed information about these land cover classes can be found in

Table 1.2 with a corresponding color legend in Figure 1.2. In the interest of brevity, the

land cover class numbers in Table 1.2 will be used in lieu of the actual names in plots

throughout the remainder of this document.

The following two sections describe the most recently used approaches to land cover

classification and change detection respectively, and involve explicit handling of each of the

aforementioned sub-problems.
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Figure 1.2: International Geosphere-Biosphere Programme (IGBP) land cover color
scheme.

1.3 Previous Work

Were we sitting alongside MODIS, circling the Earth, the northeast portion of North

America might look like the image in Figure 1.3 (without large water bodies masked out).

The tasks of land cover classification and change detection involve analysis of the data

at the pixels in such images. In the case of classification, we aim to produce a map with

each pixel colored according to a discrete set of land cover labels (see Figure 1.4).

The remainder of this document outlines the ways in which we move from Figure 1.3 to

Figure 1.4. The next two sections detail the “state-of-the-art,” currently employed methods

for classifying land cover and detecting change.
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Figure 1.3: True color composite of northeast portion of North America.

Figure 1.4: Example of land cover map of northeast portion of North America.

MODIS Collection 5 Land Cover Product [32]

The two previous MODIS land cover products, dubbed Collection 4 and Collection 5, ben-

efit from a rich history of land cover classification efforts throughout the past 20-30 years.

In an effort to take advantage of some of the improved Remote Sensing capabilities afforded

by MODIS, our collaborators set out to establish a pipeline that could be reliably used to

classify land cover from data with high temporal resolution and low spatial resolution.

The process begins with the establishment of high quality training data to be used in

a supervised classification algorithm. Training sites are defined using Landsat or higher
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resolution imagery via manual interpretation. These sites can range in size from 1 to

376 pixels, and are constructed to homogeneously represent one IGBP class. Because

the frequency distribution land cover classes across Earth’s land areas is not uniform and

because certain classes exhibit more variability than others, the training data do not contain

an equal amount of sites from each land cover class. These sites, along with previously

defined sites, contribute to a MODIS land cover training site database whose maintenance

and growth plays a crucial role in land cover analysis.

For the remainder of this section we will focus on the production of MODIS Collection

5. The original data consists of 8-day weekly, NBAR reflectance values [95] of MODIS

bands 1-7, land surface temperature [116], and the enhanced vegetation index (EVI)[53].

These data are aggregated to 32-day averages to reduce data volume and the prevalence of

missing values. The final input to the classification algorithm consists of these averages as

well as annual metrics (minimum, maximum and mean values) for the NBAR bands, land

surface temperature, and EVI for a grand total of 135 features for each pixel in a given

year.

Decision tree algorithms detailed in [87] (C4.5) provide a robust way of performing

classification while coping with missing data. However, if the number of missing features

at a pixel exceeds 84, the pixel is not classified. Instead the pixel is assigned the most recent

Collection 5 label (since this product consists of labels per pixel, per year) or Collection 4

label (if the problem persists). Two assumptions of the ensemble decision tree algorithm

contribute to the need for post-classification adjustments: 1) that the distribution of the

training data is representative of the population, and 2) that the features are able to

distinguish the classes in the training data. Violations of the first assumption result from

the inability of the training site database to completely capture the complete range of

variability in the land cover classes. Ambiguous class definitions, as seen in Table 1.2, and

low spectral-temporal separability of many classes breaks the second assumption.

To overcome these two issues, the class-conditional probabilities estimated by the

boosted decision trees are adjusted in multiple ways. First, to correct the sample bias
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associated with the limitations of the training site database the class conditional probabili-

ties are multiplied by prior probabilities defined to be inversely proportional to the number

of training samples in each class. Second, inadequate class separability is addressed by

applying a set of spatially explicit prior probabilities. Friedl et al. use previous land cover

products and cropping intensity [89], with a moving window algorithm to compute the

regional proportion of each class, and estimate these second prior probabilities for each

pixel. To minimize the influence of these spatial priors, a tuning parameter, c ∈ [0, 1],

controls how heavily the prior probabilities, P (i) for class i, get weighted with respect to

an original prior P0(i):

P (i) = P0(i) + (1− P0(i))× (1− c). (1.1)

These get normalized to sum to 1 after using c. The Urban, Wetlands, and Deciduous

Needleleaf Forest classes continue to be problematic even after the post-classification ap-

plication of priors. If the posterior probability of Deciduous Needleleaf Forest does not

exceed 0.7 then the next most likely class gets assigned. Similarly, if the posterior proba-

bility of Wetlands does not exceed 0.75 then the next most likely class gets assigned. Later,

in Section 3.3.2, we discuss our ability to formally adjust for these problematic classes using

confusion (gain) matrices in the posterior inference. The urban class was mapped using

an ecoregion-based stratification with eighteen strata, where training data and supervised

classifications were developed and tuned to each stratum. Finally, the classification re-

sults get stabilized across years. That is, if the pixel label in a given year differs from the

previous year then the new label is only assigned if its posterior probability exceeds the

probability associated with the previous year’s label. They carry out this final adjustment

using three-year windows.

The execution of this pipeline produces reasonable and accurate maps of land cover.

However, a host of items warrant attention and further effort. The aggregation of spectral

features to monthly values represents a major sacrifice of potentially important temporal
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information. Missing data does not receive formal attention outside of the aggregation of

features. The classification method, decision trees via the C4.5 algorithm, not only exhibits

excessive sensitivity to training data warranting post-classification adjustments, but assigns

labels to pixels independent of the information at or labels of neighboring pixels. Spatial

information contributes to the final classification, only in the form of previous land cover

products and cropping intensity. In Section 1.4 we enumerate our novel approaches to

these key issues.

Distance Metric-Based Change Detection [51]

Change point detection describes a broad class of problems involving some process we wish

identify a change in. In Remote Sensing, land cover change detection can still take many

forms. With more than 12 years of global observations from MODIS, Huang and Friedl

aim to take advantage of this fairly new data source in an attempt to identify areas of

Evergreen Broadleaf Forest which have changed in some way such as burned, logged, or

converted to cropland. They build an analysis pipeline to detect change at the scale of

years that begins with data pre-processing.

Training data summarizing the assumed pre-change class of Evergreen Broadleaf Forest

comes, again, from the MODIS training site database. In this work, 8-day weekly observa-

tions of MODIS band 7 and EVI2, a second slightly different enhanced vegetation index,

from May through September constituted the data at each pixel per year. Even after sub-

setting the full MODIS data at each pixel, in a given year, down to 38 (2 spectral features

at 19 times points) features there still exists missing data.

For each missing value, they first searched for ’candidate’ fill values on the same date

from nearby pixels of the same class. If suitable pixels were not found, the search window

was expanded until suitable fill values were found. The median of high quality candidate

values was then used to fill the data gap. If gap-filled values differed substantially from

current and previous year time series, they were replaced using interpolation. A ’despiking’

procedure was then applied to eliminate sudden changes in all values at each pixel. Finally,
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a 3-point median filter was applied to further reduce noise.

With missing data addressed they proceed to identify change in a year for a given pixel

using two distance metrics: 1) distance from its assumed land cover class in each year

and 2) distance between preceeding and following year time series. The first, within-class

distance, constitutes a Mahalanobis distance [72]. They then proceed to test and establish

distance thresholds. With these set, change detection was performed on a per pixel basis

and when the thresholds were exceeded a pixel was flagged as ’potential change.’ Changed

pixels were required to exceed the selected thresholds in two consecutive years, and the

timing of the change was defined as the first year when the pixel was flagged.

This method successfully mapped regional forest change in the Xingu River Basin in

Mato Grosso, Brazil and in the Pacific Northwest region of the United States. However, this

series of procedures contains some user-defined components that do not lend themselves

to easy and interpretable adjustment. For example, the distance thresholds used and the

requirement of 2 consecutive ’potential change’ flags could depend on the type of changes

being analyzed, the assumed pre-change class, or the region of interest. In Section 1.4 we

propose an approach to change detection that builds on the machinery established for land

cover classification and is well suited for conversion from one land cover class to another.

The two aforementioned pipelines for land cover classification and change detection

have evolved from numerous attempts in the field of Remote Sensing, but a number of

more general, statistical techniques have been brought to bare in other ways. While we

also propose a pipeline, we put forth new methodologies and methods that each carry

new contributions to Statistics. The next section reviews the relevant literature for each

sub-problem of these analysis pipelines, and then introduces our novel contribution.

1.4 Novel Contributions

Statistically, land cover classification and change detection attracts a great deal of attention

and a number of tools, both novel and well-studied. Despite being a classic problem,
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classification and change detection here involve three significant challenges: large data,

spatio-temporal structure, and missing data as we saw in Section 1.1. To overcome these

challenges and successfully classify land cover and detect changes, we employ a series of

models and methods which provide physically satisfying and interpretable results with an

eye toward computational efficiency.

Our first reduction in the size of the data comes from the decision to trim the ends of

the year off. While we ultimately plan to produce global land cover maps, our regions of

interest in this document will live in the northern hemisphere. Because the ends of the

year, or winter months, contain extra amounts of noise and missing data we focus our

attention on the middle 28 time points (or 60%) of the year.

Parametric Model

Traditional maximum likelihood approaches to land cover classification [108, 65, 56, 113, 60]

often assume that the data at a given pixel, Xv, are multivariate normal (1.2) conditional

on the land cover class at pixel v, θv.

Xv | θv = c
ind∼ N(µc,Σc) (1.2)

More specifically, given the land cover class of a particular pixel v, θv, the data at pixel

v, Xv, has a multivariate normal distribution with a class-specific mean and covariance.

We propose a novel refinement of this model (Chapter 2) in the form of a Kronecker

structure covariance (1.3), unprecedented in the Remote Sensing literature. Because these

data consist of two distinct dimensions, spectral and temporal, models that can exploit this

structure will yield increased interpretability and potentially simpler estimation procedures.

To this end we model the single-year, spectral-temporal data at pixel v as a matrix, Xv,

with the rows representing bands and the columns representing time points:

vec(Xv) | θv
ind∼ N(vec(µc),Σs ⊗ Σt,c) (1.3)
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where ⊗ denotes the Kronecker product and vec(Xv) denotes the vectorization of the

matrix Xv. This Kronecker structure naturally fits the spectral-temporal structure of the

data and represents a reduction in the number of model parameters from (1.2). Because

seasonal variation is a first-order property that helps to distinguish many land cover classes,

multitemporal information provides critical information that our model isolates.

More generally, the Kronecker covariance structure has been explored in many other

situations. Multivariate repeated measures data, for example, provides this type of frame-

work [7, 80, 92, 93]. That is, the response variables and time are two separate dimensions

of the data that can be characterized independently. Thus, a straightforward way to model

the full covariance is via the Kronecker product of a covariance of the responses and a

covariance of time. Similarly, multivariate time series of other types such as longitudinal

data [13, 38] and spatio-temporal data [97, 36] lend themselves to this kind of covariance

decomposition. To this end, classic work has been done on parameter estimates for the

matrix normal distribution [19, 25, 101, 102, 3].

Because of the reduction in parameters it represents, the Kronecker structure and

linear combinations of Kronecker structure matrices have been used to approximate high-

dimensional covariances [110]. Dubbed the “ML flip-flop algorithm,” the approach es-

tablished in [25] has become a standard way to estimate a covariance with a Kronecker

structure. Convergence studies in [111] confirm the usefulness of available algorithms, but

people persist in developing faster, non-iterative methods of estimation [117]. While maxi-

mum likelihood estimates have been derived along with tests of whether a covariance matrix

has this structure, the issue of missing data in this context has not been fully addressed.

Work by Allen and Tibshirani [3] treats a specific variation of this problem as an applica-

tion of variance selection. Key differences include constraints they impose on the mean,

µ, and the number of observations used to estimate the parameters. Additionally, work

in [64] attempts to estimate a Kronecker structure covariance in the presence of missing

values, but focuses on estimation of the overall covariance instead of the two components.

Because we plan to target Σ̂s with principal components analysis, we need to estimate
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the individual components of the Kronecker structure (i.e. the parameters of the matrix

normal distribution). For this we derive a statistically novel expectation-maximization

(EM) algorithm [23] to estimate the parameters of this model, in the presence of missing

data, using training data from the System for Terrestrial Ecosystem Parameterization

(STEP) database [79] (Chapter 2.2).

Missing Data Imputation

Clouds, snow and other disruptive phenomena prevent clean, high quality images of the

Earth’s surface. As a result, missing values exist throughout all MODIS data. In the pre-

vious section we mentioned the implementation of an EM procedure to estimate the matrix

normal parameters in the presence of missing data. Ideally, we could use an EM on all

data to infer the land cover labels, again treating the missing data as latent. However, the

iterative nature of this classification method and size of the data make it computationally

prohibitive.

Though expectation-maximization iterates between optimizing two things, in the case

of the previous section parameter estimates and missing data values, we restrict our use

of this procedure to estimation of the model parameters. The reason being, imputation

of missing data via this procedure could only work for training data. We need a way to

handle missing data in every pixel we wish to analyze. In Remote Sensing, some typical

procedures include compositing of multiple dates of data, interpolation, or other ad-hoc

gap-filling methods as described above in [32, 51]. To formally address the presence of

missing data in almost all pixels we therefore propose a pre-processing step to impute all

missing data before attempting classification.

With the matrix normal parameter estimates assumed known, we propose a statistically

novel way to impute missing data which incorporates information from the observed data

and all of the land cover classes. That is, we derive an EM algorithm which now treats the

pixel label as latent and estimates the missing data in an iterative fashion, for each pixel.
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Data Compression and Training Data Assessment

At this point in our data at a given pixel in a given year consists of a 7× 28 matrix with

the 7 MODIS land band values recorded at each of 28 times points during the middle 60%

of the year. The size of the data remains cumbersome, and so we seek to further reduce

its dimensionality. Principal components analysis (PCA) [58] provides an intuitive way

to identify linear combinations of features that contain large portions of variability in the

data.

Historically, people construct additional features such as EVI or annual metrics to

assist in land cover inference procedures. With the advent of hyperspectral data and other

high dimensional, Remote Sensing datasets, feature selection or reduction has become an

important part of any analysis pipeline. To this end, principal components analysis has

been used extensively to simplify the feature space both for classification and visualization

purposes [14, 78, 50, 90, 57, 26]. As a by-product of such an analysis, the first few principal

components can often be interpreted in terms of physical characteristics of a pixel [63].

Experts in the field attest to the correlation between spectral bands and the consequent

redundancy of information among them [17]. To isolate the most useful information present

in the data, in a lower dimensional space, we utilize a principal components analysis.

Because spectral variation transcends the differences between land-cover classes, we target

Σ̂s with PCA. The main novelty in our application of PCA stems from our targeting Σ̂s

as opposed to the full covariance. We still recover physically interpretable components

and decide to use the first three principal components instead of all 7 MODIS land bands

(Chapter 2.4)

Additionally, exploiting the increased interpretability of the matrix normal likelihood

and this application of PCA we develop a novel set of tools to assess the quality of training

data sites. In particular, we create a measure of training site homogeneity, an estimate of

training site composition, and a metric to describe the evidence that a pixel belongs to a

given training site (i.e. the training site membership of a pixel).
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Land Cover Classification

The problem of land cover classification has in some way eluded any effort made to conquer

it. The variety of classification schemes and data sources make it a very challenging task

to say the least. Whether a particular remote sensing instrument was built to map land

cover or not, the task inevitably gets attempted. Different spectral, temporal and spatial

resolutions unfailingly affect the classification results. The most popular methods applied

in recent years consist of supervised classification algorithms. People cite the complexity

of this high-dimensional, spectral-temporal data as reason for finding and using a host of

tools to enhance the classification procedure.

Traditional methods train a classifier on high quality data from diverse, but hope-

fully representative training sites. As mentioned above, previous maximum likelihood

approaches assume the data follow a multivariate normal distribution and merely classify

pixels independent of one another according to the land cover class with the highest like-

lihood. While these models performed well, they were eventually expanded to incorporate

prior information about the distribution of land cover classes [20, 76, 106]. This took the

form of simple, global prior probabilities being multiplied by the likelihood of the spectral

data at each pixel to produce posterior probabilities and classification via the maximum a

posteriori (MAP) estimator. These prior probabilities could represent the frequency distri-

bution of the classes in the training data, but were other times estimated using independent

data.

To take advantage of spatial information when performing classification, many people

utilized indicator kriging to estimate pixel-specific prior probabilities that incorporated

data from nearby pixels [42, 83, 43]. The traditional MAP estimators described above

could then take advantage of these spatially explicit prior probabilities.

While some of these previous likelihood based methods did not always assume a multi-

variate normal distribution, much of the recent literature tends toward the use of machine

learning techniques such as neural networks [2, 5, 44, 48] and decision trees [31, 33, 46, 81,
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35, 34] in order to escape from parametric assumptions that they believe may limit the

abilities to capture complex relationships within possibly multimodal data.

Despite being flexible and quick, techniques like decision trees can suffer from a sensi-

tivity to training data (e.g. overfitting); do not formally handle missing data; still require

a number of post-classification adjustments; and, perhaps most importantly, do not in-

clude spatial information when classifying pixels. Grander attempts exploit both spectral

and spatial information when performing land cover classification involve Markov Random

Fields [55] (MRF). Specifying a graphical model on the lattice of pixels in an image allows

for statistical inference of the pixel labels to take advantage of previously developed ma-

chinery in Statistical Mechanics. These methods specify some likelihood for the spectral

data and some cost associated with neighboring pixels being different land cover classes.

An energy function combines these two components of information for the entire lattice.

The set of pixel labels that minimizes this energy function corresponds to a global MAP

estimator. For a thorough application of this approach to remote sensing images, we refer

the reader to [77].

Because the lattice is highly connected and can be quite large, finding the set of pixel

labels that globally maximize the posterior is computationally intractable even for low

dimensions. Two classic, iterative approaches to minimizing the energy function of the

Markov Random Field are Iterated Conditional Modes (ICM) [6] and Simulated Annealing

(SA) [39, 107]. Simulated Annealing can converge, under certain assumptions, to the global

energy minimum but usually involves long computation times. Iterated Conditional Modes

is a deterministic method which does not usually take long to run, but only converges to

a local energy minimum and, as such, is very sensitive to starting values.

In this document we demonstrate two classification techniques. The first involves no

spatial information and classifies pixels independently via a MAP estimator which takes

advantage of our novel matrix normal likelihood and prior probabilities elicited from our

collaborators. The second involves building a hierarchical graphical model, not unlike

the MRF methods described above. Because of the previously mentioned computational
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intractability of the lattice in this Bayesian setting, we propose approximating the prior

distribution of labels on the lattice with a distribution on a minimally connected graph,

a spanning tree of the lattice. We derive a statistically novel EM algorithm for finding a

representative spanning tree to use during inference. With this tree in hand we conduct

exact posterior inference of the pixel labels via the centroid estimator [12], a novel estimator

in the field of Remote Sensing.

Change Point Detection

Though land cover classification comprises one of the largest problems in Remote Sensing,

another similarly significant problem consists of detecting changes in land cover. A host

of methods have been developed to address this challenge [67], from comparing the raw

spectral data to comparing land cover classification results of images at two different points

in time.

Change point detection methods have been applied extensively in various fields of envi-

ronmental and climate monitoring, to problems involving rates of Tropical cyclone activity,

precipitation and temperature trends, and fishery population regime change [28, 16, 91, 99].

In the field of Remote Sensing, various change detection techniques were developed using

bi-temporal or multi-temporal imagery for mapping changes including deforestation, forest

mortality, and urban expansion (see [98, 68]). As MODIS time series grow, more studies

have focused on better exploitation of the temporal information in MODIS data for change

detection [e.g., 114, 88, 52]. However, due to the nature of optical remote sensing (suscep-

tible to cloud and atmospheric contamination), it remains challenging to pre-process and

fully utilize the time series data. Methods that better address missing data and are robust

to noise are needed.

Statistically, the general change point problem can be broken down into on-line (real

time) [30] and off-line (retrospective) frameworks. Additionally, approaches to change point

detection typically involve specifying which types of change to look for. Previous methods

for detecting change vary by the following change types: mean-type shifts [96, 69], variance
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change [37], or distribution change [4, 61, 109, 100, 40]. Popular approaches include time

series models, purely likelihood-based methods, special forms of regression or Bayesian

techniques [9, 29, 75, 84, 103].

Most existing methods for change detection in the presence of missing data attempt to

impute or estimate missing data first and then proceed to identify changes [10]. Estimation

can proceed in a number of ways, including nearest neighbor interpolation, linear interpo-

lation, polynomial interpolation, or spline interpolation. Missing values can be imputed

using multiple imputation or, as we have already been exposed to, EM. Honaker and King

propose a way to impute missing data in time-series [49]. For a thorough review of handling

missing data in statistical analyses, we refer the reader to Rubin’s book [62].

We maintain our likelihood from (1.3) with the same set of IGBP land cover classes.

Our aim here consists of identifying which year, if any, constitutes a change point for each

pixel independently of other pixels. The high dimensionality of the parameters of (1.3)

and short time series prohibit the estimation of pre- and post-change model parameters

for all of the change years we want to consider. Consequently, we propose a method which

models conversion-type changes that does not rely so heavily on inference from the pixels

of interest. After estimating class-specific parameters for (1.3) we devise a model which

describes the pre- and post-change data in terms of our known land cover classes as opposed

to relying solely on inference about the pre- and post-change distributions from the data of

interest. We incorporate subject-matter knowledge about the number and locations of the

change points via prior distributions on these values and then estimate the change point

locations in the presence of missing data with another EM procedure. Chapter 4 contains

the details of our new approach and subsequent results.

Our aforementioned spectral-temporal model established, we develop a progression of

novel change detection algorithms which identify change points in the presence of miss-

ing data. The culmination of these approaches utilizes class parameter estimates based

on STEP training data and another EM procedure to detect conversion-type changes in

individual pixel time series.
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1.5 Summary of Contributions

Our land cover classification and change detection efforts will begin with the specification

of a parametric model that explicitly characterizes the spectral-temporal structure of our

data in a novel way. Because the presence of missing data presents a non-trivial issue to

overcome, we derive a novel EM algorithm for estimating model parameters (Sections 2.1

and 2.2) that accounts for missing data.

We derive a missing data imputation pre-processing step in Section 2.3 due to the

computational infeasibility of inferring land cover labels with an iterative EM procedure.

Section 2.4 describes our novel application of PCA to compress the data spectrally, resulting

in the use of physically interpretable components as opposed to the original, correlated

MODIS land bands. Taking advantage of the increased interpretability of our model, we

build novel measures of training data quality in Section 2.7. We present simulation and

case study results of our parameter estimation procedure, data compression method, and

these training data assessments in Section 2.5.

With high quality training data, we apply both independent pixel and hierarchical

graphical classification methods to imputed, transformed data in North America. We con-

duct exact posterior inference of land cover labels while incorporating spatial information

with a novel construction of a Potts prior on the lattice of pixels and use of the centroid esti-

mator in Chapter 3. We give classification results and comparisons in Sections 3.1.1, 3.4.2,

and 3.4.4.

Finally, derive a novel EM algorithm to identify conversion-type changes in Remote

Sensing time series in Section 4.3.1. We present simulation and case study results for this

change point detection technique in Sections 4.4 and 4.5.

Figure 1.5 gives a schematic of the unified analysis pipeline we develop here for the

tasks of land cover classification and land cover change detection.
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Table 1.2: Land cover class definitions within the International Geosphere-Biosphere Pro-
gramme.
CLASS CLASS NAME DESCRIPTION

1 Evergreen Needle-
leaf Forests

Lands dominated by trees with a percent canopy cover >
60% and height exceeding 2 meters. Almost all tree remain
green all year. Canopy is never without green foliage.

2 Evergreen
Broadleaf Forests

Lands dominated by trees with a percent canopy cover >
60% and height exceeding 2 meters. Almost all tree remain
green all year. Canopy is never without green foliage.

3 Deciduous Needle-
leaf Forests

Lands dominated by trees with a percent canopy cover >
60% and height exceeding 2 meters. Consists of seasonal
needleleaf tree communities with an annual cycle of leaf-on
and leaf-off periods.

4 Deciduous
Broadleaf Forests

Lands dominated by trees with a percent canopy cover >
60% and height exceeding 2 meters. Consists of seasonal
broadleaf tree communities with an annual cycle of leaf-on
and leaf-off periods.

5 Mixed Forests Lands dominated by trees with a percent canopy cover
> 60% and height exceeding 2 meters. Consists of tree
communities with interspersed mixtures or mosaics of the
other four forest cover types. None of the forest types ex-
ceeds 60% of landscape.

6 Closed Shrublands Lands with woody vegetation less than 2 meters tall and
with shrub canopy cover is > 60%. The shrub foliage can
be either evergreen or deciduous.

7 Open Shrublands Lands with woody vegetation less than 2 meters tall and
with shrub canopy cover is 10−60%. The shrub foliage can
be either evergreen or deciduous.

8 Woody Savannas Lands with herbaceous and other understorey systems, and
with forest canopy cover between 30−60%. The forest cover
height exceeds 2 meters.

9 Savannas Lands with herbaceous and other understorey systems, and
with forest canopy cover between 10−30%. The forest cover
height exceeds 2 meters.

10 Grasslands Lands with herbaceous types of cover. Tree and shrub cover
is less than 10%.

11 Permanent Wet-
lands

Lands with a permanent mixture of water and herbaceous
or woody vegetation that cover extensive areas. The vege-
tation can be present in either salt, brackish, or fresh water.

12 Cropland Lands covered with temporary crops followed by harvest
and a bare soil period (e.g. single and multiple cropping
systems). Note that perennial woody crops will be classified
as the appropriate forest or shrub land cover type.

13 Urban and Built-
Up

Lands covered by building and other man-made structures.

14 Cropland/Natural
Vegetation Mosaics

Lands with a mosaic of croplands, forest, shrublands, and
grasslands in which no one component comprises more than
60% of the landscape.

15 Snow and Ice Lands under snow and/or ice cover throughout the year.
16 Barren Lands exposed soil, sand, rocks, or snow and never has more

than 10% vegetated cover during any time of the year.
17 Water Bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either

fresh or salt water bodies.
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Figure 1.5: Schematic of our proposed analysis pipeline.
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Chapter 2

Likelihood Model and Parameter Elicitation

The first practical problem of interest here involves labeling an image domain pixel-wise

with a given set of discrete labels, S = {1, . . . , C}, which come from our IGBP scheme.

The data consists of multivariate (or matrix) observations at each pixel in the image. We

confine our view to a single year of data (7 spectral bands observed at 28 time points) when

performing land cover classification. In general, let P be a set of pixels in the image L

(denoted L because the array of pixels naturally form a square lattice) of size n = nr ×nc,

S = {1, . . . , C} a set of C labels, and for each node v ∈ P is defined as a set N(v) ⊂ P called

the neighborhood of v. The classification problem consists of assigning a label from the set

S to each node in the set of nodes, P . In pursuit of a Bayesian approach which incorporates

a priori knowledge and conducts land cover inference via a posterior distribution, we begin

by specifying a new parametric likelihood for the data.

For the data, Xv, given the land cover class, θv, at pixel v we specify

Xv | θv = c
ind∼ Matrix−N(µc,Σt,c,Σs) (2.1)

where Matrix-N denotes the matrix normal distribution. In (2.1), Xv and µc are matrices

with the rows and columns corresponding to the spectral bands and time points, respec-

tively. Here, then, Σt,c represents a class-specific temporal covariance or covariance of the

columns of Xv, and Σs represents a spectral covariance or covariance of the rows of Xv.
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The model in (2.1) is equivalent to specifying

vec(Xv) | θv
ind∼ N(vec(µc),Σs ⊗ Σt,c). (2.2)

In the sections that follow we derive an EM algorithm for estimating the parameters of (2.2)

in the presence of missing data. We then impute missing values and compress the data

in a physically interpretable way. The chapter concludes with simulation and case study

results for these methods.

2.1 Likelihood Model

Technological advances in recent decades have ushered in a new era in data management

and analysis. The dimension of data sets continues to grow alongside the number of ob-

servations. Consequently, the estimation of parameters or characteristics of these data

remains a significant challenge. Specifically, the covariance matrix of such high dimen-

sional data can be extremely difficult to estimate and handle. An increasingly common

simplification is the assumption that this covariance has a Kronecker product structure.

For our remotely sensed data we begin with N independent observations from a mixture

of matrix normal distributions,

Xi | θi = c
ind∼ Matrix−N(µc,Σt,c,Σs), i = 1, . . . , N, (2.3)

where Xi and µc are B×T matrices, Σs is B×B and Σt,c is T×T . The use of this structure

reduces the number of parameters by explicitly describing the covariance between the rows

and the covariance between the columns as opposed to an individual covariance in each cell

of the upper triangle of the full, BT ×BT , covariance matrix. Besides this simplification,

the partitioning of the covariance follows naturally from a setup involving two physical, or

separable, dimensions such as spectral (spectral bands) and temporal (time points) with

our remotely sensed data.
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In this model, two matrices will characterize class-specific temporal properties: a B-by-

T matrix that provides the mean spectral-temporal profile for each land cover class c (µc),

and an associated temporal covariance matrix (Σt,c, which is of order T .) The covariance

structure between spectral bands is captured by Σs (of order B.) Since spectral and tempo-

ral effects are orthogonal, the model requires fewer parameters; moreover, this separation

between spectral and temporal sources of variance allows dimensionality reduction to be

focused in the spectral bands, as detailed in Section 2.4. Because we want to isolate the

spectral and temporal sources of variation in our remotely sensed data, this matrix normal

distribution provides a natural choice for our data likelihood. Clouds and other physical

phenomena induce missing values in MODIS data, necessitating procedures that can prop-

erly accommodate missing data. To this end we derive an expectation-maximization (EM)

algorithm for estimating the parameters of the matrix normal distribution in the presence

of missing data.

2.2 Parameter Elicitation

Until Section 2.5 we will focus on estimating the parameters of a single matrix normal

distribution: µ, Σs, and Σt. For the sake of generality we will denote the order of Σs by p

and the order of Σt by q.

2.2.1 Parameter Estimation with Complete Data

It is straightforward to obtain maximum likelihood estimates of the parameters of a matrix

normal distribution when there is no missing data. If Xi
iid∼ Matrix − N(µ,Σc,Σs) then,

equivalently,

vec(Xi)
iid∼ N(vec(µ),Σs ⊗ Σc)

and so
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P(Xi;µ,Σc,Σs) = (2π)−
pq
2 |(Σs ⊗ Σc)

−1|
1
2

exp

−
1

2
vec(Xi − µ)>(Σs ⊗ Σc)

−1vec(Xi − µ)

.
As usual in multivariate normal densities, in the exponential term we have the Maha-

lanobis distance DΣ(Xi, µ), with Σ := Σs ⊗ Σc, between Xi and µ,

DΣ(Xi, µ)
.
= vec(Xi − µ)>(Σs ⊗ Σc)

−1vec(Xi − µ).

This distance can be worked through known identities of the vec operator and Kronecker

product to yield a simpler expression for the matrix normal density:

DΣ(Xi, µ) = vec(Xi − µ)>(Σs ⊗ Σc)
−1vec(Xi − µ)

(i)
= vec(Xi − µ)>(Σ−1

s ⊗ Σ−1
c )vec(Xi − µ)

(ii)
= vec(Xi − µ)>vec[Σ−1

c (Xi − µ)Σ−1
s ]

(iii)
= tr

[
(Xi − µ)Σ−1

c (Xi − µ)>Σ−1
s

]

= tr

[
Σ−1
s (Xi − µ)Σ−1

c (Xi − µ)>

]

where (i), (ii), and (iii) are applications of identities (488), (496), and (497) in [85], respec-

tively. Furthermore, since

|(Σs ⊗ Σc)
−1| = |Σ−1

s |p|Σ−1
c |q

by identity (492) in [85], we recover the characterization of [101]: Xi ∼Matrix−N(µ,Σc,Σs)

if and only if the density of Xi is given by

P(Xi;µ,Σc,Σs) = (2π)−
pq
2 |Σs|−

q
2 |Σc|−

p
2
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exp

−
1

2
tr

{
Σ−1
s (Xi − µ)Σ−1

c (Xi − µ)>

}. (2.4)

The log likelihood of the parameters Θ = (µ,Σs,Σc) is then

logP(X1, . . . , Xn; Θ) =
∑
i

logP(Xi; Θ)

=
pN

2
log |Σ−1

c |+
qN

2
log |Σ−1

s | −
N

2
log σ2 − 1

2σ2

∑
i

DΣ(Xi, µ) (2.5)

up to a normalizing constant. The form in (2.4) simplifies the matrix derivatives of (2.5)

considerably leaving us with the following maximum likelihood estimates (MLEs):

µ̂ =
1

N

N∑
i=1

Xi

Σ̂c =
1

pN

N∑
i=1

(Xi − µ̂)>Σ̂−1
s (Xi − µ̂)

Σ̂s =
1

qN

N∑
i=1

(Xi − µ̂)Σ̂−1
c (Xi − µ̂)>

(2.6)

The two covariance estimates depend on each other and thus their estimates must be

computed in an iterative fashion until convergence.

Handling non-identifiability

If for any κ 6= 0 we define Σ̃c := κΣc and Σ̃s := Σs/κ then Σ̃s⊗ Σ̃c = Σs⊗Σc, and so both

estimates yield the same overall covariance matrix. To resolve this non-identifiability issue

we propose the following amendment to the model:

vec(Xi) ∼ N(vec(µ), σ2Σs ⊗ Σc) (2.7)
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and require that (Σc)11 = 1 and (Σs)11 = 1 (the choice of the top-left entry is arbitrary.)

In this way we fix the scale of Σc and Σs, and estimate the scale of the overall covariance

in σ2.

The MLE of σ2 is

σ̂2 =
1

pqN

N∑
i=1

(Xi − µ̂)>(Σ̂s ⊗ Σ̂c)
−1(Xi − µ̂)

and depends on the other estimates. The MLE for µ is clearly the same as in (2.6) since we

only changed the variance of the model. However, since the variance scale is now captured

by σ2 we need to scale the MLEs for Σc and Σs by their top-left entry at each iteration: if

Σ̂∗c and Σ̂∗s are the estimates from (2.6) for Σc and Σs, then the respective MLEs for (2.7)

are Σ̂c = Σ̂∗c/(Σ̂
∗
c)11 and Σ̂s = Σ̂∗s/(Σ̂

∗
s)11.

Finally, we remark that, according to [102, Theorem 3.1], if N > max(p, q) then the

maximum likelihood estimates are unique.

2.2.2 Parameter Estimation with Missing Data

Estimation of the parameters in (2.7) is challenging because surface reflectance data from

MODIS include significant proportions of missing values, which are largely caused by clouds

(especially in the tropics) and large solar zenith angles at high latitudes. Missing data

presents a difficult, albeit well-studied challenge in parameter estimation. Traditional

methods, such as the EM algorithm, can usually handle missing data in a straightfor-

ward way. As the dimensionality increases, as in our case, the method can become quite

computationally expensive. Naturally, we aim to assess different ways of achieving accu-

rate parameter estimates with an eye towards reducing computation time. In the following

section we derive and EM algorithm for obtaining parameter estimates in the presence of

missing data. We assume that data is missing at random.
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EM Algorithm for Matrix Normal Distribution

In the situation where missing data exists the EM algorithm is a convenient way to estimate

the parameters Θ = (µ,Σc,Σs, σ
2) in (2.7). Let us denote the data at a single pixel by

X = (Y, Z) where Z is the missing portion of X and Y is the observed portion of X. For

the E-step, we need:

Q(Θ; Θ(t))
.
= EZ |Y ;Θ(t) [logP(X1, . . . , Xn; Θ)]

=
pN

2
log |Σ−1

c |+
qN

2
log |Σ−1

s | −
N

2
log σ2 − 1

2σ2

∑
i

EZ |Y ;Θ(t) [DΣ(Xi, µ)],

while the M-step updates Θ by maximizing Q,

Θ(t+1) .
= arg max

Θ
Q(Θ; Θ(t)),

via matrix differentiation in our case.

The Mahalanobis distance obeys a Pythagorean relationship: if µ̃
(t)
i := EZ |Y ;Θ(t) [Xi],

then

EZ |Y ;Θ(t) [DΣ(Xi, µ)] = EZ |Y ;Θ(t) [DΣ(Xi, µ
(t)
i )] +DΣ(µ

(t)
i , µ).

From here the update for µ follows from ∂Q/∂µ = 0:

µ̂(t+1) =
1

N

N∑
i=1

µ̃
(t)
i ,

similarly to the plain MLE case in (2.6).

Updating Σc, Σs and σ2 requires a bit more work. To this end we focus, first, on the
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following term:

Ri(Θ; Θ(t))
.
= EZ |Y ;Θ(t) [DΣ(Xi, µ

(t)
i )]

= E

[
tr[(Σs ⊗ Σc)

−1vec(Xi − µ̃(t)
i )vec(Xi − µ̃(t)

i )>]

]

= tr

[
(Σ−1

s ⊗ Σ−1
c )E[vec(Xi − µ̃(t)

i )vec(Xi − µ̃(t)
i )>]︸ ︷︷ ︸

V
(t)
i

]
.

where we define the expected outer product

V
(t)
i

.
= EZ |Y ;Θ(t) [vec(Xi − µ̃(t)

i )vec(Xi − µ̃(t)
i )>].

To get the partial derivatives of Q with respect to Σc we need

∂Ri

∂(Σ−1
c )kl

= tr

{
∂

∂(Σ−1
c )kl

[(Σ−1
s ⊗ Σ−1

c )Vi]

}

= tr


Σ−1

s ⊗
∂Σ−1

c

∂(Σ−1
c )kl︸ ︷︷ ︸
Skl

Vi


where Skl is the structure matrix [85] of a symmetric matrix, that is, Skl = [δik·δjl+δil·δjk]ij .

Thus, (Σ−1
s ⊗ Skl) is a block matrix.

We can now look at Vi as a q× q block matrix where each element is a p× p matrix in

the following way, for example:

b

Vi,kl =



◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦ • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦ • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦ • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦


b′

(2.8)
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So the matrix Vi being a block matrix leads to Vi,kl being a symmetric p × p matrix

with zeros at the entries corresponding to non-missing data in (2.8) (empty circles) and

CovZi |Yi(Zkb, Zlb′) at the entries corresponding to missing entries (filled circles). Thus,

∂Ri
∂(Σ−1

c )kl
= tr[Σ−1

s (Vi,kl + V >i,kl)]

=
∑

b,b′∈miss(k,l)(Σ
−1
s )b,b′CovZi |Yi,Θ(t) [Zkb, Zlb′ ].

Here miss(k, l) are the row-column pairs for which there are missing entries in Vi, and Vi,kl

is the p× p block submatrix of Vi from rows (k− 1)p+ 1 to kp and columns (l− 1)p+ 1 to

lp. Note that ∂Ri/∂(Σ−1
c )k,l does not depend on Zi. Moreover, the conditional covariances

in VarZi |Yi,Θ(t) [Zi] above can be obtained by applying the SWEEP operator [41] to the

rows of Σ−1
s ⊗ Σ−1

c that correspond to missing values.

Thus, from solving ∂Q/∂(Σ−1
c ) = 0, we have

Σ̂(t+1)
c =

1

σ̂2(t)pN

∑
i

 ∂Ri

∂Σ−1
c

+ (µ̃
(t)
i − µ

(t))>Σ−1(t)

s (µ̃
(t)
i − µ

(t))

. (2.9)

Similarly, for Σ̂s,

Σ̂(t+1)
s =

1

σ̂2(t)qN

∑
i

 ∂Ri

∂Σ−1
s

+ (µ̃
(t)
i − µ

(t))Σ−1(t)

c (µ̃
(t)
i − µ

(t))>

. (2.10)

Finally, for σ2,

σ̂2(t+1)
=

1

pqN

∑
i

Ri + vec(µ̃
(t)
i − µ̂

(t))>(Σ̂(t)
s ⊗ Σ̂(t)

c )−1vec(µ̃
(t)
i − µ̂

(t)). (2.11)

Just as in the last section, we normalize these covariance estimates by their upper-left

entry; i.e. fixing (Σ̂c)11 = 1 and (Σ̂s)11 = 1. The algorithm for this EM procedure can be

seen in Algorithm 1, with R code included in the supplementary material. In Algorithm 1

we denote by ◦ the Hadamard (element-wise) product. We further denote by A[ms(i)] the
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Algorithm 1: Matrix Normal Expectation-Maximization

Initialize: µ(1) ← 0p×q; Σ
(1)
c ← Iq; Σ

(1)
s ← Ip;

for t← 1, . . . (until convergence) do

µ(t+1) ← 0p×q; Σ
(t+1)
c ← 0q; Σ

(t+1)
s ← 0p;

for i← 1, . . . , n do
// Initialize missing entry indices and conditional covariance:

Set miss(i) as the indices of missing entries in the i-th observation;
Set ms(i) and mc(i) as the row and column indices of the entries in miss(i);

SWEEP the miss(i) rows of R = Σ−1(t)
c ⊗ Σ−1(t)

s ; // Compute VarZi |Yi [Xi]

// Set auxiliary variables:

Xm ←
[

Yi
µ(t)[miss(i)] +R[−miss(i),miss(i)]>(Yi − µ(t)[−miss(i)])

]
;

// EZi |Yi [Xi]

Rm ← R[miss(i),miss(i)];

Ss,m ← Σ−1(t)
s [ms(i),ms(i)];

Sc,m ← Σ−1(t)
c [mc(i),mc(i)];

// Update:

µ(t+1) ← µ(t+1) +Xm;

Σ−1(t+1)

c ←
Σ−1(t+1)

c + e(mc(i))
> · (Rm ◦ Sc,m) · e(mc(i)) + (Xm−µ(t))>Σ−1(t)

s (Xm−µ(t));

Σ−1(t+1)

s ←
Σ−1(t+1)

s + e(ms(i))
> · (Rm ◦ Ss,m) · e(ms(i)) + (Xm−µ(t))Σ−1(t)

c (Xm−µ(t))>;

σ2(t+1) ← σ2(t+1)
+
∑

j vec(Rm ◦ Sc,m ◦ Ss,m)+

tr(vec(Xm − µ(t))>(Σ−1(t)
s ⊗ Σ−1(t)

c )vec(Xm − µ(t)));

end

// Scale:

µ(t+1) ← µ(t+1)/n;

Σ
(t+1)
c ← Σ

(t+1)
c /Σ

(t+1)
c,11 ;

Σ
(t+1)
s ← Σ

(t+1)
s /Σ

(t+1)
s,11 ;

σ2(t+1) ← σ2(t+1)
/(nBT );

end
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rows of A indexed by ms(i), and by A[−ms(i)] the rows of A there are not in ms(i). A

similar notation is used to subset columns based on index sets.

In the context of land cover classification the likelihood for the data at pixel v actually

takes the following form:

vec(Xv) | θv = c ∼ N(vec(µc), σ
2
cΣs ⊗ Σc). (2.12)

As alluded to before, the mean profile µc and the temporal covariance Σc characterize class

specific information. Because we revised the model to handle non-identifiability, the scale

of the covariance (σ2) will also depend on the land cover class. We use training data,

independent of the image of interest, to estimate the parameters in (2.12) prior to the label

assignment procedure.

2.3 Missing Data Imputation

Ideally, we could obtain posterior probabilities of the pixel labels using

P(θv |Xv) =

∫
P(θv, zv)dzv. (2.13)

Because integrating out the missing values this way is infeasible, we could obtain a pixel

label by approximating (2.13) with an EM algorithm with the following M-step where we

condition on the observed data, Yv:

θ(t+1)
v = arg max

θ
EZv |Yv ,θ(t) [log(Xv; θ

(t))] (2.14)

Performing classification in this way remains computationally prohibitive due to the

tedious, iterative nature of this approach. To alleviate a portion of the computational

burden associated with classifying pixels while accounting for missing data, we propose a

pre-processing step to impute missing values. A one-time imputation pre-processing step

enriches our data and allows for an independent choice of classification method should we
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desire it. Using the estimates for the parameters in (2.7), we derive a second expectation-

maximization procedure for imputing the missing values in each pixel. This procedure will

impute missing data for each pixel independent of the other pixels in the image and in

the pre-established Bayesian vein, utilizes a prior distribution on the land cover classes,

P(θv). Treating the pixel label, θv, as latent we compute an update for the missing data,

Zv, for pixel v and iterate until convergence. Let us again denote the data at pixel v by

Xv = [Yv Zv ].

Using the likelihood in (2.7) along with the global prior h (P(θv = l) = hl) we have the

following E-step:

Q(Z,Z(t)) = Eθ |Y,Z(t) [log(
∏
v

∏
l(P(Xv | θv = l)P(θv = l))I(θv=l))]

=
∑

v

∑
l P(θv = l |Y,Z(t)

v )Eθ |Y,Z(t) [logP(Xv | θv = l)] + P(θv = l |Y,Z(t)
v ) log hl

=
∑

v

∑
l P(θv = l |Y,Z(t)

v ) ·

 logP(Xv | θv = l) + log hl


Let Σl = σ2

l · (Σs ⊗ Σt,l). Then the derivative of Q(Z,Z(t)) with respect to Z is

∂Q(Z,Z(t))

∂Zv
= −

∑
l

P(θv = l |Y, Z(t)) ·

(Σ−1
l )>Y Z(Y − µl,Y ) + (Σ−1

l )ZZ(Z − µl,Z)

.
With some algebra we arrive at our corresponding M-step:

Z(t+1)
v =

[∑
l

P(θv = l |Yv, Z(t)
v )(Σ−1

l )zz

]−1 [∑
l

P(θv = l |Yv, Z(t)
v )(Σ−1

l )zz ·(
µl,zv − (Σ−1

l )−1
zz (Σ−1

l )>yz(Yv − µl,yv)
)] (2.15)

While the imputation of missing data involved computing posterior probabilities, P(θv =

l |Yv, Z(t)
v ), we did not utilize these to make inference of the pixel labels. We will, however,

make use of them later in Section 2.7 to assess the quality of training data. With the
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observation at each pixel completed with this imputation, we proceed to further address

the size of the data.

2.4 Data Compression

Land cover classification has been approached in many different ways for quite some time.

Traditionally, principal components analysis has been used to reduce the dimensional-

ity of the data. However, usually all spectral-temporal features are considered distinct

features. Consequently, spectral and temporal variation cannot be isolated from an eigen-

decomposition of the full (Σs ⊗ Σc) covariance matrix, as required from PCA.

We ultimately seek labels for pixels across the globe, roughly 1.8 billion pixels. Due

to significant correlation between the 7 MODIS land bands and a desire to further reduce

the dimensionality of the data, we envision utilizing a small combination of the spectral

features that possess most of the variation in the data. To isolate the most useful infor-

mation present in the data, in a lower dimensional space, we pursue a special application

of principal components analysis. Because spectral variation transcends the differences

between land-cover classes (our C labels), we target Σ̂s with PCA, as opposed to the entire

model covariance.

Because seasonal variation is a first-order property that helps to distinguish many land

cover classes (e.g., deciduous broadleaf forests), multitemporal information is important

for land cover classification. Thus, here we target multicollinearity in spectral bands for

reducing feature dimensionality. Specifically, because of the variance structure in (2.7),

it is possible to eigen-decompose only Σs (the spectral band covariance). In doing so,

our goal is to isolate linear combinations of bands that maximize spectral information and

minimize correlation between spectral bands, while at the same time retaining the variance

associated with temporal dynamics in the original data. Let P be the B × K matrix of

eigenvectors of Σ̂s. Then, using K < B principal components (PC)

Xv,pc = P TXv
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and the covariance matrix becomes

(P TΣsP )⊗ Σc,

where the transformed observation Xv,pc is a K × T matrix. Therefore, with µc,pc
.
=

P Tµc (the PC transformed mean) and Σs,pc
.
= P TΣsP (the PC transformed band variance

matrix—a diagonal matrix with the eigenvalues of Σs on the diagonal) the model in (2.12)

becomes:

vec(Xv,pc) | θv = c ∼ N(vec(µc,pc), σ
2
cΣs,pc ⊗ Σc). (2.16)

This model reduces the dimensionality related to correlation among spectral bands while

retaining the variance associated with multitemporal patterns in the data. For the remain-

der of this document we will drop the pc subscript in (2.16) and refer only to the likelihood

in (2.12) under the assumption that the data has been imputed and transformed into the

space of the first K principal components. That is, X and µc will now be K×28 matrices.

The remote sensing results in Section 2.6 indicate that the first three (K = 3) principal

components capture most of the variation in the data.

2.5 Parameter Estimation Simulation Study

In this section we compare our derived EM procedure (“EM ”), in Algorithm 1, to two

other popular choices for parameter estimation in the presence of missing data. The first

approach (which we label “MM”) applies a maximization in two ways: (1) “imputation”

of missing values and (2) maximum likelihood parameter estimation. In particular, the

missing values get replaced by the most recent estimate of the mean in step (1). The

next iteration of mean and covariance estimates come from the same maximum likelihood

expressions in (2.6), with the addition of σ̂2, based on the fully imputed data. The ease

and simplicity of this method make it a natural first step in handling missing data, but also

hinder its robustness and ability to capture all of the uncertainty associated with missing
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data.

The second approach (“GEM”) applies the EM algorithm to the most general version

of the model. As opposed to estimating the parameters of (2.7), the EM algorithm provides

parameter estimates for the following model:

vec(Xi) ∼ N(vec(µ),Σ). (2.17)

These multivariate normal EM estimates have the same form of those found in [74]. This

approach does not simplify the original problem since it requires more parameters to be

estimated by not assuming the Kronecker structure. The simple form of (2.17) attracts

much attention, but its complexity far exceeds that of (2.7). Where sources of variation

in the data can be naturally partitioned, such as in space or time, the Kronecker structure

surpasses (2.17) in both interpretability and computational efficiency.

To empirically assess the model and algorithm, we simulated data from a matrix normal

distribution with randomly chosen parameters of dimensions: p = 3 and q = 5, and p = 3

and q = 7. Three sample sizes were used: 250, 500, and 1000. Four different proportions

of missing data were used: 5%, 10%, 15% and 20%. Data was simulated 100 times at each

combination of sample size and proportion of missing data to evaluate how the accuracy

of the estimates vary. The three different algorithms described above (MM , GEM , and

EM) were run in each of these combinations to provide a richer comparison. In order to

compare these methods, the covariance errors were always measured with respect to the

full (Kronecker product) covariance matrix.

The relative errors of the mean estimates across the three methods and the four different

proportions of missing data were consistently low, as seen in Figure 2.5. The methods differ

very little when it comes to the estimate of the mean, and so we focus on the variance

estimates. Indeed, the models and estimation procedure vary most when dealing with the

covariance matrix.

Figure 2.2 tells a rich story about how these three methods differ most. Since the MM
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Figure 2.1: Boxplots of the relative errors in the estimates of µ, in order of MM , GEM ,
and EM .
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Figure 2.2: Boxplots of the relative errors in the estimates of Σ, in order of MM , GEM ,
and EM .
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method essentially treats the imputed values as actual data and fails to account for all of the

uncertainty present, the errors for this method top all of those from the GEM and EM . As

the sample size increases the estimates appear to improve slightly, but the most interesting

feature lies in the difference between the GEM and EM methods. Since (2.17) contains

more parameters to be estimated, this model can achieve better resolution and accuracy

than (2.7), albeit needing more samples to identify parameters. The significant cost lies in

the computation time, making the Kronecker structure a worthwhile consideration since

it noticeably reduces the complexity of the model and still achieves accurate parameter

estimates.

Figure 2.3 introduces the computational differences between the methods. The MM

method, while still requiring some iterating, takes very little time in all scenarios. Inter-

estingly, the EM method requires the most time for lower dimensions such as the p = 3,

q = 5 situation simulated here because of the iterative algorithm needed to estimate the

two components of the Kronecker product. When the dimensions increase, we begin to

see the gains in the Kronecker model. Naturally, as the discrepancy in the number of

parameters being estimated by GEM and EM increases, the computational advantages

become more significant. Additionally, the difference in sample sizes necessary to estimate

the covariance grows, with GEM requiring more.

Of course, this presumes the choice between the two models. In a situation where the

physical dimensions of the data imply a Kronecker structure, we can take comfort in the

above results. One such example is our application in Remote Sensing.

2.6 Parameter Estimation and Data Compression Case Study

Our rich MODIS datasets are both multispectral and multitemporal. For the analysis that

follows we used a subset of the MODIS Land Cover Training site database that includes 204

sites located over the northeastern portion of the conterminous United States. These sites

include 2,733 MODIS pixels and encompass most major biomes and land cover types in the
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Table 2.1: IGBP classes and their representativeness in the northeast training dataset.
The last column lists the prior probability of a pixel belonging to each class.

IGBP Description # Pixels Global Prior (α)

1 Evergreen Needleleaf Forests 211 0.17

4 Deciduous Broadleaf Forests 131 0.02

5 Mixed Forests 184 0.14

7 Open Shrublands 95 0.08

8 Woody Savannas 66 0.05

9 Savannas 93 0.03

10 Grasslands 327 0.17

11 Permanent Wetlands 177 0.04

12 Croplands 918 0.12

13 Urban and Built-Up Lands 207 0.01

14 Cropland/Natural Veg. Mosaics 124 0.07

15 Permanent Snow and Ice 7 -

16 Barren/Sparsely Veg. Lands 34 -

17 Water Bodies 159 0.10

lower 48 United States [95]. Table 2.1 summarizes the frequency of land cover classes in

our training dataset along with the prior to be used in missing data imputation. Classes 15

and 16 were excluded because they are rare in the study area. The final data set included

12 land-cover classes across 2,692 pixels. Table 2.2 and Figure 2.4 give the results of our

PCA.

About 5% of our data is missing, making the Kronecker structure and our proposed

EM algorithm even more ideal, from a purely computational standpoint, as evidenced by

the simulation study above. Using the proposed EM algorithm we estimate the parameters

of (2.7) and perform PCA on our estimate of Σs. To, again, provide a comparison which

confirms the quality of our EM we compare the PCA results just described to those

computed using the MM method as well as to a principal components analysis on the full

(196× 196) covariance matrix.

Figures 2.5 and 2.6 show the data projected into the space of the first two principal

components using the MM and EM methods. The class separability seems reasonable and
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Figure 2.4: Scree plot for PCA of northeast training data. Plot shows proportion of
variation versus the principal components.

Table 2.2: First three PCs for training dataset and the proportion of variance explained
by each.

Band PC1 PC2 PC3

1 -0.252 0.209 -0.519

2 -0.563 -0.645 -0.022

3 -0.179 0.085 -0.512

4 -0.233 0.089 -0.485

5 -0.555 -0.102 0.349

6 -0.391 0.484 0.309

7 -0.269 0.530 0.126

Prop. Var. 0.497 0.252 0.160

the different amounts of variation in each class are certainly identified. A closer inspection

reveals that the EM method achieves better separability of the land cover classes. This can

be seen in the PC1 versus PC2 plots (Figures 2.5, 2.6, and 2.7) as well as their dendrograms
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Figure 2.5: Northeast, North America training data projected into the space of the first
two principal components, colored by their respective land color classes using MM.

in Figure 2.8.

The dendrograms in Figure 2.8 resulted from a hierarchical clustering of the classes

using the following distance metric, dij :

dij = (µi − µ̄ij)>Σ−1
i (µi − µ̄ij) + (µj − µ̄ij)>Σ−1

j (µj − µ̄ij).

where the µ̄ij are “in-between” centers for clusters i and j,

µ̄ij = Σ−1
i (Σ−1

i + Σ−1
j )−1µi + Σ−1

j (Σ−1
i + Σ−1

j )−1µj .

The log distances are plotted above along with an overall log distance, D =
∑

i<j dij . As

a measure of the overall separability of the classes in the space of the first two principal

components, the greater value of log(D) achieved by the EM confirms that this method
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Figure 2.6: Northeast, North America training data projected into the space of the first
two principal components, colored by their respective land color classes using EM.

helped to better distinguish land cover classes.

Although the decomposition of the covariance matrix in (2.12) is new, the results of the

PCA were consistent with established correlation structure among the seven MODIS land

bands. Specifically, K = 3 principal components captured 90.9% of the spectral variance

(Table 2.2) and correspond, roughly, to the ‘Brightness’, ‘Wetness’, and ‘Greenness’ of

the Tasseled-Cap Transformation for MODIS data [63]. As evidenced by the scree plot in

Figure 2.4, subsequent components capture significantly less spectral variation. Therefore,

we happily proceed with transforming the data into the space of the first three (K = 3)

principal components.

We use this framework below to perform land cover classification, to assess the homo-

geneity and composition of training sites used in this analysis, and to assess site membership

of pixels in the training data.
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Figure 2.7: First and second principal component scores for northeast, North America
training pixels performed using a standard PCA based on the full covariance matrix with
all 196 features. Note the scale of the PC scores.

2.7 Training Data Assessment

Supervised classification methods, which are widely used to map land cover from remotely

sensed data, require high quality exemplars to train classification algorithms. Convention-

ally, individual pixels or training sites composed of multiple pixels are selected for this

purpose. In many cases, however, selection of training data is not straightforward because

class definitions are ambiguous or because landscape heterogeneity introduces sub-pixel

variability in land cover. Both of these issues are relevant to the case we consider here:

classification of 500-m spatial resolution MODIS pixels based on the IGBP classes used by

the MODIS land cover type product [32]. Specifically, the degree to which training sites

provide good exemplars of the classes to be classified exerts strong influence on classification
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results.

We designate a single testing dataset comprised of 36 sites (3 from each class) and

train the parameters in (2.12) from the remainder of the data in our northeast, North

America training data set (as described in Section 2.6. Sampling three sites from each

class yielded a testing data set of 447 pixels and a training data set of 2,245 pixels. We

assess site composition, site membership, and site homogeneity for this testing dataset in

Section 2.7.4.

2.7.1 Site Composition

To address the issues described above, we propose a strategy that characterizes the class

composition and internal variability of a particular site using a vector (π), where πc (cth

component of π) represents the proportion of a site that corresponds to land-cover class c.

To do this, we use EM to estimate π for each site using the previously estimated parameters

in (2.12). The estimated land cover class for the site is then based on its composition π; a

common choice, for instance, is the most likely class (i.e., arg max
c

πc).

Similar to how we estimated the posterior probabilities for land cover classes, we treat

the site composition π as random. We would expect π to be, on average and a priori,

similar to the prior probabilities h in the previous section; that is, E[π] = h. To specify a

(prior) distribution for the site composition we still need to characterize its variability. To

this end, we define another parameter n0, which measures the “strength” of prior belief.

We then adopt a Dirichlet distribution for the site composition π based on these two

parameters:

π ∼ Dir(n0,h).

Given observations X1, . . . , Xn for n pixels in a site, our goal is to characterize the

posterior distribution of π given X1, . . . , Xn. To do this, we first obtain the posterior mode
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π∗ and assume that

π |X1, . . . , Xn ∼ Dir

(
n0h +

∑
v

P (θv |Xv;π
∗)

)
. (2.18)

Our method then iterates by updating the site class composition at step t, π(t), for each

class, until convergence,

π(t+1)
c =

∑n
v=1 P(θv = c |Xv;π

(t)) + n0hc − 1

n+ n0 − C
, (2.19)

where the conditional posteriors P (θv = c |Xv;π
(t)) evaluated at t are specified as in (3.3),

and C is the number of land-cover classes. We can arrive at (2.19) via the following

derivation.

Our model is the following,

Xv | θv = c ∼ N(µc,Σc)

θv |π ∼ MN(1;π)

π ∼ Dir(h∗)

where h∗ = n0h and Σc = Σs ⊗ Σt,c. The log-likelihood is then

logP(X, θ;π) = log


∏
v

P(Xv | θv)P(θv |π)P(π)


=
∑
v

∑
c

I(θv = c)

[
logP(Xv | θv = c)

+ logP(θv = c |π)

]
+
∑
c

(h∗c − 1) log πc

up to a constant. We now define

Q(π;π(t)) := Eθ |X;π(t)

[
logP(X, θ;π)

]
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=
∑
v

∑
c

P(θv = c |X;π(t))

[
logP(Xv | θv = c)

+ log πc

]
+
∑
c

(h∗c − 1) log πc

to obtain the M-step as

π(t+1) := arg max
π:
∑
c πc=1

Q(π;π(t)).

Adopting a Lagrange multiplier formulation, we next define

Q̃(π;π(t)) := Q(π;π(t)) + λ

1−
∑
c

πc

.
Then,

∂Q̃

∂πc
=

∑
v P(θv = c |X;π(t)) + h∗c − 1

πc
− λ,

and so, by setting ∂Q̃/∂πc = 0, we get

π(t+1)
c =

∑
v P(θv = c |X;π(t)) + h∗c − 1

λ
.

Finally, solving for λ when
∑

c π
(t+1)
c = 1 we have

λ−1 =
∑
c

∑
v

P(θv = c |X;π(t)) + h∗c − 1 = n+ n0 − C

and thus

π(t+1)
c =

∑
v P(θv = c |X;π(t)) + h∗c − 1

n+ n0 − C

as in (2.19).

2.7.2 Site Membership

The presence of outliers in training data presents a number of challenges. Most importantly,

depending on the algorithm being used to perform the classification, outliers in training
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data can introduce error to classification results. In addition, training data are widely used

to assess classification accuracies via cross-validation. Hence, the presence of outliers can

bias both classifier and cross-validation results.

Fortunately, in addition to providing a powerful way to characterize the class composi-

tion of training sites, the model we describe above provides a straightforward way to assess

the site membership of pixels and suggest potential outliers in training data. Specifically,

we first note that if a pixel v belongs to class c, then, since Xv follows a normal distribution

according to (2.12), the Mahalanobis distance

Dc(Xv) = vec(Xv − µc)T (Σs ⊗ Σc)
−1vec(Xv − µc)

follows a chi-square distribution with KT degrees of freedom. In fact, the statistic above

is just the sum of squares of observations that have been decorrelated across both multi-

spectral and multitemporal space, as detailed here.

If the observations vec(X̃) ∼ N(vec(µ),Σs⊗Σ) were classified as realizations from class

c we can test Ho : µ = µc,Σ = Σc against Ha : µ 6= µc or Σ 6= Σc. Since under the null

hypothesis vec(X) ∼ N(vec(µc),Σs ⊗ Σc), then

Dc(X̃) = vec(X̃ − µc)T (Σs ⊗ Σc)
−1vec(X̃ − µc) ∼ χ2

KT ,

and so we have a chi-square test. The test statistic above is just the sum of squares of

observations that have been decorrelated across time and principal component scores; if
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u = X − µc and Lc and Ls are the (lower triangular) Cholesky factors of Σc and Σs, then

vec(u)T (Σs ⊗ Σc)
−1vec(u) =

= vec(u)T (Σ−1
s ⊗ Σ−1

c )vec(u)

= vec(u)Tvec(Σ−1
s uΣ−1

c )

= vec(u)Tvec(L−Ts L−1
s uL−Tc︸ ︷︷ ︸

w

L−1
c )

= vec(u)T (L−Ts ⊗ L−Tc )vec(w)

= [(L−1
s ⊗ L−1

c )vec(u)]Tvec(w)

= vec(L−1
s uL−Tc︸ ︷︷ ︸

w

)Tvec(w)

= vec(w)Tvec(w) =

T∑
t=1

K∑
b=1

w2
bt.

The matrix w = L−1
c (L−1

s uT )T is the decorrelated version of u.

For any given pixel with observed data X̃, we can calculate the “evidence” of X̃ coming

from class c, which we denote by e(X̃ ∈ c), as follows:

e(X̃ ∈ c) = P(Dc(Xv) > Dc(X̃)) = P(Q > Dc(X̃)),

where the probability is over all possible Xv for any pixel v in class c, and Q ∼ χ2
KT from

above. Formally, this probability evaluates how extreme X̃ is compared to a typical Xv

from class c, and is thus equivalent to a p-value for testing if X̃ belongs to class c. It is

also similar in spirit to quadratic discriminant analysis (see e.g., [73], and also above for a

formal test.)

For this work we wish to assess if a pixel X̃ is potentially an outlier relative to a specific

training site composed of multiple pixels, or rather if pixel X̃ should indeed be a member

of a specific training site. Thus, we must also consider the site composition. To this end,

a pixel does not belong to a particular training site if its transformed spectral-temporal
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profile differs from the site composition (i.e., as opposed to the majority land cover class

or even a user-defined site label). Using the evidence of a pixel belonging to class c along

with the posterior distribution for π in (2.18), we propose the following formulation for

the evidence of X̃ belonging to site s, conditional on all the data X1, . . . , Xn in site s,

e(X̃ ∈ s |X1, . . . , Xn):

e(X̃ ∈ s|X1, . . . , Xn) =
∑
c

∫
e(X̃ ∈ c)P (θ̃ = c |π,X1, . . . , Xn)P (π |X1, . . . , Xn)dπ

=
∑
c

e(X̃ ∈ c)E[πc |X1, . . . , Xn].

That is, to estimate the evidence that X̃ belongs to each class we compute a weighted

average that accounts for all possible “candidate” classes θ̃ for X̃ and all possible site

compositions π according to the Dirichlet distribution in (2.18). In this way, we estimate

a pixel’s class composition and then judge whether it belongs to a site if that composition

differs from the composition of that site. Note that according to this distribution

E[πc |X1, . . . , Xn] =

∑n
v=1 P (θv = c |Xv;π

∗) + n0hc
n+ n0

= π∗c +
1− Cπ∗c
n+ n0

can increasingly differ from the mode π∗ as the number of pixels in the site becomes smaller.

Based on this, we might consider X̃ an outlier if e(X̃ ∈ s |X1, . . . , Xn) is below a prescribed

threshold, which is similar to defining a significance level. This approach accounts for the

fact that our ability to detect outliers in a site depends, in part, on both the size and

composition of the site.

2.7.3 Site Homogeneity

Finally, we can use the framework described above to investigate the homogeneity of any

given site. When training sites are created it is generally assumed that every pixel (in sites

that contain more than one pixel) belongs to the same class. Here we propose to address
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this question more rigorously than by simply examining the predicted class at each pixel

within sites or by evaluating whether each pixel belongs to a specific site. Specifically, if

we define H > 0.5 to be a user-prescribed probability threshold, we can define the evidence

e(Site is homogeneous) = P

(
maxc πc > H |X1, . . . , Xn

)
=
∑

c P (πc > H |X1, . . . , Xn) =
∑

c P (Bc > H),

where, if α∗c = n0αc +
∑n

v=1 P (θv = c |Xv;π
∗), Bc ∼ Beta(α∗c , n0 + n− α∗c) is the marginal

distribution for each πc. Using this, we can assess whether a site is homogeneous or not

without specifying which land cover class the site belongs to.

2.7.4 Training Data Assessment Results

Using the procedures described above, we estimate the composition of each test site, the

evidence that each pixel is a member of its corresponding site, and the probability that

each test site is homogeneous. Table 2.3 summarizes these results. In these calculations

we assumed that n0 = max{0.05n,C}: the prior “counts” are only 5% of the number of

pixels in the site, but are no smaller than the number of classes C to avoid discontinuities

in (2.19). The homogeneity probabilities vary widely, along with the site membership

evidences. Recall that these evidences represent the evidence that a pixel belongs to the site

it is a member of. Hence, lower values of evidence indicate potential outliers. Additionally,

our measure of homogeneity considers all classes instead of just the class we may see

dominating the site composition estimate. Results shown in Table 2.3 reflect patterns

observed later in the classification accuracy assessment (Section 3.1.1) in Tables 3.1 and 3.2.

The estimated composition for most sites reflect the class chosen by the expert, with classes

7, 8, and 9 clearly problematic. Identification of representative and homogeneous land-

cover training sites can be quite challenging. Hence, the methods we describe here have

significant potential for assessing the quality of manually interpreted training data.

Figure 2.9 show results from an analysis designed to evaluate how well our proposed
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Table 2.3: Each row in the table is a site in the testing data set. The estimated site
compositions are in the 12 columns between Size and P (Hom), corresponding to the land-
cover classes. Grayed cells indicate the class labeled by the experts. P (Hom) gives the
probability that the site is homogeneous for a threshold of h = 0.5. The last two columns
are the minimum and maximum site membership evidences, across pixels in the site.

Site Size 1 4 5 7 8 9 10 11 12 13 14 17 P (Hom) Min Out Max Out

1 13 1.00 0.85 0.91 0.98

2 13 0.77 0.23 0.43 0.99 1.00

3 6 1.00 0.32 0.72 0.81

4 14 1.00 0.69 0.69 0.78

5 13 1.00 0.62 0.69 0.78

6 4 0.50 0.50 0.01 0.68 0.72

7 12 0.17 0.83 0.45 0.91 1.00

8 10 1.00 0.62 0.98 1.00

9 10 0.30 0.70 0.16 0.79 0.90

10 12 0.09 0.91 0.00 0.57 0.21 0.28

11 16 0.00 1.00 0.94 0.97 0.97

12 6 0.00 1.00 0.11 0.41 0.44

13 12 1.00 0.00 0.76 0.95 1.00

14 4 1.00 0.00 0.12 0.85 0.91

15 14 1.00 0.00 0.86 0.72 0.86

16 12 0.00 0.42 0.33 0.25 0.02 1.00 1.00

17 2 0.00 1.00 0.01 0.28 1.00

18 10 0.80 0.20 0.13 0.41 0.42

19 12 1.00 0.81 0.98 1.00

20 12 1.00 0.81 0.94 1.00

21 14 1.00 0.89 0.97 1.00

22 14 1.00 0.72 0.68 0.73

23 2 1.00 0.00 0.05 0.63 0.63

24 6 1.00 0.00 0.10 0.06 0.10

25 7 1.00 0.31 0.48 0.62

26 12 1.00 0.73 0.58 0.59

27 51 0.98 0.02 1.00 0.81 0.96

28 12 1.00 0.51 1.00 1.00

29 20 1.00 0.93 1.00 1.00

30 11 0.52 0.48 0.04 1.00 1.00

31 10 0.38 0.62 0.04 0.16 0.42

32 5 1.00 0.00 0.05 0.85 0.88

33 6 0.17 0.83 0.06 0.93 1.00

34 16 1.00 0.89 0.53 0.74

35 39 0.15 0.85 0.99 0.00 0.96

36 15 0.07 0.93 0.75 0.00 0.74
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Figure 2.9: Heat maps of site membership evidence. On the left is the minimum member-
ship evidence among pixels within the given site. On the right is the maximum membership
evidence among pixels within the given site. The labels are formatted as “Site (Class)”
where “Site” is the number from Table 2.3 and “Class” is the class of that particular site.

site membership evidence metric is able to suggest outlier pixels. To do this, we first

selected the test site from each class that was most unimodal in its estimated composition.

We then compute the membership evidence for the pixels in each of these sites as if they

belonged in each of the other sites. The rows in Figure 2.9 represent the source (original)

site and the columns represent the target sites. Ideally, the off-diagonal cells would be close

to black indicating low evidence that the row site pixels belong to the column site. Sites

8, 13, 19, 28 and 33 display noticeably higher minimum membership evidence. Despite

the unimodal compositions of these sites, the evidence captures more of the distribution

of the composition and better reflects the ambiguity in the class definitions. Specifically,

recall that the estimated site composition represents the posterior mode (π∗), whereas

the membership evidence involves the posterior mean, which differs from the mode. This

variability in the posterior distribution of πc, in addition to ambiguous definitions for

classes such as Mixed Forests, Woody Savannas, Grasslands, Urban, and Croplands, leads

to difficulties distinguishing the correct label for pixels belonging to these classes. Not



55

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(Homogeneous) vs. h

Threshold −− h

P
(H

om
og

en
eo

us
)

1 4 5 7 8 9 10 11 12 13 14 17

Figure 2.10: Probability of homogeneity for each class as a function of the homogeneity
threshold H. Each curve is the average over three testing sites for each class.

surprisingly in Figure 2.9, the membership evidence is low for water pixels placed in other

sites. In either case, both heat maps align with our expectations and further support the

patterns reported in the results of Section 3.1.1: the weaknesses of the model are mostly

restricted to particular classes, but otherwise the model describes the data well.

Finally, Figure 2.10 investigates how the proportion of a site belonging to the same class

affects our estimated probability of a site being homogeneous. Recall that H describes the

proportion of the site that needs to be the same in order for us to call it homogeneous.

Figure 2.10 summarizes, for each class, the average probability that the test sites are

homogeneous. Naturally, the probability of a site being homogeneous decreases as we

require more and more of the site to be same, since this demands more from the data.

While this behavior is consistent across all of the classes, certain classes are clearly more
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homogeneous than others. As expected, water sites exhibit some of the highest probabilities

of being homogeneous and classes such as Wetlands and Natural Vegetation Mosaics (which

are mixture classes by definition) display some of the lowest.



Chapter 3

Land Cover Classification

We arrive at the original problem of land cover classification after estimating model pa-

rameters, imputing missing data, and using principal components analysis to reduce di-

mensionality. Because we have a priori knowledge about the distribution of land cover

classes, we pursue a Bayesian classification framework in two ways:

P(θv |Xv) ∝ P(Xv | θv)P(θv) (3.1)

and

P(θ |X) ∝ P(X |θ)P(θ). (3.2)

where X and θ denote the data and labels for all of the pixels in the image, respectively. In

both approaches the pixel data are conditionally independent given the land cover labels.

In (3.1), classification occurs pixel-by-pixel without using information from neighboring

pixels. In (3.2), we conduct posterior inference for all of the pixels in the lattice with the

help of data in adjacent pixels and prior knowledge about the spatial distribution of land

cover classes.

In Section 3.1 we apply an independent pixel classification, via (3.1), in a spirit similar to

most traditional classification techniques. However, we originally sought the incorporation

of extensive prior information and spatial relationships into our classification procedure.

Popular methods for the modeling of this type of spatial data include kriging and other

uses of Gaussian processes. Our core objection to these methods consists of the use of a

spatially varying distribution for the data. We believe that the land cover classes themselves



58

completely capture the variability in the data. That is, by modeling the spectral-temporal

variance for each land cover class and describing the spatial relationships between the

classes through a prior distribution we successfully include all of the meaningful spatial

information. The remainder of the chapter, after Section 3.1, introduces a hierarchical

graphical model to achieve this goal in both an interpretable and computationally efficient

way.

3.1 Independent Pixel Classification

The model in (2.12) specifies the distribution, in principal components space, of the annual

profile for any pixel, v. Based on this framework, and using the fitted parameters estimated

by EM, it is straightforward to näıvely classify the land cover type for each pixel in the

data set, independent of the other pixels. Specifically, if pixel v belongs to each class c

with a priori probabilities hc, then the posterior probability that pixel v belongs to class

c is given by Bayes rule:

P (θv = c |Xv; h) =
hcP (Xv | θv = c)∑
c̃ hc̃P (Xv | θv = c̃)

(3.3)

where the likelihood P (Xv | θv = c) is given by (2.12) and the sum in the denominator is

over all land cover classes.

3.1.1 Case Study

To test our proposed model, we use data from the MODIS Land Cover Training site

database, described in Section 2.6. Table 2.1 lists the number of pixels in each IGBP class

in the data set, along with the prior probability for each class. Classes 15 and 16 were

excluded because they are rare in the study area. The final data set included 12 land-cover

classes across 2,692 pixels.

We employ two different types of assessment procedures to investigate the results from

the methods we propose. In the first case we use a n-fold cross-validation procedure



59

in which two sites are randomly sampled from each class and withheld as testing data.

The parameters of (2.12) were then estimated from the remainder of the data. Repeated

100 times, this process yields a more robust assessment of the classification accuracy and

precision broken down by land cover class.

The second procedure uses a single testing dataset comprised of 36 sites (3 from each

class) and trains the parameters in (2.12) from the remainder of the data. Sampling three

sites from each class yielded a testing data set of 447 pixels and a training data set of 2,245

pixels (the same as in Section 2.7).

To assess the accuracy of our classification method, we used the estimated principal

components to assign the class with the highest posterior probability based on (3.3) in

Section 3.1 to each pixel. Below we present results from both the cross-validation procedure

and the single testing dataset procedure. We compare the single testing dataset results to

classification of the imputed PC data via C4.5 decision trees as well as Random Forests.

Cross-Validation Procedure

The cross-validation procedure we used withholds two sites from each class, estimates

the parameters of the model from the remaining data, and then classifies the test pixels

in the withheld sites (100 times). At each iteration we compute class accuracies and

precisions, which yields a set of 100 accuracies and 100 precisions for each class, as well

as 100 overall accuracies. Figure 3.1 summarizes class-specific and overall classification

results from this analysis. Overall classification performance is reasonably good (67%),

but significant variability across classes exists. The second type of assessment sheds more

light on this variability across classes.

Single Testing Dataset Procedure

In this second procedure, classification proceeds in exactly the same way but parame-

ter estimates were computed using a single training data set composed of 2,245 pixels.

Table 3.1 presents a confusion matrix of the results for the training data. Overall, the
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Figure 3.1: Classification accuracies and precisions broken down by class. The first (left)
boxplot for each class describes accuracy and the second (right) describes precision. The
mean overall accuracy was 67.2%. The dots above represent potential outlier accuracy
values.

classifier performs well (78% correctly classified). However, class-specific accuracies were

quite variable, and some classes (e.g., class 8: woody savanna) were clearly problematic.

Figure 3.2 displays a comparison of the accuracy of the classifier when using the principal

components versus the untransformed data and clearly illustrates that with the exception

of classes 7, 8, 9, and 11 accuracies improved using our approach. Note, however, that

these three classes had many fewer data values overall relative to the other classes. Thus,

under sampling of these classes probably explains part of this result.

The test data set for this stage of the assessment consisted of 447 MODIS pixels from 36

sites (3 from each class), where all of the pixels in each site were assumed to have the same

class. Table 3.2 presents a confusion matrix for model predictions for each pixel in the test

set, and shows that results on the test data are consistent with results from the training
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Table 3.1: Confusion matrix for classification of training pixels using the first three prin-
cipal components. The rows represent our classification; the columns represent the true
classification.

Class 1 4 5 7 8 9 10 11 12 13 14 17 Total Precision

1 158 0 18 0 19 1 0 2 0 0 0 0 198 0.80

4 0 95 29 0 10 0 0 0 15 0 40 0 189 0.50

5 15 5 99 0 2 9 0 16 0 0 0 0 146 0.68

7 0 0 0 25 0 0 0 9 0 0 0 0 34 0.74

8 5 0 6 0 0 5 0 7 0 0 0 0 23 0.00

9 0 0 0 7 0 29 0 16 0 0 0 0 52 0.56

10 0 0 0 10 0 0 194 0 42 0 0 0 246 0.79

11 0 0 0 2 0 10 0 103 0 0 0 0 115 0.90

12 0 0 0 17 0 0 69 0 740 0 16 0 842 0.88

13 1 0 0 0 4 15 26 2 7 164 0 0 219 0.75

14 0 0 0 0 1 0 0 0 44 0 47 0 92 0.51

17 0 0 0 0 0 0 0 0 0 0 0 89 89 1.00

Total 179 100 152 61 36 69 289 155 848 164 103 89 2245

Accuracy 0.88 0.95 0.65 0.41 0.00 0.42 0.67 0.66 0.87 1.00 0.46 1.00 0.78
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Figure 3.2: Scatterplot of class accuracies. Each point corresponds to a class accuracy using
untransformed data (horizontal axis) and a class accuracy using the PCs (vertical axis).
Most points are above the 1:1 line (blue), indicating increased classification accuracies
when using the PCs.

data. Classification accuracies, both overall and for specific classes, were similar (although

slightly lower) to those for the training data, suggesting that the overall approach is robust.
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Table 3.2: Confusion matrix for classification of testing pixels using the first three prin-
cipal components. The rows represent our classification; the columns represent the true
classification.

Class 1 4 5 7 8 9 10 11 12 13 14 17 Total Precision

1 29 0 2 0 0 0 0 2 0 0 0 6 39 0.74

4 0 29 3 1 0 0 0 0 0 0 9 0 42 0.69

5 3 2 27 11 30 0 0 0 0 6 0 0 79 0.34

7 0 0 0 0 0 0 0 0 0 0 0 0 0 -

8 0 0 0 0 0 0 0 0 0 0 0 0 0 -

9 0 0 0 0 0 8 0 6 0 0 0 0 14 0.57

10 0 0 0 16 0 5 38 0 0 0 0 0 59 0.64

11 0 0 0 6 0 2 0 14 0 0 0 1 23 0.61

12 0 0 0 0 0 4 0 0 69 0 1 0 74 0.93

13 0 0 0 0 0 5 0 0 0 37 0 0 42 0.88

14 0 0 0 0 0 0 0 0 1 0 11 0 12 0.92

17 0 0 0 0 0 0 0 0 0 0 0 63 63 1.00

Total 32 31 32 34 30 24 38 22 70 43 21 70 447

Accuracy 0.91 0.94 0.84 0.00 0.00 0.33 1.00 0.64 0.99 0.86 0.52 0.90 - 0.73

Tables 3.3 and 3.4 give the classification results for the test set from C4.5 Decision Trees

and Random Forests, respectively. These methods appear a bit more accurate than our

independent pixel classification. The mistakes appear common across all three methods

though. That is, it appears that some of the same classes and pixels were problematic for

all three algorithms. Despite maintaining higher accuracy here, recall that two primary

concerns with methods like C4.5 and Random Forests were the ways in which they handle

missing data as well as their failure to incorporate spatial information.

The remainder of this section gives some mapped results, comments on the issue of

training data selection, and re-emphasizes our ultimate goal of incorporating spatial in-

formation via a hierarchical graphical model. It should be noted, however, that C4.5 or

Random Forests could just as easily be used for classification after our proposed missing

data imputation and data compression. The series of methods we develop here does not

need to be applied in its entirety or not at all.

Because the region surrounding Montreal, Canada contains a good mixture of land

cover classes and is well known to our collaborators, it serves as a useful testing area

for our methods. A small, 500 pixel × 500 pixel area centered on Montreal provides an

informative glimpse at the utility and efficiency of our proposed analysis pipeline. So, after

estimating the parameters of (2.12) with the training data from the northeast portion of

North America and imputing the data for these 250,000 pixels around Montreal we generate
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Table 3.3: Confusion matrix for classification of testing pixels using C4.5 decision trees
trained on imputed data. The rows represent our classification; the columns represent the
true classification.

Class 1 4 5 7 8 9 10 11 12 13 14 17 Total Precision

1 32 0 0 0 0 0 0 0 0 0 0 9 41 0.78

4 0 27 0 0 0 0 0 0 0 0 0 0 27 1

5 0 4 32 0 15 0 0 0 0 0 0 0 51 0.63

7 0 0 0 1 0 0 0 0 0 0 0 0 1 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 -

9 0 0 0 0 1 10 0 0 0 0 0 0 11 0.91

10 0 0 0 13 0 4 38 0 0 0 0 0 55 0.69

11 0 0 0 17 13 0 0 22 0 0 0 0 52 0.42

12 0 0 0 3 1 8 0 0 70 0 1 0 83 0.84

13 0 0 0 0 0 2 0 0 0 43 0 0 45 0.96

14 0 0 0 0 0 0 0 0 0 0 20 0 20 1

17 0 0 0 0 0 0 0 0 0 0 0 61 61 1

Total 32 31 32 34 30 24 38 22 70 43 21 70 447 -

Accuracy 1 0.87 1 0.03 0 0.42 1 1 1 1 0.95 0.87 - 0.80

Table 3.4: Confusion matrix for classification of testing pixels usingRandom Forests trained
on imputed data. The rows represent our classification; the columns represent the true
classification.

Class 1 4 5 7 8 9 10 11 12 13 14 17 Total Precision

1 32 0 1 0 0 0 0 0 0 0 0 0 33 0.97

4 0 27 0 0 0 0 0 0 0 0 0 0 27 1

5 0 4 31 0 19 0 0 0 0 0 0 0 54 0.57

7 0 0 0 0 0 0 0 0 0 0 0 0 0 -

8 0 0 0 0 0 0 0 0 0 0 0 0 0 -

9 0 0 0 0 0 10 0 0 0 0 0 0 10 1

10 0 0 0 16 0 10 38 0 0 0 0 0 64 0.59

11 0 0 0 18 10 0 0 22 0 0 0 0 50 0.44

12 0 0 0 0 0 2 0 0 70 0 3 0 75 0.93

13 0 0 0 0 1 2 0 0 0 43 0 0 46 0.93

14 0 0 0 0 0 0 0 0 0 0 18 0 18 1

17 0 0 0 0 0 0 0 0 0 0 0 70 70 1

Total 32 31 32 34 30 24 38 22 70 43 21 70 447 -

Accuracy 1 0.87 0.97 0 0 0.42 1 1 1 1 0.86 1 - 0.81
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Figure 3.3: Independent pixel classification of region surrounding Montreal, Canada.

a land cover map of the region in Figure 3.3 (use the legend in Figure 1.2 to interpret the

color scheme).

To explore the usefulness of our approach in a starkly different biome, we also applied

our pipeline to a 500 pixel×500 pixel region centered on Bakersfield, California. Figure 3.4

gives our result. Oceans are masked out of the original data set so the results for these pixels

(left side of the image) should be ignored. We estimated the parameters to use for this

region from the training sites in the seven MODIS tiles (tile map in Figure 1.1) surrounding
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Bakersfield. This seems unfair and reasonable at the same time. The training site database

contains data from across the globe. However, land cover classes look different in different

climates or on different continents. For these reasons, we began our foray into land cover

classification using training data we think most appropriate for the regions we classify. In

Section 3.1.2 we further explore the issue of training data selection and, near the end of

this section, give another example of it. Figure 3.5 gives a result for Bakersfield excluding

the agricultural and urban classes. Even in the MODIS tiles surrounding Bakersfield, the

agricultural and urban classes contain a significant amount of diversity and consequently

take over the other classes to some degree, and so we exclude them here. A full independent

pixel classification of North America can be seen in Figure B.1 in Appendix B.

Beyond these assessment tools, the importance of relevant and good quality training

data cannot be overstated. The original training data used above (for the single testing

dataset procedure) from the northeast portion of North America was delivered to us by

our collaborators. We independently selected a subset of the training site database from

within the northeast portion of North America which contained 1,677 pixels (around 1,000

less than the previous extract of data). We ran through the analysis pipeline (parameter

estimation, missing data imputation, data transformation, and independent pixel classifi-

cation) to reproduce the map of Montreal and gauge the influence of the training data.

The map seen in Figure 3.6 does not differ much from our original map in Figure 3.3.

However, if we use the training site data from all of North America we see something

completely different in Figure 3.7. The result in Figure 3.7 not only differs greatly from

our previous result, but from our collaborators’ previous results and what they expect to

see. We need to be careful about where our training data come from relative to where we

perform our classification, or consider involving information about the climate or biome a

given pixel lives in.
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Figure 3.4: Independent pixel classification of region surrounding Bakersfield, California.

3.1.2 Clustering Training Data Using Climate Metrics

The land cover classification results in Figures 3.6 and 3.7 display the significant within-

class variation present in our training site database. To address this issue we propose using

climate features, which we have access to at the same spatial resolution as our original

data, to identify the multiple modes or sub-classes of our established IGBP land cover

classes. The climate data consist of eight pixel-wise annual metrics: mean temperature,

standard deviation of monthly temperatures, minimum temperature, maximum temper-
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Figure 3.5: Independent pixel classification of region surrounding Bakersfield, California.

ature, annual precipitation, minimum precipitation, maximimum precipitation, and the

coefficient of variation for precipitation. Using these climate metrics we cluster our train-

ing data into sub-classes that correspond to the same land cover classes broken across

different biomes. We use hierarchical clustering with our own distance metric to determine

the cluster assignments.

Let us denote by xo our original spectral-temporal data that have been decorrelated

temporally and averaged across time, by xclim the data on the eight climate features spec-
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Figure 3.6: Land cover map of Montreal, Canada using different training data in the
northeast portion of North America.

ified above, and by Σc,clim the class specific covariance of the climate features. We will use

the following distance metric, with tuning parameter λ, to perform the clustering.

d(x, y)
.
= (xo − yo)>Σ−1

s (xo − yo) + λ(xclim − yclim)>Σ−1
c,clim(xclim − yclim) (3.4)

Since we are clustering training data, the land cover class of pixel x and pixel y is known

to be c. We can vary the importance of the climate features in computing our distances
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Figure 3.7: Land cover map of Montreal, Canada using training data from all of North
America.

by specifying different values of λ. We cluster data within each land cover class, separate

from the other classes. We use the Calinski-Harabasz (CH) index in (3.5) [11] to formally

decide on an ideal number of clusters for each land cover class. If B =
∑K

k=1 nk(µk − µ)2

and W =
∑K

k=1

∑nk
i=1(xi,k − µk)

2 are the between-cluster dispersion and within-cluster

dispersion, respectively, then the CH index is given by

C =
B/(K − 1)

W/(N −K)
. (3.5)
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The clusters decided on would become sub-classes and this set of sub-classes would become

our new classification scheme. The CH index cannot be used alone to determine the number

of clusters because the parameters of (2.12) must be estimated for each cluster. Therefore,

each cluster must contain a minimum number of training pixels. The number of clusters

to consider (K = 2, . . . , 7) resulted from this consideration as well. Because a high CH

index represents better clustering, we considered each number of clusters in turn from the

highest CH index to the lowest. The value of K that yielded the highest CH index and a

partitioning that would still allow for the estimation of the model parameters dictated the

number of clusters for each land cover class.

Motivated in part by the use of all of the North America training data to classify

Montreal, the same 7,139 pixels from 15 IGBP classes in North America were clustered.

The conditions above could not be satisified for some classes and so those classes were not

broken down into sub-classes. Ultimately, this procedure resulted in a new set of 24 land

cover sub-classes. Appendix A.1 contains a principal components plot for these data in the

original 15 colors (i.e. sub-classes are colored by their parent class). Figures 3.8 and 3.9

give independent classification results using these 24 new sub-classes and colored by the

original 15.

The map of Montreal in 3.8 vastly surpasses the map in 3.7. However, weaknesses not

present in 3.3 still reside in 3.8. For example, wetlands pervade too much of the region and

three forest classes exist where there previously existed only two. In Figure 3.9, the urban

class seems to be dominating again. Full independent pixel classification results for North

America using these clustered sub-classes can be seen in Figures B.3 and B.4 in Appendix B,

and do represent an improvement in our attempts to classify pixels independently. However,

mapping global land cover will likely require further exploration and clustering as we move

to using global training data.

The remainder of this chapter details the construction of a hierarchical graphical model

that incorporates spatial information into a Potts prior and allows for exact posterior

inference of the pixel labels.
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Figure 3.8: Land cover map of Montreal, Canada using training data from all of North
America after clustering data into 24 sub-classes using climate metrics.

3.2 Potts Prior Model and Hyperparameter Elicitation

Ultimately we wish to incorporate spatial information in our classification method as op-

posed to assigning labels to pixels independent of surrounding data. To this end we specify

a hierarchical graphical model that utilizes the aforementioned likelihood, in (2.12), but

now defines a prior on the lattice of pixels in the image of interest.
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Figure 3.9: Land cover map of Bakersfield, California using training data from all of North
America after clustering data into 24 sub-classes using climate metrics.

3.2.1 Prior Model

We denote a complete set of labels for the pixels in the image by θ. Whereas in Section 3.1

our prior on the land cover classes for the entire image amounted to P(θ) =
∏
v P(θv) =

exp{
∑

v h>e(θv)}, we wish to extend this in a way that incorporates spatial information.

A Markov Random Field accommodates this interest and so we employ a Potts model [86]
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prior on θ,

P(θ) ∝ exp

β∑
v∈P

h>e(θv) + η
∑

(u,v)∈L

e(θu)>Je(θv)

 (3.6)

where the image, L, consists of a two-dimensional lattice on the grid of pixels. In (3.6), h

characterizes the same global distribution of labels we saw in Section 3.1 and J describes the

relationship between neighboring pixels. More specifically, Jr,s corresponds to an empirical

estimate of the joint probability of observing labels r and s in adjacent pixels. In an

Empirical Bayes approach we obtain the values of h and J from training data or previous

land cover products similar to, but independent of, the image of interest.

The hyperparameters β and η, specified by the user, control the strength of the corre-

sponding pieces of this prior distribution.

3.3 Posterior Inference

Traditional posterior inference via the maximum a posteriori (MAP) estimator necessitates

the computation of the label configuration which maximizes

P(θ |X) = exp


∑
v

l(Xv | θv) + β
∑
v∈P

h>e(θv) + η
∑

(u,v)∈L

e(θu)>Je(θv)

/Z(L). (3.7)

As we will see in Section 3.3.1, our estimator of choice necessitates the computation of the

posterior marginal probabilities which means we need to compute

Z(L)
.
=
∑
θ∈Sn

exp


∑
v∈P

l(Xv | θv) + β
∑
v∈P

h>e(θv) + η
∑

(u,v)∈L

e(θu)>Je(θv)

. (3.8)

Because of the high connectivity of the two-dimensional lattice, the computation of (3.8)

is intractable. A popular method in this framework, ICM maximizes a joint probability

and thus does not encounter this difficulty the lattice presents. However, the value reached
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by ICM does not necessarily correspond to even the optimal, MAP estimate using (3.7).

The centroid estimator represents the posterior space in a superior way and utilizes the

information built into our hierarchical model.

3.3.1 The Centroid Estimator

Perhaps the most popular estimation technique in this Bayesian framework, maximum a

posteriori estimation assigns to the set of pixels the following:

θ̂MAP = arg max
θ̃∈Θθ

P(θ̃ |X). (3.9)

In a high-dimensional situation such as this, however, the MAP estimator can myopically

find a solution that does not represent the posterior space well. That is, the zero-one

loss function used by the MAP estimator does not differentiate between solutions that

are different by one pixel label or different by all but one of the pixel labels. A more

suitable estimator would measure these finer differences in an element-wise way. Therefore

we assign a label to each pixel in the image with the centroid estimator [12] using the

Hamming loss [45], H(·, ·),

θ̂C = arg min
θ̃∈Θ

Eθ|X
[
H(θ̃, θ)

]
= arg max

θ̃∈Θ

∑
v

P (θv = θ̃v|X). (3.10)

Use of this loss function means assigning labels not with the full posterior joint, but with

the posterior marginal distribution at each pixel. Our centroid estimator assigns the pixel

label which maximizes the posterior marginal distribution. While this better represents the

posterior space, the computation of the centroid proves problematic due to the connectivity

of the lattice. For this reason we pursue an approximation to the lattice in Section 3.4

which greatly simplifies the computation. In particular, message-passing algorithms [70]

will allow for quick calculation of the posterior marginal distribution at each pixel. We

can expand our inference in Section 3.3.2, with the use of a gain matrix, to take advantage
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of knowledge we possess about the frequency with which certain land cover classes get

confused.

3.3.2 Centroid Estimator with a Gain Matrix

The risk in (3.10) can be written, in general, as

Eθ |X [L(θ, θ̃)] = Eθ |X [
∑
v

e(θ̃v)
>Le(θv)] (3.11)

where the matrix L encodes our choice of loss function. In (3.10), the Hamming loss

corresponds to L = 1C1>C−IC where IC indicates the C×C identity matrix. So, minimizing

our risk to obtain our centroid estimator involves the following:

arg min
θ̃∈Θ

Eθ |X [L(θ, θ̃)] = arg min
θ̃∈Θ

∑
v Eθ |X [

∑
v e(θ̃v)

>Le(θv)]

= arg max
θ̃∈Θ

∑
v Eθ |X [

∑
v e(θ̃v)

>(−L)e(θv)]
(3.12)

Letting G = −L we formulate the centroid estimator in terms of a gain matrix which

allows us finer control over the final inference. We then write the centroid estimator in this

new way:

θ̂C = arg max
θ̃∈Θ

∑
v

e(θ̃v)
>Gpv. (3.13)

In (3.13), the entries of the vector pv represent the marginal posterior probabilities at pixel

v. We can think of G as a re-weighting of the posterior probabilities since we can normalize

Gpv and still preserve the arg max. With this re-weighting we aim to address ambiguities

in the land cover class definitions (Table 1.2) and spectral similarities between some of the

classes.

Construction of the gain matrix can happen in a multitude of ways, but we will only

detail two here. The first involves conceptualizing G as a type of similarity matrix and

specifying the ij−entry to reflect, say, the probability that a pixel of land cover class i gets

classified as land cover class j. Subject matter experts could build G manually or base it
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on the confusion matrix of a previously approved classification result.

The second method still involves G being a type of similarity matrix, but now based

almost entirely on the spectral data in our training set. Recall the PC plot in Figure 2.6

and the fact that we retained the first three principal components. We could construct G

using the volumes found in this 3-dimensional principal components space (see Figure 3.11).

Imagine taking the distances of every observation to its class’ mean. To prevent extreme

observations from influencing these volumes too much we use only the points whose distance

to their mean is under the 90th−percentile of distances in that class. Evidence for this

choice of percentile appears as a reasonable kink in the curves in Figure 3.10. Figure 3.12

confirms the ability of this approach to exclude extreme observations. With 90% convex

hulls established in 3-dimensional PC space, we determine the ij−entry of G by taking

the volume of the intersection of the convex hull for land cover class i and land cover class

j. In this way we not only consider the spectral similarity of the classes, but also the

representativeness of each class in our training dataset.

Again, we encode with G the similarities of classes or in another sense the specific

severity of different classification errors. For example, while the diagonal of G should

contain the highest entries of each row, spectrally similar classes may have entries very

close in magnitude. We want to allow mistaking one type of forest for another more often

than we want to allow mistaking a forest for water, and so forth. We present two examples

of gain matrices in Tables 3.5 and 3.6. Table 3.5 gives a gain matrix constructed using all of

the northeast, North America training data. Table 3.6 gives a gain matrix constructed as

the average of gain matrices computed for each of 500 bootstrap samples from the original

northeast, North America training data.
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Figure 3.10: Class convex hull volumes using only the points whose distance to their mean
fall below the given distance percentile.

Table 3.5: Gain matrix, G, determined using all of the northeast training data.
Class 1 4 5 7 8 9 10 11 12 13 14 17

1 0.21 0 5×10−4 0 .05 0 0 4×10−3 0 0.04 0 0
4 0 0.11 0 0 0 0 0 0 0 0 0.02 0
5 5×10−4 0 0.14 0 0.02 0 0 0.05 0 0.01 0 0
7 0 0 0 0.09 0 0 0 0 0 0 0 0
8 0.05 0 0.02 0 0.11 0 0 0.05 0 0.06 0 0
9 0 0 0 0 0 0.08 0 0 0 0 0 0.03
10 0 0 0 0 0 0 0.10 0 2×10−3 0 0 0
11 4×10−3 0 0.05 0 0.05 0 0 0.22 0 0.05 0 0
12 0 0 0 0 0 0 2×10−3 0 0.32 0 0 0
13 0.04 0 0.01 0 0.06 0 0 0.05 0 0.12 0 0
14 0 0.02 0 0 0 0 0 0 0 0 0.12 0
17 0 0 0 0 0 0.03 0 0 0 0 0 0.14
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Figure 3.11: Convex hulls of the 12 land cover classes in our single tesing dataset framework,
in the space of the first three PCs.
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Figure 3.12: Plot of the northeast training data in the space of the first two PCs. The
solid lines indicate convex hulls around all training points from that class. Dashed lines
indicate convex hulls around points whose distance to their class mean falls below the

90th−percentile.
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Table 3.6: Gain matrix, G, determined using bootstrap samples of the northeast training data and the second method described.
Class 1 4 5 7 8 9 10 11 12 13 14 17

1 0.14 0 3×10−6 9×10−5 0.05 0 0 5×10−3 0 0.02 0 0
4 0 0.08 0 0 0 0 0 0 0 0 4×10−3 0
5 3×10−6 0 0.10 0 0.01 0 0 0.03 0 3×10−3 0 0
7 9×10−5 0 0 0.08 0 2×10−6 0 0 0 0 0 0
8 0.05 0 0.01 0 0.11 0 0 0.03 0 0.05 0 0
9 0 0 0 2×10−6 0 0.07 0 0 0 0 0 0.02
10 0 0 0 0 0 0 0.06 0 2×10−5 0 0 0
11 5×10−3 0 0.03 0 0.03 0 0 0.15 2×10−6 0.01 0 0
12 0 0 0 0 0 0 2×10−5 2×10−6 0.13 0 0 0
13 0.02 0 3×10−3 0 0.05 0 0 0.01 0 0.07 0 0
14 0 4×10−3 0 0 0 0 0 0 0 0 0.08 0
17 0 0 0 0 0 0.02 0 0 0 0 0 0.10
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3.4 Tree Approximation

As described above, computing the centroid on the lattice is intractable and so we pro-

pose graphically approximating the lattice. Variational approaches might attempt to ap-

proximate the distribution on the lattice, (3.6), with a distribution that eliminates the

computational intractability of computing (3.8). In a vein similar to this, we pursue a

graph approximation to the lattice which retains the most important features of the lattice

structure while being simpler to compute on.

So that we can compute (3.8) and continue with posterior inference, we approximate

the two-dimensional lattice with a spanning tree. Minimally connected, this spanning tree

approximation allows for more efficient computations. This tree needs to retain the most

important spatial information in order to ensure the quality of the approximation as well as

preserve the purpose of the hierarchical graphical model. As alluded to above, variational

approaches might seek the spanning tree in a way that minimizes the difference between

the distribution on the tree and the distribution on the original lattice [115]. We pursue

this spanning tree approximation in two alternate ways, using mutual information and EM.

3.4.1 Mutual Information Spanning Tree

The original classification approach presented in Section 3.1 assigns pixel labels indepen-

dently. A natural first departure from this model, via a tree approximation to the lattice,

seeks to retain only the edges between pixels that represent the biggest difference between

modeling adjacent pixels jointly or independently. One of the most popular measures of

difference between two probability distributions is the Kullback-Leibler divergence [59]:

DKL(P‖Q) =
∑
i

P(i) ln

(
P(i)

Q(i)

)
, (3.14)
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Tree Approximation using Mutual Information

Figure 3.13: Toy example of mutual information spanning tree approximation.

where P and Q are discrete probability distributions. We will actually use what is commonly

known as mutual information (MI) [71], a specific example of the KL-divergence:

I(θu; θv) =
∑
θu∈S

∑
θv∈S

P1(θu, θv |X) log

(
P1(θu, θv |X)

P2(θu |X)P2(θv |X)

)
, (3.15)

where (u, v) ∈ L and P1 and P2 are näıve marginal and joint distributions assuming full

independence. Using the mutual information between adjacent pixels as edge weights we

approximate L with T as determined by a Maximum Weighted Spanning Tree algorithm

[82]. Figure 3.13 displays a toy example, consisting of a 5×5 lattice with a simple two-class

configuration denoted by the green and purple nodes. Because the overwhelming measure

of a spatial relationship comes from the entries of J in (3.6), we can affect the edges that get

picked up using mutual information by choosing to maximize either I(θu; θv), or −I(θu; θv).
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Maximizing I(θu; θv) will emphasize higher entries in J, or class adjacency probabilities,

and lead to the type of tree seen in Figure 3.13 where there exists only one edge on the

boundary of the label regions. This makes sense since land cover classes are most likely

seen adjacent to themselves.

Using mutual information to help approximate the distribution on the lattice, L, has

been previously explored by Chow and Liu [15]. However, our approach differs in two

significant ways. First, they do not use a specific graphical model (the lattice in our case)

as the original distribution to be approximated. Second, their algorithm needs full marginal

and joint probabilities. That is, our expression in (3.15) uses conditional probabilities and

only requires joint probabilities for adjacent nodes in the lattice whereas their algorithm

needs unconditional probabilities and joint probabilities for all pairs of nodes.

3.4.2 MI Tree Classification Results

Mutual information can be used to encode the edges of our lattice, L, with the spatial rela-

tionships we want to incorporate into our classification. Figure 3.13 gave a small example

of such a tree, T . Figure 3.14 gives a land cover classification result using the centroid

from (3.10) based on a spanning tree identified using mutual information. The region

consists of a 100 pixel × 100 pixel region just above Florida. While noticeable differences

exist between our result and the provided “reference” image, many of the differences are

acceptable and actually demonstrate that we have achieved our aim. Our map is much

more spatially homogeneous while still retaining the overall spatial patterns present in the

reference. Additionally, the land cover classes less prevalent in our map (than the reference)

are spectrally very similar to the ones most common.

3.4.3 Spanning Tree via EM

While we demonstrated that mutual information could be used to capture spatial relation-

ships, we will in fact focus our attention on a different path forward. That is, approximating
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the lattice with a spanning tree can introduce an additional layer to the model, yielding

P(θ |X) ∝
∑

T∈τ(L)

P(X |θ, T )P(θ |T )P(T ) (3.16)

where we assume P(T ) ∝ 1 and τ(L) corresponds to the space of all spanning trees on

L. Despite the approximation of L with T in (3.6), the sum over T in (3.16) presents a

new computationally intractable piece of the model. To circumvent this, we propose the

following approximation:

P(θ |X) ∝
∑

T∈τ(L) P(X |θ, T )P(θ |T )P(T )

≈ P(X |θ, T ∗)P(θ |T ∗). (3.17)

Here, T ∗ represents a spanning tree optimized to capture the most important spatial rela-

tionships in the lattice. Formally, we desire

T ∗ = arg max
T

P(T |X) with P(T |X) =
∑
θ

P(θ, T |X). (3.18)

However, the expression in (3.18) still requires considering all possible spanning trees of

and label combinations on L. We can, instead, obtain T ∗ by utilizing our model directly

via an expectation-maximization procedure. Conveniently we have

T (t+1) = arg max
T

Eθ |X,T (t) [logP(θ, T |X)]

= arg max
T

Eθ |X,T (t) [logP(θ, X, T )]
(3.19)

With the parameters of (2.12) estimated and considered known, we can treat T as the

parameter of our model to estimate in the presence of unknown (or latent) pixel labels, θ.

To this end we have the following E-step:

Q(T, T (t)) = Eθ |X,T (t) [logP(θ, X, T )]

= Eθ |X,T (t) [logP(X |θ, T ) + logP(θ |T )]

= K + Eθ |X,T (t) [
∑

(u,v)∈T e(θu)>Je(θv)]

= K +
∑

(u,v)∈T
∑

θu,θv
e(θu)>Je(θv) · P(θu, θv |X,T (t)).

(3.20)
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In (3.20), K contains all of the terms that do not depend on T . The M-step involves

assigning the summands in the last line of (3.20) to the lattice edges as weights and then

finding T (t+1) via a Maximum Weighted Spanning Tree algorithm. In this way we maximize

the similarity, as measured by the entries of J, of neighboring pixels. Figure 3.15 gives an

example result of applying this tree approximation procedure to a toy map. Just as in

Figure 3.13 the spanning tree, T ∗, in Figure 3.15 connects regions of different land cover

classes with only one edge! Because the EM procedure developed here is more formal and

rigorous we prefer it over using mutual information to determine T ∗. One main struggle

with the EM, however, is the computation of P(θu, θv |X,T (t)) for each edge in L. This

would involve integrating out every other node in the tree, T (t). For the time being, we

approximate P(θu, θv |X,T (t)) with P(θu |X,T (t))P(θv |X,T (t)).

3.4.4 EM Tree Classification Results

According to the last line of (3.20), a combination of the entries of J and the joint pos-

teriors weight the edges of the lattice and allow for the determination of a spanning tree

approximation which maximizes these weights and captures the most important spatial

information. With missing data imputed we use EM to estimate this spanning tree by

letting the pixel labels be latent. After determining T ∗ using EM, we begin by checking

the accuracy of this approach on our original training dataset from the northeast of North

America with a confusion matrix in Table 3.7. To be fair, we also present a confusion ma-

trix of the same training data set after imputing missing data in the same way (and with

the same parameters), but classified using the independent pixel classification method. Ta-

ble 3.8 contains these results and perhaps demonstrates the superiority of the independent

pixel classification (η = 0) to the tree classification (η = 1). Overall, the tree results echo

our analysis from earlier (Section 3.1.1) in displaying a reasonably good total accuracy

and class-specific difficulties. The graphical model should not be dismissed based on these

results alone. For instance, these independent classification results might be better be-

cause the likelihood is more informative and the prior is too strong spatially in the wrong
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Table 3.7: Confusion matrix for classification of northeast training data using graphical
model. The rows represent our classification; the columns represent the true classification.

Class 1 4 5 7 8 9 10 11 12 13 14 17 Total Precision

1 178 0 58 0 24 13 0 8 0 0 0 0 281 0.63

4 0 131 43 0 9 2 0 1 36 6 71 0 299 0.44

5 13 0 80 4 28 22 0 39 1 102 0 0 289 0.28

7 0 0 0 23 0 0 0 34 0 0 0 0 57 0.4

8 0 0 2 0 1 1 0 3 0 0 0 0 7 0.14

9 0 0 1 3 2 21 0 69 0 0 0 0 96 0.22

10 0 0 0 29 0 12 243 0 81 0 0 0 365 0.67

11 0 0 0 8 1 4 0 23 0 0 0 0 36 0.64

12 0 0 0 21 0 14 83 0 792 32 31 0 973 0.81

13 20 0 0 7 0 4 1 0 0 64 0 0 96 0.67

14 0 0 0 0 1 0 0 0 8 3 22 0 34 0.65

17 0 0 0 0 0 0 0 0 0 0 0 159 159 1

Total 211 131 184 95 66 93 327 177 918 207 124 159 2692 -

Accuracy 0.84 1 0.43 0.24 0.02 0.23 0.74 0.13 0.86 0.31 0.18 1 - 0.65

Table 3.8: Confusion matrix for classification of northeast training data using independent
classification analysis pipeline. The rows represent our classification; the columns represent
the true classification.

Class 1 4 5 7 8 9 10 11 12 13 14 17 Total Precision

1 162 0 17 0 15 1 0 2 0 0 0 0 197 0.82

4 0 125 32 0 5 0 0 0 11 0 35 0 208 6×10−1

5 22 6 124 0 31 0 0 0 0 11 0 0 194 0.64

7 0 0 0 20 0 0 0 20 0 0 0 0 40 5×10−1

8 6 0 8 0 2 6 0 1 0 0 0 0 23 9×10−2

9 0 0 3 2 6 36 0 70 0 0 0 1 118 0.31

10 0 0 0 21 0 8 173 0 41 0 0 0 243 0.71

11 0 0 0 12 3 14 0 71 0 0 0 0 1×102 0.71

12 0 0 0 19 1 1 110 0 798 0 24 0 953 0.84

13 21 0 0 21 1 27 44 13 8 196 0 0 331 0.59

14 0 0 0 0 2 0 0 0 60 0 65 0 127 0.51

17 0 0 0 0 0 0 0 0 0 0 0 158 158 1

Total 211 131 184 95 66 93 327 177 918 207 124 159 2692 -

Accuracy 0.77 0.95 0.67 0.21 0.03 0.39 0.53 0.4 0.87 0.95 0.52 0.99 - 0.72

direction. That is, it merely appears that the graphical model with η = 0 performs better

than with η = 1. We should actually calibrate the values of β and η instead of simply

experimenting with values, and we discuss a method for doing so later in Section 3.4.5.

Figure 3.16 gives a classification result for Montreal using the hierarchical model de-

scribed and the centroid estimator. Clear differences can be seen between Figures 3.3

and 3.16. Because we now incorporate spatial information, the classification result is

coarser and displays less of a salt-and-pepper look. Of course we can increase the emphasis

on spatial homogeneity by increasing the value of η, as in Figure 3.17. On the other hand,

we can recover our map in Figure 3.3 by setting β = 1 and η = 0.

We must take care when setting the value of η as overly high values can coarsen the

classification result too much. For example, in Figure 3.17 observe that some of the urban

(red) portions disappear as we move from η = 1 to η = 10. In fact, despite the usefulness
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of our graphical model in incorporating spatial information, our original independent pixel

classification result in Figure 3.3 already represents a coarsening of reality.

Recall that the spatial resolution of our MODIS data is 500 m2. A potential issue and

difficulty in performing land cover classification at this scale comes in the form of mixed

pixels. That is, many (mixed) pixels consist of multiple land cover classes from our IGBP

scheme. Consequently, spectrally similar or geographically close land cover classes often get

confused at a given pixel. For this reason our collaborators in Geography often emphatically

approve of our independent pixel classification results. With this feeling in mind, our first

and main goal of using the hierarchical model consists of ridding our classification result

of isolated pixel labels within spatially homogeneous regions (i.e. preventing a salt-and-

pepper look). This may suggest that an ideal map requires only a relatively small value of

η, somewhere between 1 and 5.

While various challenges will inevitably obstruct the classification process, our hierar-

chical graphical model can beautifully accommodate any kind of prior knowledge about

the global distribution (h) of and spatial relationships (J) between land cover classes; as

well as the amount of spatial homogeneity (η) to enforce in the classification results. As

mentioned above, we can even recover the independent pixel classification result using our

hierarchical graphical model with particular values of β and η. Full classification results

for North America using the centroid estimator can be found in Figure B.2 in Appendix B.

3.4.5 Hyperparameter Elicitation

The values of β and η in (3.6) specify the strengths of the global and spatial “priors” on

the labels, respectively. They can be chosen by the user or calibrated using a separate,

pre-classified image. In the case of calibration, we propose the following iterative procedure:

[
β(t+1)

η(t+1)

]
=

[
β(t)

η(t)

]
−H(t)−1

(x)U (t) (3.21)
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where H(t)(x) and U t are the hessian and gradient of (3.6), respectively. The following

expressions comprise the entries of H and U :

∂P(θ)
∂β = γh −

∑
θ̃ γ̃h exp(βγ̃h+ηγ̃J )∑
θ̃ exp(βγ̃h+ηγ̃J )

∂P(θ)
∂η = γJ −

∑
θ̃ γ̃J exp(βγ̃h+ηγ̃J )∑
θ̃ exp(βγ̃h+ηγ̃J )

∂2P(θ)
∂β2 = − [(

∑
θ̃ exp(βγ̃h+ηγ̃J ))(

∑
θ̃ γ̃

2
h exp(βγ̃h+ηγ̃J ))−(

∑
θ̃ γ̃h exp(βγ̃h+ηγ̃J ))2]

(
∑
θ̃ exp(βγ̃h+ηγ̃J ))2

∂2P(θ)
∂η2

= − [(
∑
θ̃ exp(βγ̃h+ηγ̃J ))(

∑
θ̃ γ̃

2
J exp(βγ̃h+ηγ̃J ))−(

∑
θ̃ γ̃J exp(βγ̃h+ηγ̃J ))2]

(
∑
θ̃ exp(βγ̃h+ηγ̃J ))2

∂2P(θ)
∂β∂η = − [(

∑
θ̃ exp(βγ̃h+ηγ̃J ))(

∑
θ̃ γ̃hγ̃J exp(βγ̃h+ηγ̃J ))−(

∑
θ̃ γ̃h exp(βγ̃h+ηγ̃J ))(

∑
θ̃ γ̃J exp(βγ̃h+ηγ̃J ))]

(
∑
θ̃ exp(βγ̃h+ηγ̃J ))2

(3.22)

where γh =
∑

v h>e(θv) and γJ =
∑

(u,v)∈T e(θu)>Je(θv). Unfortunately, the expressions

in (3.22) contain some computationally intractable quantities. We identify the following

computationally feasible quantities of interest for this procedure to find β and η.

egh =
∑

v P(θv)hθv
egh2 =

∑
v P(θv)h

2
θv

egJ =
∑

(u,v)∈T tr(P(θu, θv)J)

egJ2 =
∑

(u,v)∈T tr(P(θu, θv)(J ◦ J))

egJJ =
∑

(u,v)∈T,(s,t)∈T P(θu, θv)P(θs, θt)JθuθvJθsθt
egJJe =

∑
(u,v)∈T,(v,w)∈T, u6=w

∑
θu,θv ,θw

P(θu, θv, θw)JθuθvJθvθw
eghh =

∑
u,v∈G P(θu, θv)hθuhθv

eghJ =
∑

u∈T,(v,w)∈T,u6=v,u6=w P(θu, θv, θw)hθuJθvθw

(3.23)

Assuming top-down and bottom-up messages (along the tree, T ) have been computed, the

implementation in Algorithm 2 should yield the quantities in (3.23) for a general graph, G,

which we wish to approximate with T . In our Remote Sensing context we use the lattice,

L, for our graph. We pursue the quantities found in (3.23), to use in the following way:

U (t) =

[
γ

(t)
h − egh

γ
(t)
J − egJ(t)

]
(3.24)
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Algorithm 2: Computation of β and η

Initialize: egh← 0; egh2← 0; egJ← 0; egJ2← 0; eghh← 0; egJJe← 0; eghJ← 0;
for i← 1, . . . , |V | do

v ← σ[i]; // Reference node

Compute P(θv);
egh←egh +

∑
θv
P(θv)hθv

egh2←egh2 + (h2)>P(θv)
for j ← i+ 1, . . . , |V | do

w ← σ[j];
FIND u = σ[maxk<j{(σ[k], w) ∈ T}] // k ≥ i
SEND u w and compute P(θv, θw)
if (v, w) ∈ T then

egJ←egJ + tr[P(θv, θw) · J ]
egJ2←egJ2 + tr[P(θv, θw) · (J ◦ J)]

else
if (v, w) ∈ G then

STORE P(θv, θw)
else

end

end

eghh←eghh + h>P(θv, θw)h
S = {(s, w) ∈ T : σ−1[s] > j}
for s ∈ S do

Compute P(θv, θw, θs)
if (v, w) ∈ T then

egJJe←egJJe +
∑

θv ,θw,θs
P(θv, θw, θs) · Jθv ,θw · Jθw,θs

else

end
eghJ←eghJ +

∑
θv ,θw,θs

P(θv, θw, θs) · hθv · Jθw,θs
end

end

end
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Ĥ
(t)
11 = ∂2P(θ)

∂β2 = −[eghh(t) + egh2− egh2]

Ĥ
(t)
22 = ∂2P(θ)

∂β2 = −[(egJ2(t) + egJJe(t) + egJJ(t))− egJ(t)2 ]

H
(t)
12 = H

(t)
21 = −[eghJ(t) − (egh)(egJ(t))]

(3.25)

The notation, Ĥ, indicates that we will not compute the hessian matrix exactly but an

approximation to it. Recall that in (3.20) we actually need to compute P(θu, θv |X,T (t))

for each edge in L. We currently approximate these with the products of the marginal

posteriors, but the procedure in Algorithm 2, for the calibration of β and η in (3.6), will

also obtain the joint posteriors we want here. The procedure described in Algorithm 2

could also produce an empirical estimate of η that should help ensure a realistic amount

of spatial homogeneity in maps produced using our spanning tree approximation and the

centroid estimator.
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Figure 3.14: Land cover map of a 100 pixel × 100 pixel region in MODIS tile h10v05, the
southeast portion of the United States above Florida, using the centroid estimator based
on a T determined with mutual information (β = 1, η = 1).
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 3.15: Example result of approximating tree, T ∗, using EM. Opacity of pixels in
left plot indicate strength of the posterior of the true class. Darkness of edges in left plot
indicate the strength of edge weights as shown in (3.20). Final solution in right plot.
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Figure 3.16: Land cover map of Montreal, Canada using training data in the northeast
portion of North America with β = 1 and η = 1.
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Figure 3.17: Land cover map of a 500 pixel square region surrounding Montreal, Canada
(top-left: η = 1, top-right: η = 2, bottom-left: η = 5, bottom-right: η = 10; β = 1 for all
plots).



Chapter 4

Change Point Detection

4.1 Introduction

In an effort to explore the problem more and work up to using the machinery developed

throughout the previous chapters, we consider both univariate and multivariate change

point frameworks. In what follows we introduce and assess a few change point detection

models tailored to the data characteristics of MODIS time series. That is, exploiting

land cover information from STEP training data, we specify a series of models and EM

procedures to detect distributional changes in multispectral time series while accounting

for missing data. We assess the performance of our final method in a simulation study

(Section 4.4) and case study in the Xingu Basin in the Amazon (Section 4.5).

4.2 Univariate Change Point Detection

Each pixel in our original MODIS data consisted of a single-year, multivariate observation

of 7 spectral values at 46 time points. Here, however, we possess multivariate observations

for n = 11 years. We aim to detect changes at the scale of years. That is, we wish to identify

the year in which a change occurred and not the time point (within a year) at which it

occurred. To start simply we develop a univariate change point detection procedure which

uses either band 7 or a vegetation index constructed from the spectral bands, such as EVI,

as opposed to all 7 spectral bands. Let Xiv denote the value of pixel v in year i, and cv be
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the unknown year of the change point for pixel v. We specify the following likelihood:

Xiv | i < cv
ind∼ N(µF , σ

2
F )

Xiv | i ≥ cv
ind∼ N(µcv, σ

2
cv)

(4.1)

The use of the “F” subscript stems from our case study region of interest consisting of

forested pixels that change for some reason (i.e. fire, deforestation, etc.). Similar to before,

we face the problem of missing data. Let iY and iZ denote the year indices of non-missing

(Y ) and missing data (Z), respectively. Then the full data log-likelihood is

l(Y,Z,Θ) =
∑
iY <c

logP (YiY ; Θ) +
∑
iY ≥c

logP (YiY ; Θ)

+
∑
iZ<c

logP (ZiZ ; Θ) +
∑
iZ≥c

logP (ZiZ ; Θ)

(4.2)

Appendix C.1 gives derivations of the updates for µcv and σ2
cv in an EM procedure con-

structed to estimate them in the presence of missing data. Initial values should be obtained

by taking the mean and variance of the non-missing values (Y ). When analyzing pixel v,

we run this EM procedure until convergence for each choice of change point year (cv) in-

cluding the possibility of no-change. Change detection for pixel v could then be performed

by choosing the value of cv which maximized Q(Θ,Θ(t)) at convergence. However, because

we possess some knowledge about the frequency of change in land cover, we will instead

postpone inference until after we enrich our model in a Bayesian way.

4.2.1 Univariate Bayesian CPD

So far we have only been looking at the likelihood of a change. That is, we model the data

in terms of a specific change point, cv, or lack there of. To extend this we would like to

incorporate our prior beliefs about observing change points. Specifically, we will define the

probability of seeing a certain number of change points; then given this number, we specify

the probability that the change point occurs in year cv. As per our collaborator’s expert

opinion we start with the following if Kv is the number of change points at pixel v and Cv
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is the location of the change:

P (Kv = 0) = .98, P (Kv = 1) = .02
P (Cv = cv |Kv = 1) = 1

(n−1
1 )

(4.3)

We assume that there exists at most one change point in a given time series. The former

probabilities of observing a change were elicited from our collaborator. The latter proba-

bility on the location of the change point represents a non-informative (or uniform) prior

belief about what year the change point will occur in (i.e. each year is equally likely).

Incorporating this a priori information involves a simple amendment to (4.1). We will

decide on the change point in the same way we did before. The outcome with the highest

value of Q(Θ,Θ(t)) corresponds to the change point we would call.

4.3 Multivariate Bayesian CPD

The method described above in Section 4.2 can be extended very easily to a multivariate

framework. Suppose now we wish to use any subset of the 7 spectral bands we began with:

Xiv | i < cv
ind∼ N(µF ,ΣF )

Xiv | i ≥ cv
ind∼ N(µcv,Σcv)

(4.4)

where ΣF = σ2
FΣs,F⊗Σt,F and Σcv = σ2

cvΣs,cv⊗Σt,cv. As in (2.12), our annual observations

become matrix observations that follow a multivariate normal distribution whose Kronecker

covariance breaks into spectral and temporal pieces of variation. We use the methods

established in Section 2.2 to estimate the post-change parameters of (4.4) in the presence

of missing data, for each value of cv. We identify a change point, again, by the maximizer

of Q(Θ,Θ(t)) after incorporating the same a priori information about change points given

in (4.3).

Note that the approaches described in Section 4.2 and this one specify a distribution

and parameters for a specific pre-change land cover. That is, µF and ΣF are assumed

known or estimated from training data in the region of interest. We estimate the post-
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change parameters from the data itself at each pixel. Dimensionality can be an issue here

since post-change parameter estimation requires a minimum number of observations and we

possess only 11 years of data (i.e. 11 observations in the entire time series). This can limit

the number of years we consider as potential change points. To circumvent this difficulty we

move on to proposing a model which makes explicit use of the IGBP classification scheme

in a way that does not require estimation of the same, potentially large parameters from

just 11 observations.

4.3.1 Class-to-Class CPD

In this scenario, we want to compare the pre-change class to other specific classes instead

of some “fitted” post-change class as described in the previous sections, 4.2 and 4.3. Sup-

pose we have C potential post-change classes (which do not include the pre-change class).

We estimate parameters for each of the C classes using our previously established EM

procedure, in Section 2.2.2, with independent training data from the training site database

in the region surrounding the area we wish to detect change in. With these parameters

estimated we specify the following model for pixel v:

i < cv : Xiv |µ0v ∼ N(µ0v, κ0I)
µ0v ∼ N(µF ,ΣF )

i ≥ cv : Xiv |µcv ∼ N(µcv, κcI)
µcv |Wv = g ∼ N(µg,Σg)

Wv |α ∼ MN(1,α)
α ∼ Dir(π)

Cv = cv |Kv = 1 ∝ 1
P(Kv = 1) = .02, P(Kv = 0) = .98

(4.5)

where again the covariances specified here take the form of a Kronecker product. In (4.5),

Kv once again represents the number of change points at pixel v and Cv the location

of the change point. Because Xiv contains missing data, Ziv, we derive an expectation-

maximization procedure to estimate Cv. Derivations of the following update equations can
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be found in Appendix C.2.

α
(t+1)
k =

∑
v P(Wv=k |Yv ,Θ(t))+πk−1

N−C +
∑
g πg

µ
(t+1)
0v =

(
(cv−1)
κ0

I + Σ−1
F

)−1 (
1
κ0

∑
i<cv

EZ |Y,Θ(t) [Xiv] + Σ−1
F µF

)
µ

(t+1)
cv =

(
(n−cv+1)

κc
I +

∑C
g=1 P(Wv = g |Yv,Θ(t))Σ−1

g

)−1
·(

1
κc

∑
i≥cv EZ |Y,Θ(t) [Xiv] +

∑C
g=1 P(Wv = g |Yv,Θ(t))Σ−1

g µg

)
(4.6)

Equation (4.6) makes use of the following posterior computation:

P(Wv = g |Yv,Θ(t)) =
α

(t)
g P(Yv |Wv = g,Θ(t))∑
g̃ α

(t)
g̃ P(Yv |Wv = g̃,Θ(t))

. (4.7)

For each pixel, v, we select the value of cv which maximizes the function, Q(Θ,Θ(t)), of

this EM procedure. Determining cv in this way requires the computation of Q for every

possible change point year and iterating, making this procedure potentially tedious if the

region of interest is large. We apply this method in a simulation study as well as a case

study in the following two sections.

For this class-to-class model, described above, we need to estimate parameters for

the land cover classes prevalent in our region of interest: the Xingu River Basin in the

southeastern part of the Amazon. To this end we extract data from the MODIS Training

Site Database, located in South America between 0 and 20◦S. Table 4.1 gives the class

frequencies for this training dataset. Evergreen broadleaf forests (class 2) constitute our

pre-change data. Because preliminary analysis revealed that bands 1 and 7 contain the

most spectrally distinguishable information and a smaller proportion of noise than the

inclusion of all 7 bands, we utilize only these two bands in what follows.
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Table 4.1: IGBP classes and their representativeness in the Amazon training dataset.

IGBP Description # Pixels

2 Evergreen Broadleaf Forests 1335

4 Deciduous Broadleaf Forests 480

5 Mixed Forests 122

7 Open Shrublands 425

8 Woody Savannas 116

9 Savannas 89

10 Grasslands 403

11 Permanent Wetlands 706

12 Croplands 757

13 Urban and Built-Up Lands 109

14 Cropland/Natural Veg. Mosaics 71

15 Permanent Snow and Ice 97

17 Water Bodies 125

4.4 Change Point Simulation Study

Our change point simulation study makes use of the estimated class parameters to simulate

datasets consisting of some pixels with a change and some without. More specifically, a

single replication involves simulating 60 pixels which do not contain a change and 60 pixels

which do contain a single change point. For each pixel we simulate 10 years (observations)

of data. Each annual profile consists of simulating bands 1 and 7 over 19 time points.

We simulate no-change data entirely from class 2 (Evergreen Broadleaf Forests). Whereas

change data begins with class 2 and moves to a different class at some point in the time

series. A randomly chosen 5% of each observation is assumed to be missing. We vary

two things in this study: the post-change class and the change point year. There are

12 land cover classes outside of our designated pre-change class and 60 changed pixels in

each replication, so we simulate changing to each of these 12 classes 5 times within each

replication. The change point year varies from year 3 to year 7, with each one replicated

20 times for a total of 100 replicates in our simulation study.

Table 4.2 gives a confusion matrix of results aggregated for the entire simulation study.
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Recall that we have 10 years of data in each simulated pixel, and so we can identify any

of these 10 years as the change year OR decide the pixel did not change. Overall, the

accuracies and precisions indicate that our method can perform very well in finding a

change between Evergreen Broadleaf Forests and the other land cover classes. The most

striking features of this confusion matrix appear in the No-Change row and column. We

call a noticeable amount of false-positives in years 9 and 10 of these pixel time series. As

we shall see in the case study below, our method can pick up on small changes. This is

likely the case here in the sense that sufficient variation in the simulated data caused a

change to be called.

Tables 4.3 and 4.4 summarize the simulation study results when the post-change classes

are Mixed Forests (class 5) and Wetlands (class 11), respectively. These two particular

post-change classes contain nearly all of the mistakes made by our method outside of

the no-change situation described above. Mixed Forests and Wetlands are both mixture

classes and thus challenging ones to identify and distinguish, as evidenced by the results in

Section 3.1. Furthermore, Mixed Forests can, by definition, contain Evergreen Broadleaf

Forests which likely explains why most of the mistakes in Table 4.3 consist of no-change

results. Confusion in the other direction also exists upon inspection of the results in

Table 4.5. In other words, the mistaken no-change pixels in Table 4.2 supposedly changed

to classes 5 (Mixed Forests), 8 (Woody Savannas), or 14 (Cropland/Natural Vegetatin

Mosaics). These estimated post-change classes can be informally obtained via the arg max

of the posteriors in (4.7).

The specification of π in (4.5) provides an advantageous flexibility that we can utilize

to inform the model of land cover classes we anticipate seeing after a change has occurred,

making our approach particularly well suited for changes in the form of land cover con-

version. In any case, changes from Evergreen Broadleaf Forests to Croplands or Urban

and Built-Up Lands constitute the most realistic changes in the data we consider here. In

general, though, Evergreen Broadleaf Forests will likely never completely change to a land

cover class exhibiting extreme spectral similarities.



102

Table 4.2: Overall confusion matrix for change point simulation study. Columns correspond
to the true year of change. Rows correspond to the year of change we identify. The first
row and column correspond to no change.

Year No-Change 1 2 3 4 5 6 7 8 9 10 Total Precision
No-Change 4919 0 0 0 0 30 55 90 0 0 0 5094 0.97

1 0 0 0 0 0 0 0 0 0 0 0 0 -
2 0 0 0 15 6 1 2 0 0 0 0 24 0
3 4 0 0 1185 12 3 2 0 0 0 0 1206 0.98
4 2 0 0 0 1182 9 6 2 0 0 0 1201 0.98
5 5 0 0 0 0 1157 13 3 0 0 0 1178 0.98
6 16 0 0 0 0 0 1122 14 0 0 0 1152 0.97
7 32 0 0 0 0 0 0 1091 0 0 0 1123 0.97
8 78 0 0 0 0 0 0 0 0 0 0 78 0
9 196 0 0 0 0 0 0 0 0 0 0 196 0

10 748 0 0 0 0 0 0 0 0 0 0 748 0
Total 6000 0 0 1200 1200 1200 1200 1200 0 0 0 12000 -

Accuracy 0.82 - - 0.99 0.98 0.96 0.94 0.91 - - - - 0.89

Table 4.3: Confusion matrix of results when post-change class is Mixed Forests (class 5).
Year No-Change 1 2 3 4 5 6 7 8 9 10 Total Precision

No-Change 0 0 0 0 0 30 55 90 0 0 0 175 0
1 0 0 0 0 0 0 0 0 0 0 0 0 -
2 0 0 0 3 2 0 0 0 0 0 0 5 0
3 0 0 0 97 5 0 1 0 0 0 0 103 0.94
4 0 0 0 0 93 2 1 0 0 0 0 96 0.97
5 0 0 0 0 0 68 2 0 0 0 0 70 0.97
6 0 0 0 0 0 0 41 0 0 0 0 41 1
7 0 0 0 0 0 0 0 10 0 0 0 10 1
8 0 0 0 0 0 0 0 0 0 0 0 0 -
9 0 0 0 0 0 0 0 0 0 0 0 0 -

10 0 0 0 0 0 0 0 0 0 0 0 0 -
Total 0 0 0 100 100 100 100 100 0 0 0 500 -

Accuracy - - - 0.97 0.93 0.68 0.41 0.1 - - - - 0.62

Table 4.4: Confusion matrix of results when post-change class is Wetlands (class 11).
Year No-Change 1 2 3 4 5 6 7 8 9 10 Total Precision

No-Change 0 0 0 0 0 0 0 0 0 0 0 0 -
1 0 0 0 0 0 0 0 0 0 0 0 0 -
2 0 0 0 12 4 1 2 0 0 0 0 19 0
3 0 0 0 88 7 3 1 0 0 0 0 99 0.89
4 0 0 0 0 89 6 5 2 0 0 0 102 0.87
5 0 0 0 0 0 90 10 3 0 0 0 103 0.87
6 0 0 0 0 0 0 82 14 0 0 0 96 0.85
7 0 0 0 0 0 0 0 81 0 0 0 81 1
8 0 0 0 0 0 0 0 0 0 0 0 0 -
9 0 0 0 0 0 0 0 0 0 0 0 0 -

10 0 0 0 0 0 0 0 0 0 0 0 0 -
Total 0 0 0 100 100 100 100 100 0 0 0 500 -

Accuracy - - - 0.88 0.89 0.9 0.82 0.81 - - - - 0.86

Table 4.5: Estimated post-change class of simulated no-change pixels.
Class 5 8 14

Count 2 95 982
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4.5 Change Point Case Study

We applied the model described in (4.5) to an area (∼134 km2) in the Xingu River Basin,

located in the Southeastern part of the Amazon in the State of Mato Grosso, Brazil.

The study region has several distinct types of natural vegetation including moist tropical

rainforest, cerrado, and deciduous forest. Despite containing substantial area of protected

indigenous lands, large areas of the basin’s evergreen broadleaf forests (EBF) have been

converted to agricultural lands for soybean production and cattle ranching since 2000.

We characterize the regional land cover classes using a set of training sites in South

America located in the Olson ’Tropical and Subtropical Moist Broadleaf Forests’ biome

between 0 and 20◦S [31]. Two spectral bands (band 1 (620-670 nm) and band 7 (2105-2155

nm)), and a temporal subset of 19 observations per year were selected for our analysis in

order to exclude the wet season.

To assess our results, we use the PRODES (Monitoring the Brazilian Amazon Gross De-

forestation) dataset produced by Brazil’s National Institute for Space Research (INPE) [54].

This annual product provides polygon-based maps of deforestation delineated from Landsat

data using a combination of methods including linear spectral unmixing, image segmen-

tation, unsupervised classification, and manual interpretation [112]. We derived annual

sub-pixel fractions of deforestation for each MODIS pixel by resampling the 30 m data to

500 m spatial resolution corresponding to MODIS pixels. From the fractional deforestation

information, the reference year of change for each pixel can be determined by applying a

threshold.

Applying our proposed class-to-class EM algorithm to a 25 pixel× 25 pixel region did

take some time, but the results clearly demonstrate the quality of our method. Figures 4.1

and 4.2 give side-by-side comparisons of our predictions with distance metric-based results

from [51] as well as references determined, as described above, using 20% and 60% change

thresholds. Physically, the threshold represents the proportion of the pixel that needs to

have changed for the entire pixel to be deemed a changed pixel. The year a pixel reaches
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Figure 4.1: Change point reference map for Xingu basin with change threshold of 20%
(right), distance metric-based predictions (middle), and our predictions (left).

Figure 4.2: Change point reference map for Xingu basin with change threshold of 20%
(right), distance metric-based predictions (middle), and our predictions (left).

or surpasses this threshold becomes the change point year called for that pixel.

Our predictions in Figures 4.1 and 4.2 match the references pretty well. We seem to bare

closer resemblance to the reference based on a 20% threshold, indicating that our method

can pick up on small changes. Table 4.6 summarizes our spatial accuracy at detecting

changes. By spatial accuracy we just mean accuracy at calling a change or not; and not

necessarily calling the correct change year. Very high values in this table further bolster

the success of our EM procedure. Not only do our results bare close resemblance to the

reference maps, but we seem to display a better match than the distance metric-based

results in the middle pane. Indeed, the distance metric-based spatial accuracies are almost
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Table 4.6: Our spatial accuracies for change point case study.

Threshold % Accuracy Precision

> 0% 0.87 0.93

> 20% 0.96 0.81

> 40% 0.97 0.74

> 60% 0.97 0.64

> 80% 0.99 0.54

Table 4.7: Distance metric-based spatial accuracies for change point case study.

Threshold % Accuracy Precision

> 0% 0.88 0.93

> 20% 0.96 0.80

> 40% 0.97 0.73

> 60% 0.98 0.64

> 80% 1 0.54

Table 4.8: Confusion matrix for our change detection in case study region with reference
created using a 20% change threshold. Columns are reference year of change and rows are
predicted year of change.

Year No Change 2003 2004 2005 2006 2007 2008 2009 Total Precision

No Change 365 0 0 0 0 0 9 0 374 0.98

2003 0 1 0 0 0 0 0 0 1 1

2004 1 6 13 0 0 0 0 0 20 0.65

2005 3 1 18 24 0 1 0 0 47 .51

2006 14 0 2 12 32 3 0 0 63 .51

2007 0 0 0 2 2 42 0 0 46 0.91

2008 28 0 0 3 1 35 3 0 70 0.04

2009 2 0 0 0 0 1 1 0 4 0

Total 414 8 33 41 35 81 13 0 625 -

Accuracy 0.88 0.13 0.39 0.59 0.91 0.52 0.23 - - 0.77

identical to ours (Table 4.7). A closer look at the maps (Figures 4.1 and 4.2) and the

temporal accuracies in Tables 4.8 and 4.9 sheds more light on our ability to detect change

and slight temporal superiority to the distance metric-based approach.

Tables 4.8 and 4.9 detail the temporal comparison of change detection results with a

reference determined using a 20% change threshold. Our accuracies and precisions vary

widely, but retain a very nice overall accuracy of 77% while the distance metric-based



106

Table 4.9: Confusion matrix for distance metric-based change detection in case study region
with reference created using a 20% change threshold. Columns are reference year of change
and rows are predicted year of change.

Year No Change 2003 2004 2005 2006 2007 2008 2009 2010 Total Precision

No-Change 363 0 0 2 0 1 5 0 0 371 0.98

2003 2 7 1 0 0 0 0 0 0 10 0.7

2004 5 1 32 19 1 0 0 0 0 58 0.55

2005 3 0 0 17 27 0 0 0 0 47 0.36

2006 9 0 0 1 7 33 1 0 0 51 0.14

2007 18 0 0 2 0 46 4 0 0 70 0.66

2008 9 0 0 0 0 1 3 0 0 13 0.23

2009 2 0 0 0 0 1 0 0 0 3 0

2010 2 0 0 0 0 0 0 0 0 2 0

Total 413 8 33 41 35 82 13 0 0 625 -

Accuracy 0.88 0.88 0.97 0.41 0.2 0.56 0.23 - - - 0.76

method comes in around 76%. The plots in Figure 4.3 make clearer the theme, present

in the maps and confusion matrix, that our temporal errors are almost exclusively limited

to being off by only one year (evidenced by the fact that the pairwise-points on these

curves add to around 1). Furthermore, the trends of the curves in Figure 4.3 portray our

expectations exactly. That is, our temporal accuracy increases as the change threshold for

the reference increases.

An even closer look at a couple of sample pixels from the case study area confirms

that temporal accuracy may misrepresent the quality of the method and highlights the low

severity of many of these types of errors. For example, in Figure 4.4 the change seems to

perhaps have occurred at some point in the middle of 2003. We identify 2004 as the year

of the change while the reference labels 2003. This may be an issue of temporal resolution,

in only identifying changes at the yearly scale, or perhaps a semantic issue. By semantic

we mean that our procedure models pre-change data for i < cv and post-change data for

i ≥ cv, when perhaps choosing to model pre-change data for i ≤ cv and post-change data

for i > cv would have resulted in a “correct” change point identification.

The second example in Figure 4.5 seems to describe a pixel experiencing a gradual

change as opposed to an abrupt change. While the reference calls 2004 at what appears

to be the beginning of the change, we call 2006 when the change is close to completion.
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Figure 4.3: These plots display the proportion of pixels in which we identify the correct
change year (black) and the proportion of pixels for which our called year is off by 1 (red).

By comparing different land cover classes to class 2, we seek only a distributional change

from class 2. When taking the variances into account, it may be difficult to judge a pixel

as changed until the pixel’s departure from class 2 reaches a certain magnitude.

In any case, the results in Figures 4.4 and 4.5 are more than reasonable and provide

evidence that our EM procedure reliably identifies changed pixels and pixels which have not

changed. In fact we even prefer our prediction in Figures 4.4 and 4.5 to the reference value,
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Figure 4.4: Sample time series for pixel 3 in case study dataset. Our prediction is in red
and the reference is in blue.

Figure 4.5: Sample time series for pixel 5 in case study dataset. Our prediction is in red
and the reference is in blue.

establishing our method as an excellent way to identify change. Though the results may

not be compelling enough to call our method more accurate than the distance metric-based

approach, our method certainly provides greater interpretability by modeling conversion-

type changes and actually allowing for an informal estimate of the post-change land cover.
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Finally, our method consists of a principled parameter estimation procedure and robust

way to detect change in the presence of missing data.



Chapter 5

Conclusion

In this work we proposed and applied novel approaches to the Remote Sensing tasks of

land cover classification and change detection. Most historical approaches to land cover

classification assume the data are independent and fail to incorporate valuable spatial

information. We began by specifying a matrix normal likelihood for the data, conditional on

the land cover class, which partitions the variance into spectral and temporal components.

Despite being a parametric assumption, the matrix normal distribution naturally fits the

spectral-temporal structure of the data and allows us to vary only particular parameters

with land cover class. That is, our matrix normal model involves class-specific means

and temporal covariance matrices since important seasonal characteristics vary across land

cover classes and warrant retention. A single spectral covariance matrix captures the

relationships between spectral bands which we assume does not depend on land cover

class.

We develop a new expectation-maximization procedure to estimate the parameters of

our matrix normal model in the presence of missing data. Using regionalized training data

from the (global) STEP database we obtain estimates which accurately describe the land

cover classes in particular areas. We derive another EM algorithm for imputing missing

data using these parameter estimates. Despite taking considerable time, the imputation

of missing data constitutes an important step in the data processing and classification

process. Our formal imputation assumes the pixel labels are unknown and fills in missing

values using information from both the class means and covariances.

Once the data have been imputed we convert the spectral-temporal observations into
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temporal profiles of three principal component scores. Previous work established the pres-

ence of correlation between the seven spectral land bands of MODIS. So, with an eye

towards reducing the dimensionality of the data, we target our estimate of the spectral

covariance with principal components analysis. This PCA recovered the well-established

Tasseled Cap Transformation for MODIS, yielding physically explainable principal compo-

nents (‘Brightness’, ‘Greenness’, and ‘Wetness’). With over 90% of the spectral variation

explained by the first three principal components we move into a framework which uti-

lizes 3 × 28 matrix observations (instead of the old 7 × 28) that contain the most useful

spectral-temporal information present in the data.

We developed a collection of tools to assess the quality of training data sites which

led to the identification of potentially problematic or confused sites. With the missing

values imputed and the dimension reduced we proceeded to replicate an independent pixel

classification using a simple, pixel-wise maximum a posteriori estimator. In the presence

of mixed pixels and low spatial resolution (500 m2) these simple maps actually achieve

satisfying results. However, the persistent salt-and-pepper look, ambiguity of some class

definitions, and the presence of within-class variability across different climates required

further attention along our initial research trajectory. To account for multi-modality in

the data we successfully utilized a hierarchical clustering of climate data to create a new

set of refined land cover classes. In pursuit of a Bayesian framework which exploits spatial

relationships in its classification procedure, we specified a hierarchical graphical model on

the lattice of pixels in an image. After approximating the prior distribution on the lattice

in a computationally efficient way, we used the marginal posterior probabilities at each

pixel and the centroid estimator to create more spatially homogeneous land cover maps.

We followed our foray into land cover classification with a novel change detection tech-

nique that models a change from a pre-defined land cover class to another pre-defined land

cover class. That is, we specify a model which assumes that the pre-change data at a given

pixel come from a particular IGBP land cover class, and that the post-change data at that

pixel come from a different IGBP land cover class. On the heels of our success with land
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Table 5.1: New land cover classification scheme based only on land cover and excluding
land use.

CLASS CLASS NAME

1 Evergreen Needleleaf Forests
2 Evergreen Broadleaf Forests
3 Deciduous Needleleaf Forests
4 Deciduous Broadleaf Forests
5 Mixed Forests
6 Woody Savannah
7 Savannah
8 Dense Shrub
9 Herbaceous Shrub Mix
10 Dense Herbaceous
11 Sparse Shrub
12 Sparse Herbaceous
13 Barren
14 Snow and Ice
15 Water Bodies

cover classification, we use the same matrix normal likelihood and estimate the parameters

using the same EM procedure. Because our change point data also contain missing data

we successfully identified change points (or lack thereof) using another EM algorithm.

Major advantages of our work include increased interpretability, principled accommo-

dation of missing data, and thorough incorporation of spatial information into our clas-

sification method. The avenues of future work extend in many directions. For example,

the land cover class definitions according to the International Geosphere-Biosphere Pro-

gramme (found in Table 1.2) contain some ambiguity and noticeable correlation with each

other. The definitions themselves mirror the confusions and points of contention revealed

by our analysis in Sections 2.7.4 and 3.1.1. The “Urban and Built-Up,” “Cropland,” and

“Cropland/Natural Vegetation Mosaics” classes describe land uses as opposed land covers.

Consequently, there can exist unnecessarily large amounts of variation in these classes.

The “Permanent Wetlands” class is another mixture class which presents almost unavoid-

able difficulty. Future work may involve a custom land cover classification scheme (LCCS)

based on the foundation in [24] which resolves these issues. We propose one such scheme

in Table 5. Land cover change detection should, in the future, also incorporate spatial

information. Further work will be done into the calibration of β and η as outlined in Sec-

tion 3.4.5. Finally, adaptation of the centroid estimator to the use of a well constructed
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gain matrix should improve the classification results by exploiting the similarities between

many of the land cover classes.
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Figure A.1: First two principal components for North America training data after clustering
using climate metrics.

Appendix A

Climate Clustering Plots

A.1 Principal Components Plots
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North America Maps
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Figure B.1: Map of North America using independent pixel classification and northeast training data.
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Figure B.2: Map of North America using hierarchical graphical model and northeast training data.
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Figure B.3: Map of North America using independent pixel classification, North America training data without the urban class.
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Figure B.4: Map of North America using independent pixel classification, North America training data without urban and
wetlands classes



Appendix C

Change Point Derivations

C.1 Univariate Parameter Estimation via EM

So, for the E-step:

Q(Θ,Θ(t)) = EZ |Y ;Θ(t) [l(Y, Z,Θ)] = EZ |Θ(t) [l(Y,Z,Θ)]

We can drop the Y because our yearly observations are assumed to be independent.

Q(Θ,Θ(t)) =
∑
v

[ ∑
viY <cv

logP (YviY ; Θ) +
∑

viY ≥cv

logP (YviY ; Θ)

+
∑

viZ<cv

EZ |Θ(t) [logP (ZviZ ; Θ)] +
∑

viZ≥cv

EZ |Θ(t) [logP (ZviZ ; Θ)]

]

(C.1)

Because we only want to estimate µcv and σ2
cv we can focus our attention on two of the

four terms in (C.1):

Q(Θ,Θ(t)) =
∑

vK +
∑

viY ≥cv
logP (YviY ; Θ) +

∑
viZ≥cv

EZ |Θ(t) [logP (ZviZ ; Θ)]

=
∑

vK
∗ − n−c+1

2 log(σ2
cv)− 1

2σ2
cv

∑
viY ≥cv

(YviY − µcv)
2

− 1
2σ2
cv

∑
viZ≥cv

EZ |Θ(t) [(ZviZ − µcv)
2]

Let µ̃
(t)
viZ

= EZ |Θ(t) [ZviZ ]. Then,
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Q(Θ,Θ(t)) =
∑

vK
∗ − n−c+1

2 log(σ2
cv)− 1

2σ2
cv

∑
viY ≥cv

(YviY − µcv)
2

− 1
2σ2
cv

∑
viZ≥cv

EZ |Θ(t) [(ZviZ − µcv)
2]

=
∑

vK
∗ − n−c+1

2 log(σ2
cv)− 1

2σ2
cv

∑
viY ≥c

(YviY − µcv)
2−

1
2σ2
cv

∑
viZ≥cv

EZ |Θ(t) [((ZviZ − µ̃
(t)
viZ

)(µ̃
(t)
iZ
− µcv))2]

=
∑

vK
∗ − n−c+1

2 log(σ2
cv)− 1

2σ2
cv

∑
viY ≥cv

(YviY − µcv)
2−

1
2σ2
cv

∑
viZ≥cv

EZ |Θ(t) [(ZviZ − µ̃
(t)
viZ

)2] + (µ̃
(t)
viZ
− µcv)2

=
∑

vK
∗ − n−c+1

2 log(σ2
cv)− 1

2σ2
cv

∑
viY ≥cv

(YviY − µcv)
2

− 1
2σ2
cv

∑
viZ≥cv

σ2(t)
cv + (µ̃

(t)
viZ
− µcv)2

Since the observed and unobserved data are independent we have µ̃
(t)
viZ

= µ
(t)
cv .

Q(Θ,Θ(t)) =
∑
v

K∗ − n− c+ 1

2
log(σ2

cv)

− 1

2σ2
cv

∑
viY ≥cv

(YviY − µcv)
2 − 1

2σ2
cv

∑
viZ≥cv

σ2(t)

cv + (µ(t)
cv − µcv)2

Now for the M-step we will maximize Q(Θ,Θ(t)) as a function of µcv and σ2
cv:

∂Q
∂µcv

= 1
σ2
cv

∑
viY ≥cv

(YviY − µcv) + 1
σ2
cv

∑
viZ≥cv

(µ
(t)
cv − µcv) = 0

=⇒ µ
(t+1)
cv = 1

n−c+1

[∑
viY ≥cv

YviY +
∑

viZ≥cv
µ

(t)
cv

]

∂Q
∂σ2
cv

= −n−c+1
2σ2
cv

+ 1
2σ4
cv

∑
viY ≥cv

(YviY − µcv)
2 + 1

2σ4
cv

∑
viZ≥cv

σ2(t)
cv + (µ

(t)
cv − µcv)2 = 0

=⇒ σ
(t+1)
cv = 1

n−c+1

[∑
viY ≥cv

(YviY − µ
(t+1)
cv )2 +

∑
viZ≥cv

σ2(t)
cv + (µ

(t)
cv − µ(t+1)

cv )2
]
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C.2 Derivation of EM updates in Class-to-Class Framework

α

Qα = EZ,W |Y,Θ(t) [log[
∏
v

∏C
g=1(P(µc |Wv = g)P(Wv = g |α))I(Wv=g)P(α)]]

= EZ,W |Y,Θ(t) [
∑

v

∑C
g=1 I(Wv = g)[logP(µc |Wv = g) + logP(Wv = g |α)︸ ︷︷ ︸

αg

] + logP(α)]

' EZ,W |Y,Θ(t) [
∑

v

∑C
g=1 I(Wv = g) logαg + log( 1

B(π)

∏
i α

πi−1
i )]

=
∑

v

∑C
g=1 EZ,W |Y,Θ(t) [I(Wv = g)] logαg + (πg − 1) logαg

∂Qα
∂αk

=
∑
v P(Wv=k |Yv ,Θ(t))+πk−1

αk
−

∑
v P (Wv=C |Yv ,Θ(t))+πC−1

1−
∑C−1
g=1 αg

=⇒ α
(t+1)
k =

∑
v P(Wv = k |Yv,Θ(t)) + πk − 1∑C

g=1

∑
v P(Wv = g |Yv,Θ(t)) + πg − 1

=

∑
v P(Wv = k |Yv,Θ(t)) + πk − 1

N − C +
∑

g πg

with the following

P(Wv = g |Yv,Θ(t)) =
α

(t)
g P(Yv |Wv = g,Θ(t))∑
g̃ α

(t)
g̃ P(Yv |Wv = g̃,Θ(t))
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µ0v

Qµ0v = EZ,W |Y,Θ(t)

 log[
∏
v

∏
i<cv

P(Xiv |µ0v)P(µ0v)]



= EZ,W |Y,Θ(t)

∑v

∑
i<cv

logP(Xiv |µ0v) + logP(µ0v)



= EZ,W |Y,Θ(t)

∑v

∑
i<cv

(Xiv − µ0v)
>( 1

κ0
I)(Xiv − µ0v)

+(µ0v − µF )>Σ−1
F (µ0v − µF )


∂Qµ0v
∂µ0v

= −2
κ0

∑
i<cv

EZ |Y,Θ(t) [(Xiv − µ0v)] + 2Σ−1
F (µ0v − µF )

=⇒ µ
(t+1)
0v =

(
(cv − 1)

κ0
I + Σ−1

F

)−1
(

1

κ0

∑
i<cv

EZ |Y,Θ(t) [Xiv] + Σ−1
F µF

)

µcv

Qµcv = EZ,W |Y,Θ(t)

 log[
∏
v(
∏
i≥cv P(Xiv |µcv)

∏C
g=1(P(µcv |Wv = g)P(Wv = g |α))I(Wv=g))]


= EZ,W |Y,Θ(t) [

∑
v(
∑

i≥cv logP(Xiv |µcv)
+
∑C

g=1 I(Wv = g)[logP(µcv |Wv = g) + logαg)]]

∂Qµc
∂µcv

= −2
κc

∑
i≥cv EZ |Y,Θ(t) [Xiv − µcv] + 2

∑C
g=1 EZ,W |Y,Θ(t) [I(Wv = g)]Σ−1

g (µcv − µg)
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=⇒ µ(t+1)
cv =

(n− cv + 1)

κc
I +

C∑
g=1

P(Wv = g |Yv,Θ(t))Σ−1
g

−1

·

 1

κc

∑
i≥cv

EZ |Y,Θ(t) [Xiv] +
C∑
g=1

P(Wv = g |Yv,Θ(t))Σ−1
g µg


again with

P(Wv = g |Yv,Θ(t)) =
α

(t)
g P(Yv |Wv = g,Θ(t))∑
g̃ α

(t)
g̃ P(Yv |Wv = g̃,Θ(t))

The update for cv, c
(t+1)
v , is computed by going through each possible change point year

and computing Q with the updates from above. The value of cv that maximizes Q (and

makes Q greater than the previous iteration’s max Q) is what cv should be updated to.
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