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ABSTRACT

I consider a well-known problem in the field of statistical genetics called a genome-wide

association study (GWAS) where the goal is to identify a set of genetic markers that are

associated to a disease. A typical GWAS data set contains, for thousands of unrelated

individuals, a set of hundreds of thousands of markers, a set of other covariates such as

age, gender, smoking status and other risk factors, and a response variable that indicates

the presence or absence of a particular disease. Due to biological phenomena such as the

recombination of DNA and linkage disequilibrium, parents are more likely to pass parts of

DNA that lie close to each other on a chromosome together to their offspring; this non-

random association between adjacent markers leads to strong correlation between markers

in GWAS data sets. As a statistician, I reduce the complex problem of GWAS to its

essentials, i.e. variable selection on a large-p-small-n data set that exhibits multicollinearity,

and develop solutions that complement and advance the current state-of-the-art methods.

Before outlining and explaining my contributions to the field in detail, I present a literature

review that summarizes the history of GWAS and the relevant tools and techniques that

researchers have developed over the years for this problem.
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Chapter 1

Introduction

1.1 Literature Review

1.1.1 Background

Although there is no variation in virtually all of the DNA across humans, we do observe

some locations along the chromosomes that vary from individual to individual due to

random biological events such as mutations of parts of the genetic code that children

receive from their parents. Researchers have postulated that these points of variation, also

called single nucleotide polymorphisms (SNPs) or more recently single nucleotide variants

(SNVs), genetic markers, or simply variants, could ultimately lead to errors in the coding of

genes or other regions of the genome that may result in benign effects such as a change in eye

color, but that also may result in malignant effects such as an increased risk of developing a

particular disease [11]. Not long after scientists successfully sequenced the human genome

at the beginning of the 21st century [54, 83], researchers began to create public databases

such as the international HapMap project to store information about SNPs [30]. As the

throughput of genotype technologies have increased while cost has decreased, geneticists

have already developed arrays that can identify over a million of an individual’s unique

configuration of SNPs by exploiting the biochemical principle that nucleotides bind to their

complementary partners [53].

Genome-wide association studies (GWAS) [19] aim to solve the important problem

in statistical genetics of first identifying SNPs associated with a particular disease and

then using them to search the surrounding regions of the chromosome to possibly draw a
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connection to other points of interest such as genes that could be related to that disease.

By fitting an appropriate statistical model to GWAS data that is capable of detecting

causal SNPs, researchers may then work with geneticists and biologists to gain a better

understanding of how a disease develops and even gain better insight on how to construct

a cure. Since correlation does not imply causation, researchers typically use a multi-stage

approach in their analysis of GWAS data and seek to validate the signals observed in one

data set by trying to replicate their findings in an second, independent population sample;

even if the signal can be replicated in an independent data set, a functional study is required

before they can draw any specific conclusions about the mechanisms of a disease [39].

A typical GWAS data set contains a vector of n response variables, y, where yi denotes

the measured trait of interest for the ith individual, and a matrix of SNP data, X, where

X>i denotes the numbers of minor alleles (either 0, 1, or 2) present at each of p SNPs for

the ith individual. An allele in this context refers to one of the two nucleotides that a

child inherits from his or her parents (either A, T, C, or G) and the minor allele of the jth

SNP is defined as the allele that occurs less frequently in the overall population with minor

allele frequency (MAF) πj . It is also common to include an additional matrix of covariates,

V , that encode features such as the age, gender, and smoking status of each individual.

Through a naturally occurring biological event called recombination, chromosomes may

exchange genetic information with each other, for instance through the breaking apart

and rejoining of DNA strands, to form novel combinations of alleles [2]. The probability

of a recombination event occurring between any two points on a chromosome increases

as a function of the distance between them and so two alleles that are relatively close to

each other are more likely to remain together after recombination has taken place. After

many generations of recombinations, the observed non-random association of SNPs at the

population level is called linkage disequillibrium (LD) [5] and it results in patterns of

correlation in the columns of X.

LD has pros and cons: it is possible to indirectly identify additional SNPs or genes by

showing that they are in LD with a SNP [52, 48]; however, the multicollinearity in X leads
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not only to a violation of the independence assumption when performing single SNP tests

of association but also to inefficient estimation of model parameters in multiple regression

models [85]. A common strategy to account for the bias induced by multicollinearity when

analyzing SNPs jointly is to replace a group of highly correlated SNPs with only one of its

members [42]; for instance, researchers have developed many algorithms that explot known

LD patterns in a given region of the genome to replace a block of correlated markers

with a subset of markers called tag SNPs that are representative of that region’s variation

[45, 78, 86, 14]. For example, the CLUSTAG [4] method in particular uses hierarchical

clustering and set-cover algorithms to obtain a set of tag SNPs that can represent all the

known SNPs in a chromosomal region, subject to the constraint that all SNPs must have

a squared correlation R2 > ρ with at least one tag SNP, where ρ is specified by the user.

The developers of this method point out that when clustering SNPs for such a task, an

appropriate measure of distance is 1−R2 since the required sample size for a tag SNP to

detect an indirect association with a disease is inversely proportional to the R2 between

the tag SNP and the causal SNP.

Before analyzing the statistical relationship between y and X (and V ), researchers must

inspect X for other potential sources of bias such as population stratification or genotyping

errors. The problem known as population stratification refers to the situation where an

imbalance in the relative numbers of healthy individuals and diseased individuals sampled

from different populations that have different disease prevalances can lead to false-positives

in association studies [39]. An ideal model for SNP data called the Hardy-Weinberg model

or Hardy-Weinberg Equilibrium (HWE) [36] assumes, in simple terms, that alleles for the

jth SNP are passed independently from one generation to the next with constant minor

allele frequency πj so that Xij ∼ Binomial(2, πj). Significant deviations from HWE are

one way in which researchers can detect problematic SNPs in GWAS data sets perhaps due

to the aforementioned biases [89]. Principal component analysis, a technique that uses an

orthogonal transformation to convert a set of observations of possibly correlated variables

into a set of values of linearly uncorrelated variables [47], has also been shown to be an
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effective tool in revealing the population structure in a GWAS data set and subsequently

allowing for a correction for population stratification [73].

The standard per-marker quality control for a GWAS data set consists of at least four

steps: (i) identification of SNPs with an excessive missing genotype, (ii) identification of

SNPs showing a significant deviation from HWE, (iii) identification of SNPs with signif-

icantly different missing genotype rates between cases and controls and (iv) the removal

of all rare variants, i.e. markers with a very low minor allele frequency (e.g. πj < 1%)

[3]. Since the power to detect association with rare variants is low [65], they are usually

removed from GWAS data sets; however, it is noteworthy that researchers have recently

begun to consider specialized models that try boosting the power to detect association for

instance by prioritizing rare variants in a given region in a way that exploits weights based

on their MAFs [90] or by collapsing and summarizing rare variants in a region [55].

Presently the most popular method of analyzing GWAS data sets, at least in a pre-

screening step, is to write a computer program or to use a well-known, freely available

tool set like PLINK [74] to first apply data quality control filters like the ones described

above and then to fit a simple linear (or logistic) regression model for a quantitative (or

qualitative) response variable, one SNP at a time, of the form:

yi = β0 + βjXij + V >i η + εi, for i = 1, . . . , n

where β0 is a baseline intercept term, βj denotes the effect size of the jth SNP, η denote

the effect sizes of the additional covariates in V and the residual term are assumed to be

independent and identically distributed random variables such that εi
iid∼ Normal(0, τ2pop).

After fitting each of the p models, researchers scan the genome for regions that may be

associated to the trait by computing and plotting − log10(p-valuej) where p-valuej is the

p-value of the following hypothesis:

H0 : βj = 0 vs. Ha : βj 6= 0
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When conducting p hypothesis tests using the same response variable, there is an in-

flated risk of committing a Type I error, i.e. rejecting the null hypothesis by mistake due

to the multiple comparisons problem [23]. Supposing a significance level of αsig for each

of the p independent single SNP tests, the probability of committing at least one Type I

error becomes 1 − (1 − αsig)
p. A simple solution to the multiple comparisons problem is

to define αsig in such a way that controls an experiment or genome-wide significance level

for instance by using a technique such as the Bonferroni correction [23]. This technique is

fast and easy to implement; however, the resulting genome-wide significance level (αsig/p)

may be too conservative because it fails to take into account the patterns of correlation

in typical GWAS data sets [68]. An ideal but unfortunately impractical solution would be

to collect many more samples to make it possible to analyze the markers jointly. Recent

approaches adopt a more practical stategy and aim at gaining more statistical power by

pooling information across studies through meta-analysis [24].

For case-control GWAS where y is a binary vector that encodes the presence or absence

of a disease for each individual, another popular but computationally intense solution to the

multiple comparisons problem is to apply a permutation test and assess significance based

on a distribution of the test statistics computed after permuting the case-control labels

a large number of times. The permutation test is considered a gold standard in GWAS

because it takes into account the correlation among SNPs caused by LD [27]. While

some reseachers have worked on reducing the burden of those permuting computations

by developing approximation algorithms or considering alternative frameworks [67], other

researchers have made progress by considering calculating a genome-wide significance level

based on the effective number of independent tests [16, 22].

There are currently many proposed models for GWAS [7] including but not limited

to penalized regression approaches [91], approaches based on Bayesian variable selection

[33], and machine learning methods [79]. The models that analyze SNPs independently or

in blocks are computationally fast to fit but suffer from drawbacks such as the inflation

in the probability of a Type I error and an oversimplification of the problem. On the
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other hand, the models that analyze all of the SNPs jointly are more representative but

consequently computationally expensive to fit. Moreover, rather than analyze the SNPs

first and then inspect the genome for candidate genes that might be related to a given trait

of interest, some researchers have pointed out that a gene-centric approach that somehow

better accounts for genes directly in the modeling procedure may be more appropriate

for GWAS [49]. Researchers have recently begun incorporating external knowledge about

genes and even molecular pathways [87] into models to group SNPs based on criteria such

as gene membership, but there is no universal agreement on how to define such criteria.

Although progress has been made on GWAS since the dawn of the 21st century, it is still a

relevant and challenging problem with goals such as modeling interactions between SNPs,

genes, and environment effects that await beyond the obstacles already mentioned [38].

1.1.2 Related Work

As a statistician I view the goal of GWAS as variable selection in a large-p-small-n data

set that exhibits multicollinearity, and I build a representative model for analyzing SNPs

jointly in a way that exploits external biological knowledge to not only de-correlate markers

but to also prioritize markers that are close in genomic distance to relevant genes or other

regions. In this section I expand the background on GWAS from Section 1.1.1 to include

relevant work related to my research. As before letting yi denote the response variable

for the ith individual, X>i denote a set of p corresponding covariates, e.g. SNPs, and εi

denote a corresponding residual term, I define a multiple regression model by assuming

that the residual terms are independent and identically distributed random variables such

that εi
iid∼ Normal(0, τ2pop) and by setting

yi = X>i β + εi, for i = 1, . . . , n.

This is equivalent to assuming that the yi’s are independent random variables such that

yi
ind∼ Normal(X>i β, τ

2
pop), and thus I can write the likelihood of the observed data, L(y; ·)
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in terms of β and τ2pop as follows:

L(y;β, τ2pop) ∝ exp

[
− 1

2τ2pop

n∑
i=1

(yi −X>i β)2

]

A well-known result in statistics is the maximum likelihood, or ordinary least squares,

solution for β in the multiple regression model [66]: β̂OLS = (X>X)−1X>y. This estimator

maximizes L(y;β, τ2pop) and we can normally use it and its asymptotic distribution to

conduct inference about β; however, in the case of GWAS we cannot because p > n and so,

for instance, it is impossible to compute (X>X)−1 and subsequently β̂OLS. To overcome

this so-called large-p-small-n problem, it is common to use a penalized regression model

such as ridge regression [40], least absolute shrinkage and selection operator (LASSO) [81],

or the elastic net [95] instead. In penalized regression models we regularize β by adding a

penalty term, P (β), so that it is possible to obtain a unique solution when minimizing a

new objective function:

β̃ = arg min
β

[
− log(L(y;β, τ2pop)) + P (β)

]
Letting ||β||k = (

∑p
j=1 |β|k)

1
k denote the Lk-norm of β, we have the ridge regression

model when P (β) = υ0||β||22. Adding this penalty translates into adding a “ridge” to

the diagonal of X>X; letting Ip denote an identity matrix of size p, we have for the ridge

regression model: β̃Ridge = (X>X+υ0Ip)
−1X>y. This simple regularization guarantees the

existence of a unique β̃ that depends on the choice of the tuning parameter υ. Researchers

typically use cross-validation to find an optimal value of υ0 for a given data set [31]; larger

values of υ0 result in a more stringent regularization that shrinks the magnitude of β̃Ridge.

Noting that genome-wide ridge regression may detect SNPs missed by univariate meth-

ods by incorporating multi-SNP dependencies in the model [50], researchers have suc-

cessfully applied models based on ridge regression to GWAS data sets [77]. While ridge

regression is certainly a useful tool for overcoming the large-p-small-n problem, a penalty

on the L2-norm does not allow us to automatically perform variable selection. The LASSO



8

model penalizes the L1-norm of β instead, i.e. P (β) = υ0||β||1, and by doing so gains the

ability to shrink elements of β̃ exactly to zero; however, since it produces biased estimates

of the model parameters and tends to only select one parameter in a group of correlated

parameters [95], it is not ideal for GWAS. The elastic net which strikes a compromise

between ridge regression and LASSO by using a linear combination of the L1 and the L2

norms as a penalty term, i.e. P (β) = υ1||β||1 +υ2||β||22, has been found to be effective [17].

The choice of penalty term affects the computational complexity of the algorithm needed

to obtain β̃ as well as the properties of β̃ [25]. Figure 1.1 compares these first three penalty

functions and in particular shows the flexibility afforded by the elastic net penalty. It is

possible to derive β̃Ridge analytically; however, as mentioned above, although the ridge

penalty can shrink the magnitude of β̃, it cannot shrink its values exactly to zero. On

the other hand, although the LASSO penalty can perform variable selection by shrinking

some elements of β̃ exactly to zero, β̃LASSO can only be obtained by solving a convex

optimization problem wherein it can select at most n variables before it saturates [95]. By

combining these penalties, the elastic net overcomes these shortcomings by first performing

a ridge-like shrinkage and then a LASSO-like selection of β̃.

Although these penalized regression models have been proposed and have been shown

to outperform the popular single SNP tests for GWAS [6], fitting them in practice to a large

data set (e.g. p ≥ 100,000) is computationally intense and thus so is the process of selecting

an optimal value for any tuning parameters. Side-stepping this problem, researchers who

have developed a unified framework for penalized multiple regression analysis of GWAS

data (PUMA) have had success in applying a suite of penalty terms (e.g. LASSO, NEG,

MCP, LOG) to a pre-screened subset of markers and investigating the concordance of

markers across each of the final models [41]. The penalty terms used in PUMA primarily

differ in the rate at which their derivatives trail off to zero as illustrated in Figure 1.2.

Although a pre-screening of markers from a marginal regression would ideally retain almost

all of the relevant variables, researchers have found that penalized models such as LASSO

could likely be improved by using a larger number of SNPs than those which pass an initial
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Figure 1.1: Comparison of the different penalty terms based on the L1 and L2 norms.

screening step (e.g. a genome-wide significance threshold) [51].

Figure 1.2: Comparison of the different penalty terms used in the PUMA software [41].
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Figure 1.3: A possible ideal penalty for regression terms.

Under the simplifying assumption that an insignificant regression coefficient’s true value

is zero, the penalty functions considered so far take on low values for regression coefficients

close to zero and high values for regression coefficients far from zero. Moreover, their tuning

parameters control how quickly the magntiudes of the penalties increase as the magnitudes

of the regression coefficients increase. Although only applicable for the truly insignificant

regression terms, Figure 1.3 depicts one example of an ideal penalty function that takes

on the value zero when the regression coefficient is zero and a “large” value everywhere

else. By choosing a sufficiently large value for such a penalty function, e.g. ∞ in the most

extreme case, β̃ would be forced to take on the value of zero for each penalized element.

This infinite-leap penalty function is useless in practice; however, it illustrates an important

point: a uniform penalty function for all regression coefficients is not always appropriate.

Researchers have explored group penalties that move beyond the uniform penalties

such as ridge and LASSO for more flexibility in GWAS analyses. Techniques like group

LASSO, fused LASSO [82], or sparse group LASSO [26] further attempt to account for
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the structure of genes and markers or LD by assigning SNPs to groups based on criteria

such as gene membership and then placing additional penalties on the L1 norm of the

vector of coefficients for each group or on the L1 norm of the difference in coefficients of

consecutive SNPs. Given G groupings of SNPs indexed by g, we can use these models to

penalize each group separately using g tuning parameters: P (β) =
∑G

g=1 υg

[∑
k∈g |βk|

]
;

moreover we can consider fusing together adjacent SNPs through a penalty of the form:

P (β) = υf
∑p−1

j=1 |βj+1 − βj |. Although these relatively more complicated penalties allow

us to incorporate external biological knowledge into our models, it is difficult to define

gene membership universally since genes have varying lengths and may overlap with each

other; moreover, the penalty on the L1 norm of the difference in consecutive SNPs neglects

any information contained in the genomic distance between them. Some researchers have

further pointed out that the ambiguity in the choice of the reference allele for scoring

genotypes makes the fused LASSO not applicable [59].

It may be possible to develop additional, effective penalty terms within models, such

as ones based on the L1 and L2 norms, to address the issues present in GWAS data in

a penalized regression framework, but because genotypes are more correlated for markers

that are close in genomic space due to LD, the most effective penalties would need to

capture the relevance of a particular SNP as a function of its location on the genome.

Moreover, since it is typically easier to study the biological function of larger substructures

of the DNA, e.g. genes, we are particularly interested in SNPs that lie close to relevant

features of a chromosome [49]; as a result, the most desirable penalties would likely be SNP-

specific. Researchers have accomplished this by setting SNP-specific prior distributions on

the model parameters in a hierarchical Bayesian model [56]. Since the fundamental principle

of Bayesian statistics is to incorporate prior knowledge when fitting model parameters, it

is natural to exploit knowledge from biology about the structure of the genome through

prior distributions on the model parameters in a Bayesian framework.

In fact the optimal solutions to penalized regression models can be shown to be equiva-

lent, from a Bayesian perspective, to maximum a posteriori (MAP) estimators under appro-
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priate prior specifications. For instance, for LASSO, the L1 penalty with tuning parameter

υ0 can be translated into an independent Laplace prior distribution for each βj with location

parameter equal to zero and scale parameter equal to υ−10 , i.e. P(β) ∝ exp(−υ0
∑p

j=1 |βj |).

Noting that L(y;β, τ2pop) = P(y;β, τ2pop), and assuming that τ2pop is a known constant for

simplicity, we have that the posterior distribution of β given the observed data y becomes:

P(β|y) ∝ P(y;β, τ2pop)× P(β)

∝ exp

− 1

2τ2pop

n∑
i=1

(yi −X>i β)2 − υ0
p∑
j=1

|βj |


Letting β̂MAP denote the MAP estimator for this distribution, and recalling that for

LASSO, P (β) = υ0||β||1, we note that since log(·) is a monotonic function,

β̂MAP = arg max
β

P(β|y)

= arg max
β

log [P(β|y)]

= arg max
β

− 1

2τ2pop

n∑
i=1

(yi −X>i β)2 − υ0
p∑
j=1

|βj |


= arg min

β

[
1

2τ2pop

n∑
i=1

(yi −X>i β)2 + υ0||β||1

]

= arg min
β

[
− log(L(y;β, τ2pop)) + P (β)

]
= β̃LASSO

In a similar fashion we can establish a link between other penalized regression models,

e.g. ridge, and corresponding Bayesian models, e.g. an independent Normal prior distribu-

tion for each βj with mean parameter equal to zero and variance parameter equal to 2/υ0

so that P(β) ∝ exp
(
υ0
∑p

j=1 β
2
j

)
. Moreover, by using a hierarchical Bayesian model we
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can allow the prior distribution for each βj to vary based on our prior belief of whether or

not the jth SNP is causal. In particular, for Bayesian variable selection we most commonly

use the spike-and-slab prior distribution [29] for βj which is a mixture between a point

mass at zero (the spike) and a normal distribution centered at zero with a large variance

(the slab). The latent binary variable θj indicates the association status of the jth SNP and

thus determines the component of the mixture used to define the prior distribution of βj .

Given a tuning parameter to control the population variance of a quantitative trait, τ2pop,

a tuning parameter to control the variance of the slab component of the prior distribution,

σ2sas, a prior probability of association for each SNP, αsp, we can write this model as follows:

yi | X>i β
ind∼ Normal(X>i β, τ

2
pop)

βj | θj
ind∼ (1− θj) · δ0(·) + θj ·Normal(0, σ2sas)

θj
iid∼ Bernoulli(αsp)

(1.1)

A relaxed version of this model replaces the mixture of the dirac delta function, δ0(·),

and a normal distribution with a mixture of two normal distributions centered at zero

with different variances. This continuous version of the spike-and-slab model trades the

ability to perform exact variable selection through δ0(·) for computational convenience. By

introducing another tuning parameter to denote the separation between the variances of

the normal distributions, κ, we can write this updated model as follows:

yi | X>i β
ind∼ Normal(X>i β, τ

2
pop)

βj | θj
ind∼ Normal(0, σ2sas[θjκ+ 1− θj ])

θj
iid∼ Bernoulli(αsp)

(1.2)

Recalling the connection between the ridge regression penalty and the normal prior

distribution, Figure 1.4 shows an example of the different possible penalty functions for
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Figure 1.4: Possible penalties in the spike-and-slab model for Bayesian variable selection.

βj in the continuous spike-and-slab model of 1.2. Through the perspective of penalized

regression, when we compute the MAP estimator of β in the continuous spike-and-slab

model, the latent variable, θj , offers the model the flexibility to select either the spike

or the slab penalty to use for βj . This is an important step towards an ideal penalty for

variable selection because now we can encode a prior belief on how many SNPs we expect to

be associated with a trait in αsp and then dynamically place strong penalties on coefficients

that we deem to be not associated (θj = 0), and less stringent penalities on those that we

deem to be associated (θj = 1). Perhaps the real power of this method lies in the fact that

the hierarchy can be extended even further to allow αsp to vary based on each SNP.

In state-of-the-art Bayesian variable selection models for GWAS and other large scale

problems, researchers have considered exactly this type of hierarchical Bayesian model (e.g.

[33, 94]). For instance, some recent models exploit Bayesian methods in particular to allow

for data-driven SNP-specific prior distributions [34] which depend on a random variable

that describes the proportion of SNPs to be selected. These approaches have adopted a
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continuous spike-and-slab prior distribution [43] on the model parameters, set an inverse

Gamma prior distribution on the variance of the spike component of the prior, and control

the difference in the variance of the spike and slab components of the prior using a tuning

parameter. My potential for a creative improvement in these models lies in the specification

of the prior distribution on the θj ’s.

Rather than use a uniform αsp for each θj , I develop methods to incorporate external

knowledge about a SNP’s location on its chromosome relative to other important features to

define its unique prior probability of association. I have previously introduced a hierarchical

gene model on latent genotypes for GWAS [46] that estimates simple latent genotypes, Z,

from X and then models each yi in terms of Z>i based on the following hierarchy:

yi | Z>i β
ind∼ Normal(Z>i β, τ

2
pop)

βj | θj
ind∼ (1− θj) · δ0(·) + θj ·Normal(0, σ2sas)

θj
ind∼ Bernoulli(ξ0 + ξ1w

>
j a)

ag
iid∼ Bernoulli(αgp)

(1.3)

where w>j is a vector of G binary variables that, for each g of G genes, indicate whether

or not the jth SNP lies inside the gth gene, a is a complementary vector of G binary

variables that indicate whether or not each gene is “active”, i.e. plays an active biological

role in determining the outcome of the response variable, αgp is now a tuning parameter

that controls the prior probability of a gene being active, ξ1 is a tuning parameter that

controls the scale of the boost awarded to the jth SNP’s prior probability of association due

to its location on the genome relative to active genes, and ξ0 is a tuning parameter that

controls the prior probability of association for all SNPs that do not lie inside any active

genes. Although this model exploits knowledge about the structure of the genome in a way

that makes it useful for selecting not only SNPs but also genes that may be linked to a

quantitative trait of interest, it is computationally intense to fit using a Gibbs sampler.
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Seeking to incorporate external information in a hierarchical Bayesian model in a sim-

ilar way, other researchers analyzing a different kind of data, gene expression levels, have

recently considered relating a linear combination of a set of predictor-level covariates that

quantify the relationships between the genes to their prior probabilities of association

through a probit link function [69]. This formulation leads to a second-stage probit re-

gression on the probability that any gene is associated with a trait of interest using a set of

predictor-level covariates that could be, for instance, indicator variables of molecular path-

way membership. With respect to 1.3, this is akin to letting w>j be a vector of abitrary

covariates that encode various features, e.g. indicators of structural or functional proper-

ties, about the jth SNP and letting a be their corresponding effect sizes. In an updated

variable selection model I propose considering a special case of this formulation tailored

for GWAS data where: (i) I use the logit link instead of the probit link, (ii) the predictor-

level covariates are spatial weights that quantify a SNP’s position on the genome relative

to neighboring genes, and (iii) the coefficients of each of the predictor-level covariates are

numerical scores that quantify the relevance of a particular gene to the trait of interest.

1.1.3 Outline of Contributions

In order to help move towards a unifying framework for GWAS that allows for the large-p-

small-n problem and the SNP-specific issues to be addressed simultaneously in a principled

manner, I propose a hierarchical Bayesian model that exploits spatial relationships on

the genome to define SNP-specific prior distributions on regression parameters. More

specifically, while drawing inspiration from the increased flexibility in the proposed priors

for θj with an eye toward computational efficiency, in my proposed setting I model markers

jointly, but I explore a variable selection approach that uses marker proximity to relevant

genomic regions, such as genes, to help identify associated SNPs. My contributions are:

1. I exploit a simultaneous auto-regressive (SAR) model [75] in a data pre-processing

step to replace short contiguous blocks of correlated markers with block-wise inde-
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pendent latent genotypes for subsequent analyses.

2. I focus on binary traits which are common to GWAS, e.g., case control studies,

but more difficult to model due to lack of conjugacy. To circumvent the need for a

Metropolis-Hastings step when sampling from the posterior distribution on model pa-

rameters, I use a recently proposed data augmentation strategy for logistic regression

based on latent Pólya-Gamma random variables [71].

3. I perform variable selection by adopting a spike-and-slab prior [29, 43] and propose

a principled way to control the separation between the spike and slab components

using a Bayesian false discovery rate similar to [88].

4. I use a novel weighting scheme to establish a relationship between SNPs and genomic

regions and allow for SNP-specific prior distributions on the model parameters such

that the prior probability of association for each SNP is a function of its location

on the chromosome relative to neighboring regions. Moreover, I allow for the “rele-

vance” of a genomic region to contribute to the effect it has on its neighboring SNPs

and consider “relevance” values calculated based on previous GWAS results in the

literature, e.g. see [61].

5. Before sampling from the posterior space using Gibbs sampling, I use an expectation-

maximization [EM, [21]] algorithm in a filtering step to reduce the number of candi-

date markers in a manner akin to distilled sensing [37]. By investigating the update

equations for the EM algorithm, I suggest meaningful values to tune the hyperprior

parameters of my model and illustrate the induced relationship between SNPs and

genomic regions.

6. I derive a more flexible centroid estimator [15] for SNP associations that is parameter-

ized by a sensitivity-specificity trade-off. I discuss the relation between this parameter

and the prior specification when obtaining estimates of model parameters.
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I present my hierarchical Bayesian model for GWAS, the spatial boost model, in Chap-

ter 2, and briefly follow-up with an extension to quantitative traits in Chapter 3. I present

my SAR model for de-correlating SNPs in Chapter 4. In the final chapter of my thesis,

Chapter 5, I combine and extend the models from the preceeding chapters and present an

application to two binary traits.
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Chapter 2

Spatial Boost Model

Motivated by the important problem of detecting association between genetic markers and

binary traits in genome-wide association studies, in this chapter I present a novel Bayesian

model that establishes a hierarchy between markers and genes by defining weights accord-

ing to gene lengths and distances from genes to markers. The proposed hierarchical model

uses these weights to define unique prior probabilities of association for markers based on

their proximities to genes that are believed to be relevant to the trait of interest. I use an

expectation-maximization algorithm in a filtering step to first reduce the dimensionality of

the data and then sample from the posterior distribution of the model parameters to esti-

mate posterior probabilities of association for the markers. I offer practical and meaningful

guidelines for the selection of the model tuning parameters and propose a pipeline that

exploits a singular value decomposition on the raw data to make my model run efficiently

on large data sets. I demonstrate the performance of the model in simulation studies and

conclude by discussing the results of a case study using a real-world dataset provided by

the Wellcome Trust Case Control Consortium (WTCCC).

2.1 Model Definition

I perform Bayesian variable selection by analyzing binary traits and using the structure of

the genome to dynamically define the prior probabilities of association for the SNPs. My

data are the binary responses y ∈ {0, 1}n for n individuals and genotypes Xi ∈ {0, 1, 2}p for

p markers per individual, where xij codes the number of minor alleles in the i-th individual
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for the j-th marker. For the likelihood of the data, I consider the logistic regression:

yi |Xi, β
ind∼ Bernoulli

(
logit−1(β0 +X>i β)

)
, for i = 1, . . . , n. (2.1)

I note that GWA studies are usually retrospective, i.e. cases and controls are selected

irrespectively of their history or genotypes; however, as [62] point out, coefficient estimates

for β are not affected by the sampling design under a logistic regression. Thus, from

now on, to alleviate the notation I extend Xi to incorporate the intercept, Xi = (xi0 =

1, xi1, . . . , xip), and also set β = (β0, β1, . . . , βp).

I use latent variables θ ∈ {0, 1}p and a continuous spike-and-slab prior distribution for

the model parameters with the positive constant κ > 1 denoting the separation between

the variance of the spike and the slab components:

βj | θj , σ2
ind∼ Normal

(
0, σ2[θjκ+ (1− θj)]

)
, for j = 1, . . . , p. (2.2)

For the intercept, I set β0 ∼ Normal(0, σ2κ) or, equivalently, I define θ0 = 1 and include

j = 0 in (2.2). In the standard spike-and-slab prior distribution the slab component is a

normal distribution centered at zero with a large variance and the spike component is a

point mass at zero. This results in exact variable selection through the use of the θj ’s,

because θj = 0 would imply that the j-th SNP coefficient is exactly equal to zero. I use

the continuous version of the spike-and-slab distribution to allow for a relaxed form of this

variable selection that lends itself easily to an EM algorithm (see Section 2.2.1).

For the variance σ2 of the spike component in (2.2) I adopt an inverse Gamma (IG)

prior distribution, σ2 ∼ IG(ν, λ). I expect σ2 to be reasonably small with high probability

in order to enforce the desired regularization that distinguishes associated markers from

non-associated markers. Thus, I recommend choosing ν and λ so that the prior expected

value of σ2 is small.

In the prior distribution for θj , I incorporate information from relevant genomic regions.
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Figure 2.1: Gene weight example: for the j-th SNP at position sj = 1,000 and two sur-
rounding genes a and b spanning (980, 995) and (1020, 1030) I obtain, if setting φ = 10,
weights (areas shaded in blue) of wj,a = 0.29 and wj,b = 0.02, respectively.

The most common instance of such regions are genes, and so I focus on these regions in

what follows. Thus, given a list of G genes with gene relevances (see Section 2.1.2 for some

choices of definitions), r = [r1, r2, . . . , rG], and weights, wj(φ) = [wj,1, wj,2, . . . , wj,G], the

prior on θj is

θj
ind∼ Bernoulli

(
logit−1(ξ0 + ξ1wj(φ)>r)

)
, for j = 1, . . . , p. (2.3)

The weights wj are defined using the structure of the SNPs and genes and aim to account

for gene lengths and their proximity to markers as a function of a spatial parameter φ, as

I see in more detail next.

2.1.1 Gene Weights

To control how much a gene can contribute to the prior probability of association for a SNP

based on the gene length and the distance of the gene boundaries to that SNP I introduce

a range parameter φ > 0. Consider a gene g that spans genomic positions gl to gr, and the
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j-th marker at genomic position sj ; the gene weight wj,g is then

wj,g =

∫ gr

gl

1√
2πφ2

exp

{
− (x− sj)2

2φ2

}
dx.

Generating gene weights for a particular SNP is equivalent to centering a Gaussian curve

at that SNP’s position on the genome with standard deviation equal to φ and computing

the area under that curve between the start and end points of each gene. Figure 2.1 shows

an example. As φ→ 0, the weight that each gene contributes to a particular SNP becomes

an indicator function for whether or not it covers that SNP; as φ→∞, the weights decay

to zero. Intermediate values of φ allow then for a variety of weights in [0, 1] that encode

spatial information about gene lengths and gene proximities to SNPs. In Section 2.3.1 I

discuss a method to select φ.

According to (2.3), it might be possible for multiple, possibly overlapping, genes that

are proximal to SNP j to boost θj . To avoid this effect, I take two precautions. First,

I break genes into non-overlapping genomic blocks and define the relevance of a block as

the mean gene relevance of all genes that cover the block. Second, I normalize the gene

weight contributions to θj in (2.3), wj(φ)>r, such that maxj wj(φ)>r = 1. This way, it is

possible to compare estimates of ξ1 across different gene weight and relevance schemes. It

is also possible to break genes into their natural substructures, e.g. exons, introns, and to

prioritize these substructures differently through the use of r.

2.1.2 Gene Relevances

I allow for the further strengthening or diminishing of particular gene weights using gene

relevances r. If I set r = 1G and allow for all genes to be uniformly relevant, then I have a

“non-informative”case. Alternatively, if I have some reason to believe that certain genes are

more relevant to a particular trait than others, for instance on the basis of previous research

or prior knowledge from an expert, then I can encode these beliefs through r. In particular,

I recommend using either text-mining techniques, e.g. [1], to quantify the relevance of a
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gene to a particular disease based on citation counts in the literature, or relevance scores

compiled from search hits and citation linking the trait of interest to genes, e.g. [61].

2.2 Model Fitting and Inference

The ultimate goal of my model is to perform inference on the posterior probability of

association for SNPs. However, these probabilities are not available in closed form, and

so I must resort to Markov chain Monte Carlo techniques such as Gibbs sampling to

draw samples from the posterior distributions of the model parameters and use them to

estimate P(θj = 1 | y). Unfortunately, these techniques can be slow to iterate and converge,

especially when the number of model parameters is large [20]. Thus, to make my model

more computationally feasible, I propose first filtering out markers to reduce the size of the

original dataset in a strategy similar to distilled sensing [37], and then applying a Gibbs

sampler to only the remaining SNPs.

To this end, I design an EM algorithm based on the hierarchical model above that

uses all SNP data simultaneously to quickly find an approximate mode of the posterior

distribution on β and σ2 while regarding θ as missing data. Then, for the filtering step,

I iterate between (1) removing a fraction of the markers that have the lowest conditional

probabilities of association and (2) refitting using the EM procedure until the predictions

of the filtered model degrade. In my analyses I filtered 25% of the markers at each iteration

to arrive at estimates β∗ and stopped if maxi |yi − logit−1(X>i β
∗)| > 0.5. Next, I discuss

the EM algorithm and the Gibbs sampler, and offer guidelines for selecting the other

parameters of the model in Section 2.3.

2.2.1 EM algorithm

I treat θ as a latent parameter and build an EM algorithm accordingly. If `(y, θ, β, σ2) =

logP(y, θ, β, σ2) then for the M-steps on β and σ2 I maximize the expected log joint

Q(β, σ2;β(t), (σ2)
(t)

) = E
θ | y,X;β(t),(σ2)(t)

[`(y, θ, β, σ2)]. The log joint distribution `, up to a
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normalizing constant, is

`(y, θ, β, σ2) =
n∑
i=1

yiX
>
i β − log(1 + exp{X>i β})

− p+ 1

2
log σ2 − 1

2σ2

p∑
j=0

β2j

(
θj
κ

+ 1− θj

)
− (ν + 1) log σ2 − λ

σ2
, (2.4)

and so, at the t-th iteration of the procedure, for the E-step I just need to compute and

store 〈θj〉(t)
.
= E

θ | y;β(t),(σ2)(t)
[θj ]. But since

〈θj〉 = P(θj = 1 | y, β, σ2) =
P(θj = 1, βj |σ2)

P(θj = 0, βj |σ2) + P(θj = 1, βj |σ2)
,

then

logit〈θj〉 = log
P(θj = 1, βj |σ2)
P(θj = 0, βj |σ2)

= −1

2
log κ−

β2j
2σ2

(
1

κ
− 1

)
+ ξ0 + ξ1w

>
j r (2.5)

for j = 1, . . . , p and 〈θ0〉
.
= 1.

To update β and σ2 I employ conditional maximization steps [63], similar to cyclic

gradient descent. From (2.4) I see that the update for σ2 follows immediately from the

mode of an inverse gamma distribution conditional on β(t):

(σ2)
(t+1)

=

1

2

p∑
j=0

(β
(t)
j )

2

(
〈θj〉(t)

κ
+ 1− 〈θj〉(t)

)
+ λ

p+ 1

2
+ ν + 1

. (2.6)

The terms in (2.4) that depend on β come from the log likelihood of y and from the

expected prior on β, β ∼ N(0,Σ(t)), where

Σ(t) = Diag

(
σ2

〈θj〉(t)/κ+ 1− 〈θj〉(t)

)
.

Updating β is equivalent here to fitting a ridge regularized logistic regression, I exploit the
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usual iteratively reweighted least squares (IRLS) algorithm [60]. Setting µ(t) as the vector

of expected responses with µ
(t)
i = logit−1(X>i β

(t)) and W (t) = Diag(µ
(t)
i (1 − µ(t)i )) as the

variance weights, the update for β is then

β(t+1) = (X>W (t)X + (Σ(t))
−1

)
−1(

X>W (t)Xβ(t) +X>(y − µ(t))
)
, (2.7)

where I substitute (σ2)
(t)

for σ2 in the definition of Σ(t).

Rank truncation of design matrix

Computing and storing the inverse of the (p + 1)-by-(p + 1) matrix X>W (t)X + (Σ(t))
−1

in (2.7) is expensive since p is large. To alleviate this problem, I replace X with a rank

truncated version based on its singular value decomposition X = UDV >. More specifically,

I take the top l singular values and their respective left and right singular vectors, and so,

if D = Diag(di) and ui and vi are the i-th left and right singular vectors respectively,

X = UDV > =
n∑
i=1

diuiv
>
i ≈

l∑
i=1

diuiv
>
i = U(l)D(l)V

>
(l),

where D(l) is the l-th order diagonal matrix with the top l singular values and U(l)

(n-by-l) and V(l) ((p + 1)-by-l) contain the respective left and right singular vectors.

I select l by controlling the mean squared error: l should be large enough such that

‖X − U(l)D(l)V
>
(l)‖F /(n(p+ 1)) < 0.01.

Since X>W (t)X ≈ V(l)D(l)U
>
(l)W

(t)U(l)D(l)V
>
(l), I profit from the rank truncation by

defining the (upper) Cholesky factor Cw of D(l)U
>
(l)W

(t)U(l)D(l) and S = CwV
>
(l) so that

(X>W (t)X + (Σ(t))
−1

)
−1
≈ (S>S + (Σ(t))

−1
)
−1

= Σ(t) − Σ(t)S>(Il + SΣ(t)S>)
−1
SΣ(t)

(2.8)

by the Kailath variant of the Woodbury identity [70]. Now I just need to store and compute

the inverse of the l-th order square matrix Il+SΣ(t)S> to obtain the updated β(t+1) in (2.7).
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2.2.2 Gibbs sampler

After obtaining results from the EM filtering procedure, I proceed to analyze the filtered

dataset by sampling from the joint posterior P(θ, β, σ2 | y) using Gibbs sampling. I iterate

sampling from the conditional distributions

[σ2 | θ, β, y], [θ |β, σ2, y], and [β | θ, σ2, y]

until assessed convergence.

I start by taking advantage of the conjugate prior for σ2 and draw each new sample

from

σ2 | θ, β, y ∼ IG

(
ν +

p+ 1

2
, λ+

1

2

p∑
j=0

β2j

(θj
κ

+ 1− θj
))

.

Sampling θ is also straightforward: since the θj are independent given βj ,

θj |β, σ2, y
ind∼ Bernoulli(〈θj〉), for j = 1, . . . , p,

with 〈θj〉 as in (2.5). Sampling β, however, is more challenging since there is no closed-form

distribution based on a logistic regression, but I use a data augmentation scheme proposed

by [71]. This method has been noted to perform well when the model has a complex prior

structure and the data have a group structure and so I believe it is appropriate for the

spatial boost model.

Thus, to sample β conditional on θ, σ2, and y I first sample latent variables ω from a

Pólya-Gamma (PG) distribution,

ωi |β ∼ PG(1, X>i β), i = 1, . . . , n,

and then, setting Ω = Diag(ωi), Σ = Diag(σ2(θjκ + 1 − θj)), and Vβ = X>ΩX + Σ−1,

sample

β |ω, θ, σ2, y ∼ Normal(V −1β X>(y − 0.5 · 1n), V −1β ).
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I note that the same rank truncation used in the EM algorithm from the previous section

works here, and I gain more computational efficiency by using an identity similar to (2.8)

when computing and storing V −1β .

2.2.3 Centroid estimation

To conduct inference on θ I follow statistical decision theory [9] and define an estimator

based on a generalized Hamming loss function H(θ, θ̃) =
∑p

j=1 h(θj , θ̃j),

θ̂C = arg min
θ̃∈{0,1}p

Eθ | y
[
H(θ, θ̃)

]
= arg min

θ̃∈{0,1}p
Eθ | y

[
p∑
j=1

h(θj , θ̃j)

]
. (2.9)

I assume that h has symmetric error penalties, h(0, 1) = h(1, 0) and that h(1, 0) >

max{h(0, 0), h(1, 1)}, that is, the loss for a false positive or negative is higher than for

a true positive and true negative. In this case, I can define a gain function g by subtract-

ing each entry in h from h(1, 0) and dividing by h(1, 0)− h(0, 0):

g(θj , θ̃j) =



1, θj = θ̃j = 0,

0, θj 6= θ̃j ,

γ
.
=
h(1, 0)− h(1, 1)

h(1, 0)− h(0, 0)
, θj = θ̃j = 1.

Gain γ > 0 represents a sensitivity-specificity trade-off; if h(0, 0) = h(1, 1), that is, if true

positives and negatives have the same relevance, then γ = 1.

Let us define the marginal posteriors πj
.
= P(θj = 1 | y). The above estimator is then

equivalent to

θ̂C = arg max
θ̃∈{0,1}p

Eθ | y

[
p∑
j=1

g(θj , θ̃j)

]

= arg max
θ̃∈{0,1}p

p∑
j=1

(1− θ̃j)(1− πj) + γθ̃jθj = arg max
θ̃∈{0,1}p

p∑
j=1

(
πj −

1

1 + γ

)
θ̃j ,
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which can be obtained position-wise,

(θ̂C)j = I

(
πj −

1

1 + γ
≥ 0

)
. (2.10)

The estimator in (2.9) is known as the centroid estimator ; in contrast to maximum a

posteriori (MAP) estimators that simply identify the highest peak in a posterior distribu-

tion, centroid estimators can be shown to be closer to the mean than to a mode of the

posterior space, and so offer a better summary of the posterior distribution [15]. Related

formulations of centroid estimation for binary spaces in (2.10) have been proposed in many

bioinformatics applications in the context of maximum expected accuracy [35]. Moreover,

if γ = 1 then θ̂C is simply a consensus estimator and coincides with the median probability

model estimator of [8].

Finally, I note that the centroid estimator can be readily obtained from MCMC samples

θ(1), . . . , θ(N); I just need to estimate the marginal posterior probabilities π̂j =
∑N

s=1 θ
(s)
j /N

and substitute in (2.10).

2.3 Guidelines for Selecting Prior Parameters

Since genome-wide association is a large-p-small-n problem, I rely on adequate priors to

guide the inference and overcome ill-posedness. In this section I provide guidelines for

selecting hyperpriors κ in the slab variance of β, and φ, ξ0, and ξ1 in the prior for θ.

2.3.1 Selecting φ

Biologically, some locations within a chromosome may be less prone to recombination events

and consequently to relatively higher linkage disequilibrium. LD can be characterized as

correlation in the genotypes, and since I analyze the entire genome, high correlation in

markers within a chromosome often results in poor coefficient estimates for the logistic

regression model in 2.1. To account for potentially varying spatial relationships across the

genome, I exploit the typical correlation pattern in GWAS data sets to suggest a value for
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φ that properly encodes the spatial relationship between markers and genes in a particular

region as a function of genomic distance. To this end, I propose the following procedure to

select φ:

1. Divide each chromosome into regions such that the distance between the SNPs in

adjacent regions is at least the average length of a human gene, or 30,000 base pairs

[80]. The resulting regions will be, on average, at least a gene’s distance apart from

each other and may possibly exhibit different patterns of correlation.

2. Merge together any adjacent regions that cover the same gene. Although the value

of φ depends on each region, I want the meaning of the weights assigned from a

particular gene to SNPs in the Spatial Boost model to be consistent across regions.

As a practical example, by applying the first two steps of the pre-processing procedure

on chromosome 1, I obtain 1,299 windows of varying sizes ranging from 1 to 300

markers.

3. Iterate over each region and select a value of φ that best fits the magnitude of the

genotype correlation between any given pair of SNPs as a function of the distance

between them. I propose using the normal curve given in the definition of the gene

weights to first fit the magnitudes, and then using the mean squared error between

the magnitudes in the sample correlation matrix of a region and the magnitudes

in the fitted correlation matrix as a metric to decide the optimal value of φ. In

particular, given two SNPs located at positions si and sj , I relate the magnitude of

the correlation between SNPs i and j to the area

|ρi,j |(φ) = 2Φ

(
− |si − sj |

φ

)
,

where Φ is the standard normal cumulative function.

Figure 2.2 shows an example of application to chromosome 1 based on data from

the case study discussed in Section 2.4. I note that the mean squared error criterion
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Figure 2.2: Example of selection of φ: when using the proposed values of |ρi,j | to fit the
sample correlation magnitudes, I obtain an optimal choice of φ = 13,530 for a random win-
dow. The second two plots are heatmaps of the pair-wise correlation magnitudes between
all SNPs in the window.

places more importance on fitting relatively larger magnitudes close to the diagonal

of the image matrix, and so there is little harm in choosing a moderate value for φ

that best fits the magnitudes of dense groups of correlated SNPs in close proximity.

2.3.2 Selecting ξ0 and ξ1

According to the centroid estimator in (2.10), the j-th SNP is identified as associated if

πj ≥ (1 + γ)−1. Following a similar criterion, but with respect to the conditional posteriors,

I have P(θj = 1 | y, β, σ2) = 〈θj〉 ≥ (1 + γ)−1, and so, using (2.5),

logit〈θj〉 = −1

2
log κ+ ξ0 + ξ1w

>
j r +

β2j
2σ2

(
1− 1

κ

)
≥ − log γ.

After some rearrangements, I see that, in terms of βj , this criterion is equivalent to β2j ≥

σ2s2j with

s2j
.
=

2κ

κ− 1

(
1

2
log κ− ξ0 − ξ1w>j r− log γ

)
, (2.11)
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that is, I select the j-th marker if βj is more than sj “spike” standard deviations σ away

from zero.

This interpretation based on the EM formulation leads to a meaningful criterion for

defining ξ0 and ξ1: I just require that minj=1,...,p s
2
j ≥ s2, that is, that the smallest number

of standard deviations is at least s > 0. Since maxj=1,...,p w>j r = 1,

min
j=1,...,p

s2j =
2κ

κ− 1

(
1

2
log κ− ξ0 − ξ1 − log γ

)
≥ s2,

and so,

ξ1 ≤
1

2
log κ− ξ0 − log γ − s2

2

(
1− 1

κ

)
. (2.12)

For a more stringent criterion, I can take the minimum over κ in the right-hand side

of (2.12) by setting κ = s2. When setting ξ1 it is also important to keep in mind that ξ1

is the largest allowable gene boost, or better, increase in the log-odds of a marker being

associated to the trait.

Since ξ0 is related to the prior probability of a SNP being associated, I can take ξ0 to be

simply the logit of the fraction of markers that I expect to be associated a priori. However,

for consistency, since I want ξ1 ≥ 0, I also require that the right hand side of (2.12) be

non-negative, and so

ξ0 + log γ ≤ 1

2
log κ− s2

2

(
1− 1

κ

)
. (2.13)

Equation (2.13) constraints ξ0 and γ jointly, but I note that the two parameters have

different uses: ξ0 captures my prior belief on the probability of association and is thus part

of the model specification, while γ defines the sensitivity-specificity trade-off that is used

to identify associated markers, and is thus related to model inference.

As an example, if γ = 1 and I set s = 4, then the bound in (2.12) with κ = s2 is

log(s2)/2−s2(1−1/s2)/2 = −6.11. If I expect 1 in 10,000 markers to be associated, I have

ξ0 = logit(10−4) = −9.21 < −6.11 and the bound (2.13) is respected. The upper bound

for ξ1 in (2.12) is thus 3.10.
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2.3.3 Selecting κ

I propose using a metric similar to the Bayesian false discovery rate [BFDR, [88]] to select κ.

The BFDR of an estimator is computed by taking the expected value of the false discovery

proportion under the marginal posterior distribution of θ:

BFDR(θ̂) = Eθ | y

[∑p
j=1 θ̂j(1− θj)∑p

j=1 θ̂j

]
=

∑p
j=1 θ̂j(1− πj)∑p

j=1 θ̂j
.

Since, as in the previous section, I cannot obtain estimates of P(θj = 1 | y) just by

running my EM algorithm, I consider instead an alternative metric that uses the con-

ditional posterior probabilities of association given the fitted parameters, 〈θj〉 = P(θj =

1 | y, β̂EM , σ̂2EM ). I call this new metric EMBFDR:

EMBFDR(θ̂) =

∑p
j=1 θ̂j(1− 〈θj〉)∑p

j=1 θ̂j
.

Moreover, by the definition of the centroid estimator in (2.10), I can parameterize the

centroid EMBFDR using γ:

EMBFDR(θ̂C(γ)) = EMBFDR(γ) =

∑p
j=1 I[〈θj〉 ≥ (1 + γ)−1](1− 〈θj〉)∑p

j=1 I[〈θj〉 ≥ (1 + γ)−1]
.

I can now analyze a particular data set using a range of values for κ and subsequently

make plots of the EMBFDR metric as a function of the threshold (1 + γ)−1 or as a function

of the proportion of SNPs retained after the EM filter step. Thus, by setting an upper

bound for a desired value of the EMBFDR I can investigate these plots and determine an

appropriate choice of κ and an appropriate range of values of γ. In Figure 2.3 I illustrate

an application of this criterion. I note that the EMBFDR has broader application to

Bayesian variable selection models and can be a useful metric to guide the selection of

tuning parameters, in particular the spike-and-slab variance separation parameter κ.
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Figure 2.3: When analyzing a data set generated for a simulation study as described in
Section 2.4, I inspect the behavior of the BFDR as a function of γ for various values of κ
and see that a choice of κ = 1, 000 would be appropriate to achieve a BFDR no greater
than 0.05 when using a threshold of (1 + γ)−1 = 0.1.

2.3.4 Visualizing the relationship between SNPs and genes

For a given configuration of κ, γ, and σ2, I can plot the bounds ±σsj on βj that determine

how large |βj | needs to be in order for the jth SNP to be included in the model, and

then inspect the effect of parameters φ, ξ0, and ξ1 on these bounds. SNPs that are close to

relevant genes have thresholds that are relatively lower in magnitude; they need a relatively

smaller (in magnitude) coefficient to be selected for the final model. With everything

else held fixed, as φ → ∞ the boost received from the relevant genes will decrease to

zero and my model will coincide with a basic version of Bayesian variable selection where

θj
iid∼ Bernoulli(logit−1(ξ0)). I demonstrate this visualization on a mock chromosome in

Figure 2.4.
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Figure 2.4: I illustrate the effect of varying φ, ξ0 and ξ1 on the thresholds on the posterior
effect sizes, βj , in a simple window containing a single gene in isolation, and a group of
three overlapping genes. On the left, I vary φ and control the smoothness of the thresholds.
In the middle, I vary ξ0 and control the magnitude of the thresholds, or in other words the
number of standard deviations (σ) away from zero at which they are placed. On the right,
I vary ξ1 and control the sharpness of the difference in the thresholds between differently
weighted regions of the window. For this illustration, I set σ2 = 0.01, κ = 100, and γ = 1.
I mark the distance σ away from the origin with black dashed lines.
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2.4 Empirical Studies

I conduct two simulation studies. First, I compare the performance of our method to other

well-known methods including single SNP tests, LASSO, fused LASSO, group LASSO,

PUMA, and BSLMM. Then I assess the robustness of our method to misspecifications of

the range parameter, φ, and gene relevances. I describe each study in detail below, but I

first explain how the data is simulated in each scenario.

2.4.1 Simulation Study Details

To provide a fair comparison across methods and to better assess the robustness of my

method to misspecifications, I adopt an independent model to simulate data. I use the

GWAsimulator program [58] because it can achieve a more representative LD structure

from real data, it keeps the retrospective nature of my design, and it is widely used.

GWAsimulator generates both genotypes and phenotypes based on the following inputs:

disease prevalence, genotypic relative risk, number of cases and controls, haplotypes (phased

genotypes), and the locations of causal markers. It is also possible to specify individuals’

gender and optionally two-way interactions between SNPs; to avoid gender biases in my

study, I sampled each individual as male, and I did not consider any interactions.

The phenotypes are already specified by the number of cases and controls. To give the

minimum contrast between cases and controls and to simplify the simulated data sets, I

always chose a balanced design and sampled an equal number of cases and controls. Geno-

types are sampled separately for causal and non-causal markers. Causal marker genotypes

are sampled retrospectively from a logistic regression where the effect sizes are calculated

from the disease prevalence, genotypic relative risk and frequency of risk alleles (computed

from the inputted haplotypes). Then, genotypes for non-causal markers are simulated

based on the haplotype data with the aim of maintaining Hardy-Weinberg equilibrium,

allele frequencies, and linkage disequilibrium patterns in the inputted haplotypes. Because

GWAsimulator retains the observed LD patterns in the input phased data sets, I argue
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that it offers a realistic example of data for my study.

For both studies, I simulated two scenarios for n, the number of individuals, and p, the

number of markers: n = 120, p = 6,000, the“small”scenario, and n = 1,200, p = 60,000, the

“large” scenario. The input haplotypes to GWAsimulator came from phased data provided

by the 1000 Genomes Project [18]. The program requires that there be only one causal

SNP per chromosome; thus, if I wish to sample m causal markers, I divide the total number

of markers, p, into m equally sized blocks, i.e. each block with p/m contiguous markers,

one per chromosome, and randomly sample the causal marker within each block. In both

studies I have m = 15. The causal markers were sampled uniformly within each block from

all markers with MAF > 5%.

After sampling the causal markers, I input them to GWAsimulator which, in turn,

determines the effect sizes as a function of the disease prevalence and relative risks. For

all simulations I kept the default disease prevalence of 5% because it represents the re-

alistic and challenging nature of GWAS data. The parameters that describe how disease

prevalence and relative risk affect effect size are specified to GWAsimulator using a control

file. For each causal marker in my simulated datasets I randomly select one of the default

configurations of effect size parameters listed in the control file that ships with the program

so that the genotypic relative risk (GRR) of the genotype with one copy of the risk allele

versus that with zero copies of the risk allele is either 1.0, 1.1, or 1.5, and the genotypic

relative risk of the genotype with two copies of the risk allele versus that with zero copies

of the allele is either 1.1, 1.5, 2.0, a multiplicative effect (GRR × GRR), or a dominance

effect (GRR).

In each simulation scenario and dataset below I fit the model as follows: I start with

ξ0 = logit(100/p), a moderate gene boost effect of ξ1 = −0.5ξ0, and run the EM filtering

process until at most 100 markers remain. At the end of the filtering stage I run the Gibbs

sampler with ξ0 = logit(m/100) and ξ1 = −0.5ξ0. This ratio of ξ1/ξ0 = −0.5 is kept across

all EM filtering iterations, and is a simple way to ensure that the guideline from (2.12)

is followed with κ = s2 = γ = 1. Parameter κ is actually elicited at each EM filtering
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iteration using EMBFDR, and I fix φ = 10,000 for simplicity and to assess robustness.

2.4.2 Comparison Simulation Study

In this study I generated 20 batches of simulated data, each containing 5 replicates, for

a total of 100 simulated data sets for each configuration of n, p above. In each batch

I simulate m = 15 blocks, where each block comprises p/m markers that are sampled

contiguously from the whole set of annotated markers in each chromosome, that is, for

each block I sample an initial block position (marker) from its respective chromosome and

take consecutive p/m markers from that position. After simulating the data, I fit my

model and compared its performance in terms of the area under the Receiver Operating

Characteristic (ROC) curve, or AUC [10], to the usual single SNP tests, LASSO, fused

LASSO, group LASSO, PUMA, and BSLMM methods. I used the penalized package in

R to fit the LASSO and fused LASSO models; I used two-fold cross-validation to determine

the optimal values for the penalty terms. For computational feasibility, before fitting the

fused and group LASSO models when p = 60,000, I used the same pre-screening idea that

is employed by the PUMA software, i.e. first run the usual single SNP tests and remove

any SNP that has a p-value above 0.01. Similarly, I used the gglasso package in R to

fit the group LASSO model where I defined the groups such that any two adjacent SNPs

belonged to the same group if they were within 10,000 base pairs of each other; I used

5-fold cross validation to determine the optimal value for the penalty term. Finally, I used

the authors’ respective software packages to fit the PUMA and BSLMM models.

To calculate the AUC for any one of these methods, I took a final ranking of SNPs

based on an appropriate criterion (see more about this below), determined the points on

the receiver operating characteristic (ROC) curve using my knowledge of the true positives

and the false positives from the simulated data’s control files, and then calculated the

area under this curve. For my model, I used either the ranking (in descending order)

of E[θj |β̂EM, σ̂2EM, y] for a particular EM filtering step or P̂(θj = 1|y) using the samples

obtained by the Gibbs sampler; for the single SNP tests I used the ranking (in ascending
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order) of the p-values for each marker’s test; for LASSO, fused LASSO and group LASSO

I used the ranking (in descending order) of the magnitude of the effect sizes of the SNPs

in the final model; for the other penalized regression models given by the PUMA program,

I used the provided software to compute p-values for each SNP’s significance in the final

model and used the ranking (in ascending order) of these p-values; for BSLMM I used the

ranking (in descending order) of the final estimated posterior probabilities of inclusion for

each SNP in the final model.

I summarize the results in Figure 2.5; my methods perform better than the other meth-

ods in the “small” simulation scenario, but comparably in the “large” simulation scenario.

Not surprisingly, the “null” (ξ1 = 0) and “informative” model (ξ1 > 0) yield similar results

in the small scenario since the markers were simulated uniformly and thus independently

of gene relevances. Interestingly, for this scenario, EM filtering is fairly effective in that

my models achieve better relative AUCs under low false positive rates, as the bottom left

panel in Figure 2.5 shows. I computed the relative AUC, i.e. the area under the ROC

curve up to a given false positive rate divided by that false positive rate, in the bottom

panels up to a false positive rate of 20%.

When compared to the small scenario, the relatively worse results in the large scenario

can be explained mostly by two factors: (i) an inappropriate choice for the range parameter

φ: because φ is relatively large given a higher density of markers, more markers neighbor-

ing gene regions have artificially boosted effects which then inflate the false positive rate;

and (ii) a more severe model misspecification: having more markers translates to higher

LD since the markers tend to be closer. Because of the first factor the informative model

does not give competitive results here; nonetheless, it still outperforms the PUMA suite

of models and BSLMM at lower false positive rates. The null model, however, performs

comparably to single SNP tests and the LASSO models, since none of these models can

account well for high genotypical correlation. However, as the bottom right panel in Fig-

ure 2.5 shows and as observed in the small scenario, the EM filtering procedure improves

the performance of my model at lower false positive rates, with more pronounced gains in
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the informative model.

2.4.3 Relevance Robustness Simulation Study

To investigate the effect of misspecifications of φ and r on the performance of my model,

I again considered the possible configurations where n = 120, p = 6,000 (“small”) and n =

1,200, p = 60,000 (“large”) and randomly selected one of the 100 simulated data sets from

the comparison study to be the ground truth in each scenario. I varied φ ∈ {103, 104, 105}

and, for each value of φ, simulated 25 random relevance vectors r. The relevances r were

simulated in the following way: each gene g has, independently, a probability ρ of being

“highly relevant”; if gene g is sampled as “highly relevant” then rg ∼ Fr, otherwise rg = 1.

I set ρ and Fr using MalaCards relevance gene scores for Rheumatoid Arthritis (RA): ρ is

defined as the proportion of genes in the reference dataset (UCSC genome browser gene

set) that are listed as relevant for RA in the MalaCards database, and Fr is the empirical

distribution of gene scores for these genes deemed relevant.

Hyper-prior parameters ξ0, ξ1, and κ were elicited as in Section 2.4.1. For each sim-

ulated replication I then fit my model and assess performance using the AUC, as in the

previous study. I focus on the results for the large scenario since they are similar, but more

pronounced than the small scenario. Figure 2.6 illustrates the distribution of scores for

relevant genes for RA in MalaCards and how the performance of the model varies at each

EM filtering iteration as a function of φ. Since the proportion of relevant genes ρ is small,

ρ ≈ 0.001, the results are greatly dependent on φ and vary little as the scores r change,

in comparison. Both small and large values of φ can degrade model performance since, as

pointed out in Section 2.1.1, markers inside relevant genes can either be overly favored as

φ gets closer to zero, or, in the latter case when φ is large and extends gene influence, all

genes become irrelevant, that is, I have a “null” model. In contrast, the relevance scores

have more impact when φ is in an adequate range, as the bottom left panel of Figure 2.6

shows. Thus, the model is fairly robust to relevance misspecifications, but can achieve good

performances for suitable values of range φ.
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Figure 2.5: Results from the comparison simulation study. Left panels show AUC (top) and
relative AUC at maximum 20% false positive rate (bottom) for “small” study, while right
panels show respective AUC results for the “large” study. The boxplots are, left to right:
single SNP (SS) tests (blue); spatial boost “null” model at each EM filtering iteration (red);
spatial boost “informative” model at each EM filtering iteration (green); LASSO (yellow);
fused LASSO (magenta); grouped LASSO (sky blue); PUMA with models NEG, LOG,
MCP, and adaptive LASSO (orange); and BSLMM (sea blue).
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Figure 2.6: Results from the simulation study to assess robustness to gene relevances and
range. Top left: distribution of gene relevance scores for RA in MalaCards. Remaining
panels: AUC boxplots across simulated relevance vectors, at each EM filtering iteration,
for different values of φ.
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2.5 Case Study

Using data provided by the WTCCC, I analyzed the entire genome (342,502 SNPs total)

from a case group of 1,999 individuals with rheumatoid arthritis (RA) and a control group

of 1,504 individuals from the 1958 National Blood Bank dataset. For now I addressed

the issues of rare variants and population stratification by only analyzing SNPs in Hardy-

Weinberg Equilibrium [89] with minor allele frequency greater than 5%. There are 15 SNPs

that achieve genome-wide significance when using a Bonferroni multiple testing procedure

on the results from a single SNP analysis. Table 6.1 provides a summary of these results

for comparison to those obtained when using the spatial boost model.

When fitting the spatial boost model, I broke each chromosome into blocks and selected

an optimal value of φ for each block using my proposed method metric, |ρi,j |(φ). I used the

EMBFDR to select a choice for κ from the set {102, 103, 104, 105, 106} at each step of my

model fitting pipeline so that the BFDR was no greater than 0.05 while retaining no larger

than 5% of the total number of SNPs. With a generous minimum standard deviation s = 1

I have that trivially ξ0 < 0 from (2.13), but I set ξ0 = −8 to encode a prior belief that

around 100 markers would be associated to the trait on average a priori. The bound on ξ1

is then ξ1 ≤ 8, but I consider log odds-ratio boost effects of ξ1 ∈ {1, 4, 8}. A value of ξ1 = 1

is more representative of low power GWA studies; however, the larger boost effects offer

more weight to my prior information. For comparison, I also fit a model without any gene

boost by setting ξ1 = 0 (the “null” model), and also fit two models for each possible value of

ξ1 trying both a non-informative gene relevance vector and a vector based on text-mining

scores obtained from [61].

To speed up the EM algorithm, I rank-truncate X using l = 3,259 singular vectors; the

mean squared error between X and this approximation is less than 1%. I apply the EM

filtering 29 times and investigate a measure similar to posterior predictive loss [PPL, [28]] to

decide when to start the Gibbs sampler. If, at the t-th EM iteration, ŷ
(t)
i = E[yi,rep | β̂(t)EM, y]

is the i-th predicted response, the PPL measure under squared error loss is approximated
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Figure 2.7: Although I run the EM filter until the number of retained markers < 100 (iter-
ation #29), the PPL metric often tells me to keep between 200 to 250 markers (iterations
#25–26).

by

PPL(t) =

n∑
i=1

(yi − ŷi)2 +

n∑
i=1

Var[yi,rep | β̂(t)EM , y] =

n∑
i=1

(yi − ŷi)2 + ŷi(1− ŷi).

As Figure 2.7 shows, in all of my fitted models, the PPL decreases slowly and uniformly

for the first twenty or so iterations, and then suddenly decreases more sharply for the next

five iterations until it reaches a minimum and then begins increasing uniformly until the

final iteration. For comparison to the 15 SNPs that achieve genome-wide significance in

the single marker tests, Tables 6.2 through 6.15 list, for each spatial boost model, the top

15 SNPs at the optimal EM filtering step, i.e. the step with the smallest PPL, and the

top 15 SNPs based on the posterior samples from my Gibbs sampler when using only the

corresponding set of retained markers.

I observe the most overlap with the results of the single SNP tests in my null model

where ξ1 = 0 and in my models that use informative priors based on relevance scores from



44

MalaCards. Although there is concordance between these models in terms of the top 15

SNPs, it is noteworthy that I select only a fraction of these markers after running either

the EM algorithm or the Gibbs sampler. Based on the results from my simulation study

where I observe superior performances for the spatial boost model at low false positive

rates, I believe that an advantage of my method is this ability to highlight a smaller set of

candidate markers for future investigation.

Indeed, after running my complete analysis, I observe that the usual threshold of 0.5 on

P̂(θj = 1|y) would result in only the null spatial boost model (ξ1 = 0), the low gene boost

non-informative model (ξ1 = 1), and the informative models selecting SNPs for inclusion

in their respective final models. The SNPs that occur the most frequently in these final

models are the first top hits from the single SNP tests: rs4718582, rs10262109, rs6679677,

and rs664893, with respective minor allele frequencies: 0.08, 0.06, 0.06, 0.14, and 0.12.

The SNP with the highest minor allele frequency in this set is rs6679677; this marker has

appeared in several top rankings in the GWAS literature (e.g. [13]) and is in high LD with

another SNP in gene PTPN22 which has been linked to RA [64].

If I only consider the final models obtained after running the EM filter, we see an-

other interesting SNP picked up across the null and informative models: rs1028850. In

Figure 2.8, I show a closer look at the region around this marker and compare the trace of

the Manhattan plot with the traces of each spatial boost model’s E[θj |β̂EM , σ̂2EM, y] values

at the first iteration of the EM filter. To the best of my knowledge this marker has not

yet been identified as being associated to RA; moreover, it is located inside a non-protein

coding RNA gene, LINC00598, and is close to another gene that has been linked to RA,

FOXO1 [32].

As I increase the strength of the gene boost term with a non-informative relevance

vector, the relatively strong prior likely leads to a mis-prioritization of all SNPs that happen

to be located in regions rich in genes. In the supplementary tables I list the lengths of the

genes that contain each SNP and I see that indeed the non-informative gene boost models

tend to retain SNPs that are near large genes that can offer a generous boost. Perhaps due
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to prioritizing the SNPs incorrectly in these models, I do not actually select any markers at

either the optimal EM filtering step or after running the Gibbs sampler. However, some of

the highest ranking SNPs for these models, rs1982126 and rs6969220, are located in gene

PTPRN2 which is interestingly a paralog of PTPN22.

2.6 Conclusions

I have presented a novel hierarchical Bayesian model for GWAS that exploits the structure

of the genome to define SNP-specific prior distributions for the model parameters based

on proximities to relevant genes. While it is possible that other “functional” regions are

also very relevant—e.g. regulatory and highly conserved regions—and that mutations in

SNPs influence regions of the genome much farther away—either upstream, downstream,

or, through a complex interaction of molecular pathways, even on different chromosomes

entirely—I believe that incorporating information about the genes in the immediate sur-

roundings of a SNP is a reasonable place to start.

By incorporating prior information on relevant genomic regions, I focus on well an-

notated parts of the genome and was able to identify, in real data, markers that were

previously identified in large studies and highlight at least one novel SNP that has not

been found by other models. In addition, as shown in a simulation study, while logis-

tic regression under large-p-small-n regimen is challenging, the spatial boost model often

outperforms simpler models that either analyze SNPs independently or employ a uniform

penalty term on the L1 norm of their coefficients.

My main point is that I regard a fully joint analysis of all markers as essential to

overcome genotype correlations and rare variants. This approach, however, entails many

difficulties. From a statistical point of view, the problem is severely ill-posed so I rely on

informative, meaningful priors to guide the inference. From a computational perspective,

I also have the daunting task of fitting a large scale logistic regression, but I make it

feasible by reducing the dimension of both data—intrinsically through rank truncation—
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and parameters—through EM filtering. Moreover, from a practical point of view, I provide

guidelines for selecting hyper-priors, reducing dimensionality, and implement the proposed

approach using parallelized routines.

From the simulation studies in Section 2.4 I can further draw two conclusions. First, as

reported by other methods such as PUMA, filtering is important; my EM filtering procedure

seems to focus on effectively selecting true positives at low false positive rates. This feature

of my method is encouraging, since practitioners are often interested in achieving higher

sensitivity by focusing on lower false positive rates. Second, because I depend on good

informative priors to guide the selection of associated markers, I rely on a judicious choice

of hyper-prior parameters, in particular of the range parameter φ and how it boosts markers

within neighboring genes that are deemed relevant. It is also important to elicit gene

relevances from well curated databases, e.g. MalaCards, and to calibrate prior strength

according to how significant these scores are.

I have shown that my model performs at least comparatively to other variable selection

methods, but that it can suffer in the case of severe model misspecification. As a way

to flag misspecification I suggest to check monotonicity in a measure of model fit such as

PPL as I filter markers using EM. In addition, refining the EM filtering by using a lower

threshold (< .25) at each iteration can help increase performance, especially at lower false

positive rates.

When applying the spatial boost model to a real data set, I was able to confidently

isolate at least one marker that has previously been linked to the trait as well as find another

novel interesting marker that may be related to the trait. This shows that although I can

better explore associations jointly while accounting for gene effects, the spatial boost model

still might lack power to detect associations between diseases and SNPs due to the high

correlation induced by linkage disequilibrium.

In Chapter 3, I develop a version of the spatial boost model for quantitative traits and

explore the trade-off between performance and computational efficiency of this new model

when using different rank truncations for the singular value decomposition approximation
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to the observed SNP data. In Chapters 4 and 5, I aim to increase the power of the spaital

boost model even further by extending the model to include a data pre-processing step

that attempts to formally correct for the collinearity between SNPs.
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Chapter 3

Spatial Boost Model for Quantitative Trait GWAS

As I have pointed out in the preceding chapters, Bayesian variable selection provides a

principled framework for incorporating prior information to regularize parameters in high-

dimensional large-p-small-n regression models such as genome-wide association studies.

Although these models can continually exploit the most recently available prior information

in this way, researchers often disregard them in favor of simpler models because of their

high computational cost. In this short chapter, I extend my spatial boost model described

in Chapter 2 to quantitative traits. I then explore the trade-off of performance versus

computational efficiency in comparison to single association tests through a simulation

study based on real genotypes.

3.1 Model Definition

It is straightforward to extend the spatial boost model to a quantitative trait; I simply

need to make a change to the likelihood function defined in Equation 2.1. The rest of the

spatial boost model remains the same; however, this simple change significantly affects the

update equations and posterior distributions used in the EM algorithm and Gibbs sampler.

I now model the expected value of the ith individual’s quantitative trait, E[yi], as a linear

combination of the number of alleles present at a set of p SNPs encoded in x>i ∈ {0, 1, 2}p,

and model the phenotypic variation that is not attributed to the genotypes as τ2. Given a

vector of effect sizes, β, and assuming that the observations are independent, I thus have:
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y | Xβ, τ2 ∼ MVN(Xβ, τ2In). (3.1)

The rest of the model is as defined in Section 2.1, with only one change: I allow for

τ2 to have an inverse Gamma (IG) prior distrubution with hyper-parameters ν1 and λ1;

consequently, I re-label the hyper-parameters of the variance of the spike component in the

continuous spike-and-slab prior, σ2, to be ν2 and λ2.

3.2 Model Fitting and Inference

As in Chapter 2, I want to use the centroid estimator [15] to conduct inference on θ and so

I must compute P(θj = 1|y). However, to speed up the analysis of large data sets, I first

treat the θj as latent variables and derive an EM algorithm to obtain estimates β∗j , σ
2∗, τ2

∗

and approximate P(θj = 1|y) ≈ P(θj = 1|β∗j , σ2
∗
, τ2
∗
, y). I then filter SNPs by ranking

P(θj = 1|β∗j , σ2
∗
, τ2
∗
, y) in descending order and removing the bottom quartile. I repeat

this process until I either reach a desired smaller number of SNPs or until the predictive

accuracy of my model deteriorates beyond a certain point. Finally, I compute estimates of

P(θj = 1|y) for the remaining SNPs using a Gibbs sampler.

3.2.1 Expectation-Maximization Filter

My updated algorithm for a quantitative trait is similar to a recently proposed EM approach

to Bayesian variable selection [76]. Omitting the superscripts (t) to denote the t-th iteration

of the algorithm, in the E-step I compute E[θj |βj , σ2, τ2, y] = logit−1(Sj) where:

Sj = ξ0 + ξ1 · w>j (φ)r + 0.5 · β2j (κ− 1)/[σ2κ]− 0.5 · log(κ). (3.2)

In the M-step I optimize the other random variables in the model using the complete

data log likelihood and the current values of σ−2θj = [logit−1(Sj)/κ + 1 − logit−1(Sj)]/σ
2.

Letting Σ−1θ = Diag(σ−2θj ), I update β as follows:
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β = (Σ−1θ + τ−2X>X)−1(τ−2X>y). (3.3)

I update τ2 and σ2 using the modes of their respective posterior distributions:

τ2 = (λ1 + 0.5 ·
n∑
i=1

(yi − x>i β)2)/(ν1 + n/2 + 1), (3.4)

σ2 =
λ2 + 0.5 · (β20/κ+

∑p
j=1 β

2
j [logit−1(Sj)/κ+ 1− logit−1(Sj)])

ν2 + p/2 + 1
. (3.5)

As before, I exploit a truncated singular value decomposition (SVD) to speed up the

computation in (3.3) by replacing X with an approximation
∑k

l=1 u(l)d(l)v
>
(l). By applying

the Kailath Variant matrix inverse identity, I can substitute the inversion of a p-by-p matrix

with the inversion of an k-by-k matrix.

3.2.2 Gibbs Sampler

I derive the conditional posterior distributions of β, τ2, and σ2 as follows:

β | θ, σ2, y ∼ MVN[(Σ−1θ + τ−2X>X)−1(τ−2X>y), (Σ−1θ + τ−2X>X)−1], (3.6)

τ2 | y, β ∼ IG(ν1 + n/2, λ1 + 0.5 ·
n∑
i=1

[yi − x>i β]2), (3.7)

σ2 | β, θ ∼ IG(ν2 + p/2,

λ2 + 0.5(β20/κ+

p∑
j=1

β2j [logit−1(Sj)/κ+ 1− logit−1(Sj)])).
(3.8)

I then use Equation (3.2) to compute P (θj = 1|βj , σ2, τ2, y) and derive the conditional
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posterior distribution of each θj :

θj | βj , σ2 ∼ Bernoulli[logit−1(Sj)]. (3.9)

After initializing the values for β, τ2, σ2, and θ, I draw samples sequentially from

(3.6), (3.7), (3.8), and (3.9) until I have reached a desired total number of samples for

each random variable. In practice, I generate several chains of posterior samples and assess

convergence using the Brooks & Gelman scale reduction factor [12] on the complete data

log likelihood. I compute my final estimates of P(θj = 1|y) for each SNP using N posterior

samples as P̂(θj = 1|y) =
∑N

t=1 θ
(t)
j /N .

3.3 Calibration Simulation Study

Having extended the spatial boost model to quantitative traits and updated the model

fitting algorithms accordingly, I now explore the computational efficiency of the model in

comparison to the single SNP tests in a simulation study. To setup the study, I generate

100 matrices of size n = 102 and p = 103 by randomly selecting contiguous blocks of

genotypes from an overall list of 29,711 SNPs on chromosome 2 in 3,503 individuals in

a data set provided by the Wellcome Trust Case Consortium. I only consider common

variants in my analyses, i.e., SNPs with minor allele frequency > 5% and variants that do

not statistically significantly deviate from Hardy-Weinberg Equilibrium [89]. I choose φ

using the guidelines in Section (2.3.1), and set r = 1G. After normalizing the gene weights

given in (2.3) so that the maximum value in each data set is 1, the distribution of all gene

weights is heavily left-skewed with 97.2% of the values occurring below 0.5.

In my first simulation study, I start by setting σ2 = 10−4 and τ2 = 102 and then

sample values for θ, β and y for all 100 data sets under six different gene boost and

effect size combinations. For each replicate s, I highlight the effect of the gene boost by

considering both a boost-less model with ξ0 = logit(10/ps) and ξ1 = 0 as well as a model

with ξ0 = logit(1/ps) and ξ1 = −logit(1/ps) where ps is the number of SNPs in the sth
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data set. I enforce consistency in the number of true positives across data sets by sampling

values for θ such that
∑ps

j=1 θj = 10. To vary the effect sizes of the SNPs I use a metric

denoted by h2 that is based on the heritability that is attributable to the genotypes in my

dataset. More specifically, assuming that Xij ∼ Binomial(2, πj) independently where πj is

the minor allele frequency of the jth SNP, I consider an approximation for h2 as follows:

h2 ≈
EX [κσ2

∑
j:θj=1X

2
ij ]

EX [κσ2
∑

j:θj=1X
2
ij + σ2

∑
j:θj=0X

2
ij + τ2]

. (3.10)

To explore fitting my model to data sets where the heritability that is attributable to

the covariates varies from a small proportion to a large proportion, I select κ for each data

set in my simulations using Equation (3.10) to ensure a desired level of h2 ∈ {0.1, 0.5, 0.9}.

In my study this corresponds to choosing average values of κ ∈ {15,000, 140,000, 1,300,000}

respectively. It is noteworthy however that only h2 = 0.1 provides a mildly realistic scenario

for the heritability that is attributable to the genotypes in human traits. After simulating

values for β and y I first apply my EM filtering algorithm to reduce the number of SNPs

in each data set to a consistent 300 and then run my Gibbs sampler on the retained set

of markers to obtain final estimates of P (θj = 1|y) using N = 1,500. In the EM filtering

step I try using X as well as three different truncated SVD approximations to X where

the MSE tolerance is either 1%, 10% or 25%. For comparison I run the usual association

tests on my simulated data using the PLINK [74] software.

Since κ explicitly controls the difference in variability of βj | θj , σ2 and thus greatly

influences my variable selection, I investigate the sensitivity of my model to misspecifi-

cations of κ when all other model tuning parameters are ideally set. I use the first 300

consecutive SNPs in each data set and define σ2 = 10−4, τ2 = 102, ξ0 = logit(1/300)

and ξ1 = −logit(1/300) and again sample θ such that I have 10 true positives. I con-

sider true values of κ ∈ {103, 105} and compute estimates of P(θj = 1|y) for each SNP

after running my Gibbs sampler for N = 1,500 iterations in 7 different models where I set

κ ∈ {101, 102, . . . , 107}.
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Moreover, since ξ1 determines the strength of the influence of neighboring genes on θj , I

also investigate the sensitivity of my model to misspecifications of it. I use the same setup

as above but instead set κ = 103, consider true values of (ξ0, ξ1) of either (logit(10/300), 0)

or (logit(1/300),−logit(1/300)), and fit 7 different models where I set ξ1 ∈ {0, 1, . . . , 6}. In

each of my simulation studies, I set ν1 = 1.1, λ1 = 10, ν2 = 101, and λ2 = 10−2 and assess

the model performance by computing the AUC using my knowledge of the true and false

positives.

3.3.1 Results

In my first simulation study I observe in Figure 3.1 that the spatial boost (SB) model

outperforms the single SNP tests across all h2 scenarios when there is a gene boost using

either X or one of three SVD approximations to X with MSE tolerances of 1%, 10% and

25%. When there is not a gene boost my model suffers due to the potential sequential loss

of true positive weak signals during the EM filtering step and thus achieves an average

performance similar to the single SNP tests across all h2 scenarios when using either X or

an approximation with an MSE tolerance of 1%. Moreover, as expected, the performance

deteriorates when using a coarser approximation for traits with moderate and high h2 since

the variation in the genotypes explains more of the variation in y. Interestingly, as also

observed in my simulation studies in Chapter 2, I can achieve roughly the same level of

performance by computing AUC using the final estimates of logit−1(Sj) after running the

EM filter in place of the final estimates of P(θj = 1|y) after running my Gibbs sampler.

Based on the running times for each aspect of the SB model and the single SNP tests across

several different configurations of n and p given in Table 6.16, I see that after computing the

SVD of X, it is often faster to run a single pass of my EM filter on a coarse approximation

to X (MSE tolerance of 25%) than to fit the single SNP tests. For the largest data size I

considered (n = 103, p = 104), I see reductions in the time it takes to run the EM filter

5 times by 33.2%, 80.7% and 97.3% when using MSE tolerances of 1%, 10% and 25%

respectively. In a few cases, it takes slightly longer to run the EM filter when using a fine
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approximation to X, e.g. MSE tolerance of 1%, possibly due to the extra memory needed

to store three matrices instead of one.

In my second simulation study, I observe better performances from my model in Fig-

ure 3.2 when I choose κ ≤ 104 even if the true value of κ is larger. This is likely due to

the difficulty in detecting both weak and strong signals simultaneously when using a large

value for κ. By selecting a relatively smaller value for κ I opt for sensitivity rather than

specificity. When viewing the quartiles of the distribution of points on all 100 ROC curves

for the two special cases when I select κ ∈ {101, 107} in data sets where κ = 105, I do

not see any benefit from being more specific in the early part of the curve by choosing

κ = 107. In my third simulation study, I observe in Figure 3.3 that the SB model is robust

to misspecifications of ξ1 when there is no gene boost, but is sensitive to them otherwise.

3.4 Conclusions

I find that in a variety of gene boost and h2 configurations, my extended pipeline for

analyzing quantitative trait GWAS data sets using the SB model is also an efficient way of

fitting a representative model to SNPs jointly that exploits proximities to relevant genes to

uniquely define prior probabilities of association. Although it takes an impractical amount

of time to run my Gibbs sampler, I achieve the same level of performance at a reasonable

fraction of that computational cost by settling for the final estimates of logit−1(Sj) after

running my EM filter in place of the final estimates of P(θj = 1|y) after running the

Gibbs sampler. Computing the SVD of X is the next largest computational cost when

using my model; however, researchers may already perform such a computation when they

apply principal components analysis to genotype data for instance to adjust for population

stratification [72] before any subsequent analysis. To maintain a competitive edge when

analyzing whole genomes in the future, I may further benefit from analyzing chromosomes

in blocks defined based on genomic distance or linkage disequilibrium. In the next chapters,

I explore this direction and introduce a model that accounts for the collinearity inX directly
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Figure 3.1: These boxplots depict the performance of the single SNP tests (SS) and the
SB model across 6 different gene boost and h2 combinations and 100 different genotype
patterns. The %’s indicate the tolerance on MSE that I required when replacing X with
an approximation. For each set of SB model results, I present a boxplot (left) for the AUC
values based on the final estimates of logit−1(Sj) after running the EM filter and a boxplot
(right) for the AUC values based on the final estimates of P(θj = 1|y) after running the
Gibbs sampler.

in the modeling procedure.
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Figure 3.2: These boxplots depict the performance of the SB model in our second simulation
study where I vary κ and fit my model to 100 data sets simulated from two different models
where κ = 103 (left) and κ = 105 (middle). The blue boxplots show the results when all
parameters are ideally set. In the right plot, I explore the distribution of ROC curves that
generated the AUC values for the first and last boxplots in the middle plot.
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Figure 3.3: These boxplots depict the performance of the SB model in my third simulation
study where I vary ξ1 and fit my model to 100 data sets simulated from two different models
where ξ1 = 0 (left) and ξ1 = −logit(1/300) (middle). The blue boxplot shows the results
when all parameters are ideally set. In the right plot, I explore the distribution of ROC
curves that generated the AUC values for the first and last boxplots in the middle plot.
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Chapter 4

Block-Wise Latent Genotypes

Recombination events that occur along chromosomes during reproduction can create more

variation across individuals globally but can also impose less variation across genetic mark-

ers locally. This non-random association of adjacent markers introduces strong correlation

in typical genome-wide association study data sets. In this chapter, I present a model

for de-correlating blocks of the genome at a time by replacing the markers within each

block with an independent continuous latent genotype that is estimated using the observed

marker data and their spatial positions in a simultaneous auto-regressive model. I explore

fitting a model that exploits the response variable and the observed genotypes simultane-

ously to estimate and select the significant latent genotypes and apply my method to the

hypertension trait in the Genetic Analysis Workshop (GAW) 18 data set.

4.1 Methods

Researchers have recently been aiming to increase the power to detect significant markers in

single association tests by combining the signals within groups such as gene sets; however,

to maximize the benefit of these analyses we must also account for biases stemming from

the typically strong patterns of correlation between neighboring markers due to linkage

disequilibrium [84]. Simultaneous auto-regressive (SAR) models are especially useful for

explaining the similarity between the observations collected from spatially close locations or

subjects [75] Since the average correlation between markers is inversely proportional to the

distance between them [5], my objective is to exploit SAR models in a data pre-processing
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step to replace short contiguous blocks of correlated markers with block-wise independent

latent genotypes for subsequent analyses.

4.1.1 Block Definition

As an optional first step, I consider applying an algorithm such as one described in Sec-

tion 1.1.1, CLUSTAG [4], to obtain a set of tag SNPs that can represent all the known

SNPs in a chromosomal region, subject to the constraint that all SNPs must have a squared

correlation R2 > ρ with at least one tag SNP, where ρ is specified by the user. The default

choice of ρ in the program that ships with the software, 0.8, leads to a useful subset of

representative SNPs that may still be strongly correlated with each other without having

any pair be almost perfectly correlated with each other, i.e., |R| ≤ .9. I then break a

chromosome into blocks such that any two adjacent SNPs are in the same block if they lie

within ζ units of genomic distance of each other.

Since larger values of ζ result in a larger number of SNPs in each block, the average

decay rate of the relationship between the average magnitude of correlation between SNPs

in a block and the genomic distance between them decreases as a function of ζ. For

reference, the lower and upper quartiles of the distribution of pair-wise distances between

adjacent SNPs on the longest chromosome analyzed in the WTCCC data set in Section 2.5

are 849 and 9,781; for the GAW18 data set analyzed in Section 4.5, they are 1,334 and

7,584. Although the range of appropriate choices for ζ may depend on the data set being

analyzed, in practice I propose selecting a value of ζ ≤ 104 that strikes a balance between

preserving a relatively strong inverse relationship between genomic distance and average

magnitude of correlation and producing a computationally feasible number of blocks.

4.1.2 Simultaneous Autoregressive Model

Given a set of p SNPs for the ith individual denoted by Xi, I define a corresponding set of

independent random variables, “latent genotypes”, denoted by Zi that have a multivariate

normal (MVN) probability distribution parameterized by a mean vector µ and a diagonal
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covariance matrix Σ with entries τ2, i.e.,

Zi
ind∼ MVN(µ,Σ). (4.1)

I now introduce spatially correlated latent genotypes denoted by Ui using the SAR

modeling framework; given a matrix, B, of spatial weights, Bij ≥ 0 that encode the spatial

proximity between a pair of SNPs such that Bjj = 0, I have

Ui = BUi + Zi. (4.2)

Defining C = (I − B)−1, the prior distribution on Zi in Equation 4.1 induces the

following distribution on Ui through the SAR model in Equation 4.2:

Ui
ind∼ MVN(Cµ,CΣC>) (4.3)

The spatial proximity measures in B affect both the expected value and the covariance

structure of the spatially correlated latent genotypes, Ui; moreover, in the trivial case where

B is a matrix of zeros, I have that C = Ip and so Ui = Zi. I now propose the following

model to establish a connection between Xi, Ui and Zi:

Xij | Uij
ind∼ Binomial(2, logit−1 [Uij ]) (4.4)

Through this formulation, I treat an individual’s observed SNP data in Xi as being a

censored version of their spatially correlated latent genotypes in Ui. Since Ui is in turn

defined as a function of itself, B, and Zi, I can use 4.2 to re-write 4.4 and to obtain:

Xij | Zi
ind∼ Binomial

(
2, logit−1

[
C>j Zi

])
(4.5)

Paralleling the well-known inverse relationship between the average magnitude of cor-

relation and the genomic distance between SNPs [5], I define the spatial weight between
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Figure 4.1: Spatial weight example: for the jth SNP at position sj = 980 with φj = 20 and
the kth SNP at position sk = 1,000 with φk = 10, I obtain, Bjk = 0.18.

the jth and kth SNPs at genomic locations sj and sk to be

Bjk = Φ

(
−|sj − sk|

φj

)
+ Φ

(
−|sj − sk|

φk

)
,

where Φ(·) is the cumulative distribution function of a standard normal random variable

and φj and φk are tuning parameters that encode the strength of the influence of neigh-

boring SNPs on the jth and kth spatially correlated latent genotypes. For a given SNP

with genomic position, sj , the radius of spatial influence from neighboring SNPs grows as

a function of φj . By requiring that each φj ≤ ζ/3, the spatial weight between the jth

SNP and SNPs from other blocks becomes so negligible that B and C exhibit block-wise

diagonal structure. Although I recommend this as a useful upper bound for computational

convenience, in Section 4.2, I provide more guidelines for choosing these tuning parameters.

In contrast to the spatial boost model’s gene weights defined in Section 2.1.2, I allow for

potentially every SNP to have a different corresponding value of φj ; this flexibility can

better accommodate for recombination hotspots that may be scattered across the genome.

Due to the large size of typical GWAS data sets, it would be impractical to estimate a
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unique latent genotype for each SNP for each individual. To overcome this computational

obstacle, I instead propose replacing the full vector of p latent genotypes, Zi, with a subset

of K block-wise latent genotypes, Z̃i that best summarize, through the SAR modeling

framework, the observed DNA fingerprint of Xi. In particular, given a configuration of

blocks such that bj denotes the block to which the jth SNP belongs, I define:

Zij = Z̃ibj + δj .

For extra modeling flexibility, I allow Zij to deviate from Z̃ibj through a residual term,

δj ; however, to ensure identifiability of this model, I add the constraint that
∑

k∈bj δk = 0.

I model each block independently of the rest under the assumption that the φj ’s have been

chosen in such a way that C is block-wise diagonal. Now, for an arbitrary block, b, letting

zib denote the vector of Zik’s such that k ∈ b, letting δ−|b| denote the vector of deviations

for block b without its last element, and defining vib = {Z̃ib, δ−|b|}, I can write the ith

individual’s |b| latent genotypes within block b as a linear mapping, T , from vib:

zib = Tvib. (4.6)

To enforce the relationship in 4.6, I have that for the collection of SNPs in block b, T

is a square matrix of size |b| defined according to the following pattern:

T =



1 1 0 0 · · · 0

1 0 1 0 · · · 0

...
...

...
...

. . .
...

1 0 0 0 · · · 1

1 −1 −1 −1 · · · −1


.

For a given block of the genome, I describe how to choose the tuning parameters and

hyper-parameters of my model such that the naturally occurring minor allele frequencies

and linkage disequillibrium patterns are preserved in 4.5 in Section 4.2. Once I determine
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the values of the φ’s, µ, and Σ for a given block, the corresponding inverse mapping, T−1,

applied to the appropriate block of latent genotypes, zib, determines a prior distribution on

that block’s values of vib; omitting the subscripts on µ and Σ that denote the sub-vector

or sub-matrix corresponding to block b for simplicity, the prior distribution induced by 4.1

and4.6 is as follows:

vib | φ, µ,Σ
ind∼ Normal(T−1µ, T−1ΣT−>) (4.7)

Letting Z̃>i denote the ith individual’s collection of block-wise latent genotypes, I now

propose the following Bayesian model for a set of n binary response variables y:

yi | Z̃>i γ
ind∼ Bernoulli

(
logit−1

[
Z̃>i γ

])
γb | θb, σ2

ind∼ Normal(0, σ2[θbκ+ 1− θb])

θb
ind∼ Bernoulli(ψ)

σ2 ∼ IG(ν, λ)

(4.8)

The model in 4.8 corresponds to simple Bayesian variable selection with a continuous

spke-and-slab prior distribution for the effect sizes, γ, of the block-wise latent genotypes,

Z̃>i , where the latent variables, θ, indicate which blocks are significantly associated to

the response variable. Similar to the spatial boost model, I use an inverse-gamma prior

distribution for the variance term, σ2, in the spike-and-slab prior with hyper-parameters ν

and λ, and use the EMBFDR in practice to choose an appropriate value of κ. Each block

independently has a prior probability of ψ of being associated to the trait of interest.

A fundamental difference between my approach and other methods is that instead of

modeling yi given a linear combination of the ith individual’s covariates, e.g., X>i β for some

β ∈ Rp, I use yi and X>i simultaneously, along with the priors on the vib’s, to estimate

Z̃>i and then model yi given Z̃>i γ. Although I describe an algorithm in Section 4.3 for

fitting the model in this way, I also explore a simpler idea in the comparison simulation

study in Section 4.4.2 where I estimate Z̃>i only using X>i in a pre-processing step and
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then perform single block association tests in an analysis similar to the usual single marker

tests. In Chapter 5, I merge the ideas here and in Chapter 2 to extend the prior on the θj ’s

in this model to prioritize the blocks that lie close to relevant regions of a chromosome.

4.2 Selecting Prior Tuning Parameters

Equation 4.5 defines the relationship between the ith individual’s observed SNP data, Xi,

and the corresponding unobserved latent genotypes, Zi. It is important to choose the

hyper-parameters for the prior distribution on Z in such a way that preserves certain

naturally occurring relationships between SNPs. In particular I want to choose φ, µ, and Σ

in a way that not only minimizes, for each j, the discrepancy between the expected value

of the jth SNP and the ideal value based on a Hardy-Weinberg model, i.e., two times that

SNP’s minor allele frequency, πj , but also preserves the linkage disequillibrium patterns

known to exist in the population under investigation. Since a possible measure of LD is the

correlation coefficient, I can accomplish both objectives by selecting the hyper-parameters

so that the first two moments of X correspond to the known biology. To get started, in

a simplifying assumption I set the diagonal elements of Σ equal to a common τ2 = 1; I

explore the effect of this choice in the simulation study in Section 4.4.2. Then in a manner

similar to coordinate descent, I otherwise iteratively update the values of µ and φ for a

given block so as to preserve its natural MAF and LD patterns.

It is noteworthy that for the following sections, I will once again assume that the φj ’s

have been chosen so that C is block-wise diagonal. This way, I am able to simplify the

overall algorithm by operating on one block at a time, sequentially updating only the

elements of µ and φ that affect that particular block. For simplicity, I once again omit the

subscripts on µ and Σ that would denote the sub-vector or sub-matrix corresponding to a

particular block that I update.
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4.2.1 Preserving Minor Allele Frequencies

Also omitting the subscripts to denote the ith individual and the bth block of a given

chromosome, let z denote an arbitrary individual’s vector of latent genotypes inside a

block, b, where |b| > 1, and let D denote the corresponding bth block of the block-wise

diagonal C. Assuming that the jth SNP is one of the SNPs inside the bth block, I now

apply the law of total expectation to Xij :

EXij [Xij ] = Ez[EXij |z[Xij ]]

= Ez[2 logit−1(D>j z)]

= 2Ez[logit−1(D>j z)]

(4.9)

Letting π(·) = logit−1(·), µ̃j = Ez[D>j z] = D>j µ and Σ̃jk = [DΣD>]jk for simplicity,

to select the hyper-parameters in a way that preserves the minor allele frequencies of the

SNPs, I now desire to minimize the difference between Ez[logit−1(D>j z)] and πj . Using the

new notation, I will approximate Ez[π(D>j z)] using a Taylor expansion; first I write

π(D>j z) ≈ π(µ̃j) + π(1)(µ̃j) (D>j z− µ̃j) +
1

2
π(2)(µ̃j) (D>j z− µ̃j)2 + . . . (4.10)

Then taking the expectation of both sides of 4.10 with respect to z, I have

Ez[π(D>j z)] ≈ π(µ̃j) +
1

2
π(2)(µ̃j) Σ̃jj + . . . (4.11)

Given values of φ, Σ, and an initial set of values for the µ̃j ’s, I use a Newton’s method

algorithm to update the values of µ̃j to minimize the difference between the first two terms

in 4.11 and πj for each j ∈ b; the objective function for the jth SNP is given by

f(µ̃j) = π(µ̃j) +
1

2
· π(2)(µ̃j) Σ̃jj − πj .
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The first derivative of the objective function with respect to the input µ̃j is then

f (1)(µ̃j) = π(1)(µ̃j) +
1

2
π(3)(µ̃j) Σ̃jj .

Combining these equations, I iteratively update the value of µ̃j until convergence using

the standard update equation:

µ̃
(t+1)
j = µ̃

(t)
j −

f(µ̃
(t)
j )

f (1)(µ̃
(t)
j )

.

Finally, after achieving convergence, I obtain new estimates for µ by computing D−1µ̃.

4.2.2 Preserving Linkage Disequillibrium Patterns

To preserve the LD pattern in block b, I focus on choosing the φj ’s for j ∈ b so that the

expected covariance between any two SNPs in that block matches a given pattern from

either an external biological database with LD information or simply from the sample

covariance matrix. By applying the law of total covariance to the jth and kth SNPs in

block b, Xij and Xik, I first have the following:

cov(Xij , Xik) = Ez[covXij ,Xik|z(Xij , Xik)] + covz(EXij |z[Xij ],EXik|z[Xik]). (4.12)

Since I assume that the Xij ’s are conditionally independent given z, the first term on

the right hand side of 4.12 is zero for j 6= k; and otherwise Ez[covXij ,Xik|z(Xij , Xik)] =

Ez[varXij |z(Xij)]. The first derivative of the inverse logit function, π(1)(·) = π(·)(1− π(·)),

and so I can write varXij |z(Xij) = 2π(1)(D>j z). Another Taylor expansion for π(1)(D>j z)

gives the following:

π(1)(D>j z) ≈ π(1)(µ̃j) + π(2)(µ̃j) (D>j z− µ̃j) +
1

2
π(3)(µ̃j) (D>j z− µ̃j)2 + . . . (4.13)
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Taking the expectation of both sides of 4.13 with respect to z, I can write

Ez[π(1)(D>j z)] ≈ π(1)(µ̃j) +
1

2
π(3)(µ̃j) Σ̃jj + . . . (4.14)

I will use the first two terms on the right hand side of 4.14 in my approximation to the

first term of 4.12. As for the second term in 4.12, I first simplify the original expression

and note that covz(EXij |z[Xij ],EXik|z[Xik]) = 4 covz(π(D>j z), π(D>k z)). By the definition of

covariance, covz(π(D>j z), π(D>k z)) = Ez[π(D>j z)π(D>k z)]−Ez[π(D>j z)]Ez[π(D>k z)]. Using

another Taylor expansion to approximate the first term in this expression, and using the

previously derived approximations for each factor of the second term, and then simplifying

the result, I obtain the following:

covz(EXij |z[Xij ],EXik|z[Xik]) ≈

π(µ̃j)π(µ̃k) +
1

2
π(2)(µ̃j)π(µ̃k) Σ̃jj +

1

2
π(µ̃j)π

(2)(µ̃k) Σ̃kk

+ π(1)(µ̃j)π
(1)(µ̃k) Σ̃jk + . . . (4.15)

Combining equations 4.12 through 4.15, and using the indicator function I[·] that re-

turns one if its contents are true and zero otherwise, I obtain a final simplified approxima-

tion for the covariance between the jth and kth SNPs:

cov(Xij , Xik) ≈ 4π(1)(µ̃j)π
(1)(µ̃k) Σ̃jk − π(2)(µ̃j)π(2)(µ̃k) Σ̃jj Σ̃kk

+ I[j = k]
[
2π(1)(µ̃j) + π(3)(µ̃j) Σ̃jj

]
(4.16)

To preseve the naturally occuring LD patterns in a given block, I now optimize the

values of φ by iterating over a grid of possible values and selected the configuration that

minimizes the mean squared error between the known LD pattern in that block and the
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Figure 4.2: An example of my approximation to an observed correlation structure.

approximation that derives from 4.16. Exploiting the idea of coordinate descent, e.g. as

in [92], I iteratively update the values of µ using the algorithm in Section 4.2.1 and the

values of φ as described here, for each block, until convergence. I show an example of a

correlation pattern in a block of six SNPs on chromosome 1 in the GAW18 data set and

our approximation using the above methods in Figure 4.2. The images shown are heat

maps of the absolute values of the observed correlation matrix, and the absolute values of

my approximations based on 4.16. Rather than capture every off-diagonal contour that

appears in the sample covariance matrix, my approximation tends to conservatively set

most of the off-diagonal entries to be relatively small values.

4.3 Model Fitting and Inference

After selecting the hyper-parameters for the prior distributions on the latent genotypes, I

derive a model fitting procedure for 4.8 similar to the one described in Chapter 2 for the

spatial boost model. It is noteworthy that a fully Bayesian approach is impractical for the

latent genotype model because of the introduction of so many additional latent parameters

for each individual. Instead, taking inspiration from my previous empirical observation

that the final estimates of posterior probabilities of association obtained from the Gibbs
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sampler on a binary trait did not significantly differ from the conditional probabilities of

association obtained by the EM algorithm, I propose focusing on the same EM filtering

pipeline for the latent genotype model as well. In this model however, I need to add a step

to also fit all of the block-wise latent genotypes, Z̃, and all of the block-wise deviations

of the SNPs, δ. Thus, in the new procedure, at each step of the overall filter, I alternate

between: (1) fitting Z̃ and δ given the rest of the model parameters using a Newton’s

method algorithm, and (2) fitting γ, θ, σ2 given the newly updated values of Z̃ and δ using

an EM algorithm. I continue to update all variables until either the values stop changing

or the algorithm passes a certain maximum number of iterations.

4.3.1 Estimating Block-Wise Latent Genotypes and Deviations

Letting µ̃b and Σ̃b now respectively be the sub-vector or sub-matrix of T−1µ or T−1ΣT−>

that corresponds to the bth block of latent genotypes, letting C̃b denote the bth block of the

block-wise diagonal C transformed such that [C̃b]ij = [Cb]ij − [Cb]i|b| for i = 1, . . . , |b| and

j = 1, . . . , |b| − 1, letting δ̃ denote the first |b| − 1 deviations within block b, and letting db

denote the vector of row sums of C̃b, I define the log joint distribution, `, given all observed

data and parameters, up to a constant:

`(·) ∝
n∑
i=1

{yiZ̃>i γ − log[1 + exp(Z̃>i γ)]} − 1

2

n∑
i=1

K∑
b=1

[vib − µ̃b]>Σ̃−1b [vib − µ̃b]

+
n∑
i=1

p∑
j=1

{Xij log π(Z̃ibdbj + [C̃b]
>
j δ̃) + (2−Xij) log[1− π(Z̃ibdbj + [C̃b]

>
j δ̃)]}

− 1

2σ2

K∑
b=1

γ2b

(
θb
κ

+ 1− θb

)
−

K∑
b=1

θblogit(ψ)−

(
ν +

K

2
+ 1

)
log σ2 − λ

σ2
. (4.17)

4.3.1.1 Estimating Z̃ib

Since each individual has a different set of block-wise latent genotypes, I update each Z̃ib

one at a time, conditional on all of the other model parameters. The terms in 4.17 that
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depend on Z̃ib are the component from the data likelihood, the component from the block-

wise prior distribution on vib, and the component from the SNPs within block b. Isolating

these components, I define an objective function, f(Z̃ib), that, when maximized, provides

an optimal value for Z̃ib.

f(Z̃ib) = yiZ̃ibγb − log[1 + exp(Z̃>i γ)]− 1

2
[vib − µ̃b]>Σ̃−1b [vib − µ̃b]

+
∑
j∈b
{Xij log π(Z̃ibdbj + [C̃b]

>
j δ̃) + (2−Xij) log[1− π(Z̃ibdbj + [C̃b]

>
j δ̃)]} (4.18)

Taking the first derivative of this objective function, I have the following:

f (1)(Z̃ib) = yiγb − π(Z̃>i γ)γb − (Z̃ib − µ̃b1)[Σ̃−1b ]11

− 1

2

|b|∑
j=2

(δj−1 − µ̃bj )[Σ̃
−1
b ]j1 +

∑
j∈b
{Xijdbj − 2π(Z̃ibdbj + [C̃b]

>
j δ̃)dbj} (4.19)

I maximize 4.18 by using a Newton’s method algorithm to find a zero of 4.19. To set up

the algorithm properly I take the second derivative of the objective function and obtain:

f (2)(Z̃ib) = −π(1)(Z̃>i γ)γ2b − [Σ̃−1b ]11 − 2
∑
j∈b

π(1)(Z̃ibdbj + [C̃b]
>
j δ̃)d

2
bj

(4.20)

I now iteratively update each Z̃ib by repeatedly applying the standard update equation,

Z̃
(t+1)
ib = Z̃

(t)
ib − f

(1)(Z̃
(t)
ib )/f (2)(Z̃

(t)
ib ), until convergence.

4.3.1.2 Estimating δ

Unlike the block-wise latent genotypes, each individual shares the same deviation δj for

their jth SNP, so I borrow information from all samples to update δ conditional on all of

the other model parameters. I use another Newton’s method algorithm to update δ one

block at a time; for an arbitrary block, b, the terms in 4.17 that depend on the first |b| − 1



71

deviations for that block, δ̃, are the components from the block-wise prior distribution on

vib, and the components from the SNPs within block b for all individuals. Since I require

that in a given block, b,
∑

k∈b δk = 0, I implicitly obtain the optimal value for δ|b| when

optimizing δ̃ for each block. Isolating the relevant components, I define a new objective

function, f(δ̃), that, when maximized, provides an optimal value for δ̃:

f(δ̃) = −1

2

n∑
i=1

[vib − µ̃b]>Σ̃−1b [vib − µ̃b]

+

n∑
i=1

∑
j∈b
{Xij log π(Z̃ibdbj + [C̃b]

>
j δ̃) + (2−Xij) log[1− π(Z̃ibdbj + [C̃b]

>
j δ̃)]} (4.21)

To optimize the elements of δ̃ jointly, I need to compute the gradiant of 4.21, ∇f(δ̃),

and the Jacobian matrix for the gradient, J. I start by noting that:

[∇f(δ̃)]k = −n
2

(δ̃k − µ̃bk+1
)[Σ̃−1b ]k+1,k+1 −

1

2

n∑
i=1

∑
j 6=k

(vibj − µ̃bj )[Σ̃
−1
b ]j,k+1

+
n∑
i=1

∑
j∈b
{Xij [C̃b]jk − 2π(Z̃ibdbj + [C̃b]

>
j δ̃)[C̃b]jk} (4.22)

The Jacobian of 4.22 is symmetric so that [J]jk = [J]kj ; moreover, for j 6= k:

[J]jk = −n
2
δ̃j [Σ̃

−1
b ]j,k+1 − 2[C̃b]jk

n∑
i=1

∑
j′∈b

π(1)(Z̃ibdbj + [C̃b]
>
j δ̃)[C̃b]j′k. (4.23)

The diagonal elements of J each have one additional term: −n
2

[Σ̃−1b ]k+1,k+1. Combining

this fact with equations 4.22 and 4.23 to compute ∇f(δ̃) and J, I fit δ̃ for a given block by

repeatedly applying the update equation, δ̃(t+1) = δ̃(t)− [J(t)]−1∇f(δ̃(t)), until convergence.
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4.3.2 Estimating θ, σ2 and γ

After updating the Z̃ and δ values, I apply the same type of EM algorithm as described

in Chapter 2 for the spatial boost model to fit the remaining model parameters. Just as

before, at the t-th iteration of the procedure, for the E-step I need to compute and store

〈θb〉(t)
.
= E

θ | y;γ(t),(σ2)(t)
[θb]. For the latent genotype model,

〈θb〉 = P(θb = 1 | y, γ, σ2) =
P(θb = 1, γb |σ2)

P(θb = 0, γb |σ2) + P(θb = 1, γb |σ2)
,

and so

logit〈θb〉 = log
P(θb = 1, γb |σ2)
P(θb = 0, γb |σ2)

= −1

2
log κ−

γ2b
2σ2

(
1

κ
− 1

)
+ logit(ψ) (4.24)

To update γ and σ2 I once again employ conditional maximization steps; from (4.17)

I see that the update for σ2 follows immediately from the mode of an inverse gamma

distribution conditional on γ(t):

(σ2)
(t+1)

=

1

2

K∑
b=1

(γ
(t)
b )

2

(
〈θb〉(t)

κ
+ 1− 〈θb〉(t)

)
+ λ

K + 1

2
+ ν + 1

. (4.25)

The terms in (2.4) that depend on γ come from the log likelihood of y and from the

expected prior on γ, γ ∼ N(0,Σ(t)), where

Σ(t) = Diag

(
σ2

〈θb〉(t)/κ+ 1− 〈θb〉(t)

)
.

Since updating γ is equivalent here to fitting a ridge regularized logistic regression, I exploit

the usual iteratively reweighted least squares (IRLS) algorithm [60]. Setting $(t) as the

vector of expected responses with $
(t)
i = logit−1(Z̃>i γ

(t)) and W (t) = Diag($
(t)
i (1−$(t)

i ))
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as the variance weights, the update for γ is then

γ(t+1) = (Z̃>W (t)Z̃ + (Σ(t))
−1

)
−1(

Z̃>W (t)Z̃γ(t) + Z̃>(y −$(t))
)
, (4.26)

where I substitute (σ2)
(t)

for σ2 in the definition of Σ(t).

4.3.3 Model Selection

I continue to filter out blocks of SNPs at a time in the model fitting procedure outlined above

until I reach either a desired number of blocks or the performance of the model deteriorates

beyond a certain point as measured by a metric such as the posterior predictive loss. After

reaching the final step of the EM filter, I decide on a final model by thresholding the final

estimates of each 〈θb〉. For my simulation and case studies I use a threshold of 0.5 so that

any SNP in a block such that 〈θb〉 > 0.5 is included in the final model.

4.4 Empirical Studies

To assess the utility of the latent genotype model and to understand the effect that different

choices of ζ and τ2 have on the model, I conduct a simulation study using a real data set

provided by the Genetic Analysis Workshop 18 on hypertension. For simplicity, I focus

only on the 31,812 SNPs that remain on chromosome 1 in 141 unrelated individuals after

applying the usual data filters described in Section 1.1.1. I describe the full data set in

more detail in Section 4.5.

4.4.1 Simulation Study Details

The goal of my study is to compare the performance of the latent genotype model to the

simplest, most popular alternative model, i.e. single SNP tests. However, in addition to

the single SNP tests, I also consider a simpler alternative to the model fitting procedure

described in Section 4.3 where I estimate Z̃ once using X and y, i.e. I stop the EM filtering

procedure after the first iteration and retain all blocks, and then run the single SNP tests
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on the block-wise latent genotypes instead of the raw minor allele frequency counts.

To account for different configurations of SNP positions and LD patterns, for each of

10 batches, I first randomly sample a contiguous subset of 1,000 SNPs on chromosome

1 from a random subset of 100 unrelated individuals in the GAW18 data set. Given a

randomly sampled subset of SNP data, I simulate 10 replicates of response variables, y,

from a multiple logistic regression model where the only non-zero coefficients occur at the

10 SNPs located at indices {100, 200, . . . , 1,000} and are drawn from the standard normal

distribution.

4.4.2 Comparison Simulation Study

For each of the 100 simulated data sets, I apply the single SNP tests on X, and then for

each configuration where ζ ∈ {1,000, 5,000} and τ2 ∈ {.01, .25, 1} I apply the single SNP

tests on the estimates of Z̃ after the first iteration of the EM filtering procedure (without

removing any blocks), and I use the full model fitting procedure described in the previous

section to filter the number of blocks down to 5. Figure 4.3 shows a comparison of the

distributions of block sizes when using the different choices of ζ; the smaller value of 1,000

results in a majority of blocks that contain only one SNP and no block containing more

than 8 SNPs whereas the larger value of 5,000 allows for a larger proportion of blocks to

contain multiple SNPs and a maximum size closer to 40.

To assess the performance of each model, I compute the area under the Receiving

Operating Characteristic (ROC) curve using my knowledge of the true and false positives

in each data set. When applying the single SNP tests, I use the ranking of − log10(p-valuej)

in decreasing order to generate the points on the ROC curve. For the latent genotypes

model, at each step of the EM filtering procedure I use the ranking of the final estimates of

〈θb〉 in decreasing order to generate the points on the ROC curve; in this case, I treat the

selection of a block of SNPs simply as the selection of all of the SNPs inside that block.

As shown in Figure 4.4, the distribution of AUC values for all configurations of the

latent genotypes model is comparable and often overall higher to that of the single SNP
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Figure 4.3: Comparison of distributions of block lengths on chromosome 1 for different ζ.

tests model. While the latent genotypes model seems robust to different choices for the

underlying variance of the latent genotypes, τ2, there is a clear improvement in model per-

formance when selecting a relatively larger value for ζ and allowing for a larger proportion

of blocks to contain multiple SNPs. This result is promising not only because the crux of

my method is to aim at improving model performance by replacing short contiguous blocks

of multiple correlated SNPs with independent block-wise latent genotypes, but also because

I observe that the latent genotypes models outperform the single SNP tests even when the

response variables are simulated from a different model entirely based on X instead of Z̃.

4.5 Case Study

In this section I apply the latent genotypes model to analyze the binary trait of hypertension

in the GAW18 data set. The raw data set contains measurements on 959 individuals from a

longitudinal survey on blood pressure and hypertension. The SNP data for these individuals

consists of genotypes assayed at Texas Biomed using the Illumina platform. In order to

reduce the size of the data set, genotypic data are provided only for markers on the odd-

numbered autosomes. After removing rare variants and SNPs that significantly deviate
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Figure 4.4: Results from the comparison simulation study. From left to right I show
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filtering procedure (LG), and for the full model fitting procedure (EM).

from Hardy-Weinberg Equilibrium, I use CLUSTAG in an initial filtering step with the

default ρ = 0.8 to obtain a total of 200,561 tag SNPs scattered across the first 11 odd-

numbered chromosomes. For the response variable, I consider the union of the hypertension

indicator variables measured at each of the four time points so that yi denotes whether

or not the ith individual had hypertension at any point in the study. To abide by the

assumption of independence across response variables, I consider only the 157 unrelated

individuals in the study. Moreover, I remove a further 16 individuals due to missing

genotype or phenotype information. My final filtered data set consists of 141 unrelated

individuals, their corresponding yi’s, and their SNPs.

For the real data set, I apply single SNP tests and two variations of my latent genotypes

model where ζ ∈ {0, 5000} and τ2 = 0.5. For computational convenience when fitting

the the latent genotype model, I analyze each chromosome separately and fit all model

parameters and latent variables at each step of the EM filtering procedure until the number

of blocks is reduced to five. Then I build a final model by combining the thresholded
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values, I[〈θb〉 ≥ 0.5], from each chromosome where the 〈θb〉’s are taken from the iteration

of that chromosome’s EM filter that has the smallest posterior predictive loss (PPL). The

trivial choice of ζ = 0 corresponds to running the EM filtering procedure on X instead

of Z̃ whereas the larger choice of ζ = 5,000 encourages a larger proportion of blocks that

contain multiple SNPs as shown in the simulation study.
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Figure 4.5: Comparison of the different PPL curves for GAW18 when using X.

In Figures 4.5 and 4.6, I show the paths of the PPL curves as a function of the EM filter

iteration number. All curves generally exhibit the same behavior observed in Chapter 2’s

analysis of the WTCCC data set; the PPL decreases uniformly for the first several iterations

of the filter and then sharply decreases for a few iterations before changing directions and

increasing uniformly for the rest of the procedure. Interestingly, some of the PPL curves for

the models where ζ = 5,000, e.g. the curves for chromosomes 17, 19 and 21, do not exibit

a pronounced global minimum. This can perhaps be attributed to the latent genotype

model’s flexibility in allowing the re-estimation of both Z̃ and γ at each step of the filter.

If there are only a few significant blocks on a chromosome and if the EM filter works well

to remove the insignificant blocks at each step of the filter, then it is reasonable to expect

the PPL curve to continue to decrease even at the later stages of the procedure. Indeed,
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the only blocks included in my final model where ζ = 5,000 lie on chromosome 19.

Tables 6.17 through 6.18 list the top 10 SNPs obtained by each of the methods. Using

a simple Bonferroni correction on a starting significance level of .05 to address the multiple

testing problem, the threshold for genome-wide significance on − log10(p-valuej) is 6.60.

None of the SNPs achieve this value in the single SNP tests; moreover, the problem of

multicollinearity causes several SNPs that are highly correlated with each other to appear

simultaneously in the top 10 ranking. The simple Bayesian variable selection model on X,

i.e. the latent genotype model where ζ = 0, avoids this problem; however using a threshold

on 〈θb〉 of 0.5, no SNPs are selected for inclusion in this model. Nevertheless, the top 10

ranking for this method includes two SNPs that lie in genes with independent associations

with hypertension including GABRG3 (rs6606865) [44] and CSK (rs1378942) [93]. I select

three blocks of SNPs on chromosome 19 with high conditional posterior probability of

association in the latent genotype model where ζ = 5,000. Each of these blocks contains

only one SNP and lies between the 30 Mbp and 50 Mbp positions of chromosome 19. I do

not observe any direct or independent association with hypertension by the genes in these

blocks; therefore further experiements are necessary to determine whether or not there is

any functional relationship between SLC17A7, DHDH, NUCB1 and hypertension.

4.6 Conclusions

In this chapter I presented a method to de-correlate contiguous blocks of SNPs by replacing

them with a block-wise latent genotype after using a SAR modeling framework to relate the

correlation structure between markers in a block to the genomic distance between them.

In a comparison simulation study using real GWAS data, I found that the method outper-

formed the usual single SNP tests even when the simulated data were generated from a

different model based on real genotypes observed in the GAW18 data set. In a case study

on the GAW18 data set, I showed that the method can significantly change the pattern of

signals in the standard Manhattan plot and highlight at least one region with a possible



79

0 5 10 15 20 25

40
45

50
55

60
65

EM Filter Iteration #

P
P

L

CHR1
CHR3
CHR5
CHR7
CHR9
CHR11
CHR13
CHR15
CHR17
CHR19
CHR21

Figure 4.6: Comparison of the different PPL curves for GAW18 when using Z̃.

connection to the trait of interest. Further experiments are therefore needed to validate

the markers that I selected for my final model; I could perhaps attribute my null result to a

combination of factors such as the small sample size of 141 and the possibly oversimplifying

assumption that all blocks of SNPs idependently have the same prior probability of associ-

ation. In the next and final chapter of my thesis, I explore this direction by incorporating

the prior from the spatial boost model on the block-wise latent genotypes.
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Chapter 5

Application of Proposed Methods

In this final chapter, I incorporate the ideas from Chapters 2 and 4 and modify the spatial

boost model to operate on latent genotype. Then, using all of my proposed methods, I

re-analyze the two data sets on binary traits that were discussed in the previous chapters,

the rheumatoid arthritis data set from the Wellcome Trust Case Control Consortium and

the hypertension data set from the Genetic Analysis Workshop 18.

5.1 Spatial Boost Model on Latent Genotypes

Seeking to evolve the spatial boost model to a level that analyzes blocks of latent genotypes

as hinted in Sections 2.6 and 4.6, I now extend the spatial boost model presented in

Chapter 2 to include the methods presented in Chapter 4 for de-correlating and analyzing

blocks of SNPs. My goal is to update the model in 2.1 to operate on latent genotypes in

such a way that preserves the hierarchy between SNPs and genes.

5.1.1 Model Definition

The spatial boost model on latent genotypes is a natural extension of 4.8 where the prior

distribution on the indicator variable, θb, that indicates whether or not the bth block is

associated with the response variable is modified to include a spatial boost term:

θb
ind∼ Bernoulli(ξ0 + ξ1w̃b(φ)>r). (5.1)

In this prior distribution, w̃>b refers to a G× 1 vector of gene weights for the bth block.



81

The rest of the tuning parameters, ξ0, ξ1 and r retain their original definitions from the

spatial boost model, i.e., they represent, respectively, the logit of the prior probability

of association of a block that is not close to any relevant genes, the maximum log odds

increase in the prior probability of association of a block due to the spatial boost term,

and a G × 1 vector of relevance values that quantify the relationship between each gene

and the trait of interest.

5.1.2 Defining Block Weights

To control how much a gene can contribute to the prior probability of association for a block

based on the gene’s length and distance to a block, I combine the information contained

in the usual gene weights of the SNPs in that block. Recall that given a range parameter

φ > 0 for a given window of the genome, I define the gene weight wj,g for a gene g that

spans genomic positions gl to gr, and the j-th marker at genomic position sj as

wj,g =

∫ gr

gl

1√
2πφ2

exp

{
− (x− sj)2

2φ2

}
dx.

I now set

w̃b,g =
1

|b|
∑
j∈b

wj,g.

By taking the simple average of the gene weights of the SNPs in a given block, each

SNP contributes equally to the definition of w̃b,g. Thus blocks that have a relatively larger

number of SNPs that lie close to genes will have a relatively larger block gene weight.

Because my model operates on short contiguous blocks of a chromosome, the mean gene

weight of the SNPs in a given block provides a reasonable summary of that block’s spatial

proximity to the gene. Figure 5.1 shows a visualzation of the process of computing the

block-wise gene weights in a mock example with 10 SNPs (green) on a chromosome with five

genes (purple). In the top plot, I center a Gaussian curve with standard deviation φ = 0.25

at each SNP’s position and shade in the area underneath from each gene’s starting and
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ending positions. The middle plot shows the resulting gene weights from this process as

dots (blue) placed at a height equal to their value on the vertical axis. Following the

methodology in Chapter 4 and using a threshold of ζ = 1, I define four blocks: {1, 2, 3, 4},

{5}, {6, 7}, and {8, 9, 10}. The bottom plot shows the final block-wise gene weight for

each block. As before, I normalize the gene weight contributions to θb in (5.1), w̃b(φ)>r,

such that maxj wj(φ)>r = 1. This way, as before, it is possible to compare estimates of ξ1

across different gene weight and relevance schemes.

5.1.3 Preserving the Distribution of Spatial Boost Terms

During the model fitting procedure, I employ the usual Expectation Maximization filtering

algorithm to iteratively remove the bottom quartile of blocks from the model until either

I reach a final desired number of blocks or the performance of the model is optimized

according to a metric such as the posterior predictive loss. I note that at the beginning

of the filter, the distribution of spatial boost terms, w̃b(φ)>r, is right-skewed with the

majority of values being close to zero. If the strength of the prior distribution on θb is too

strong, then the distribution of spatial boost terms for the blocks that remain in the EM

filter can become incorrectly left-skewed if the blocks with relatively larger values of the

spatial boost term rank higher than they should.

To account for this possibility, I take a precaution to preserve the initial distribution

of spatial boost terms throughout the filter. Letting F0(·) denote the cumulative prob-

ability distribution function (CDF) of all of the spatial boost terms before any filtering,

letting [w̃b(φ)>r](k) denote the kth order statistic of the spatial boost terms, and letting

Kt denote the number of blocks in the filter after the tth iteration, I consider the following

transformation:

[w̃b(φ)>r]
(t+1)
(k) = F−10

(
k

Kt

)
. (5.2)

In other words, before running the (t+ 1)th iteration of the filter, I use the ranking of
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Figure 5.1: Visualization of the computation of block-wise spatial boost terms.

the remaining spatial boost terms from the tth iteration to determine the order statistics.

Then I assign a value for the spatial boost term to each remaining block equal to the

quantile of F0 that corresponds to that block’s rank in the order statistics.

Figure 5.2 shows a mock example of this problem and its subsequent correction. The

probability distribution of all of the spatial boost terms before any filtering, f0, is shown

on the left. The middle plot shows a possible problematic probability distribution of the
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spatial boost terms after the tth iteration of the filter that exhibits left-skewness as opposed

to the desired right-skewness. The transformed distribution based on (5.2) is shown in the

right plot; the simple transformation enforces that the shape of the distribution of spatial

boost terms remains the same at each step of the EM filter.
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Figure 5.2: Visualization of the spatial boost term correction.

5.2 Case Studies

5.2.1 WTCCC Data Set: Rheumatoid Arthritis

In a re-analysis of the rheumatoid arthritis data set that was first presented in Chapter 2, I

use the above block-wise spatial boost prior in the latent genotypes model and set ζ = 5,000,

ξ0 = −8 and ξ1 = 4. This configuration of model tuning parameters allows for both a

relatively larger proportion of blocks that contain more than one SNP as explored in 4.4.2

and a moderate gene boost effect as explored in 2.5. I again use the MalaCards relevance

scores for r and, for computational convenience, I analyze each chromosome separately

after first removing the rare variants with MAF < 5% and then running the CLUSTAG

algorithm on the remaining markers with ρ = 0.8 to select a subset of tag SNPs that best
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summarizes each chromosome’s observed genotypic variation.

At the initial step of the EM filter for each chromosome the average number of blocks

is 5,271 with a standard deviation of 2,485 blocks. Setting τ2 = 0.5 for the prior variance

of the latent genotypes for each individual and setting values for the prior parameters of

µ and φ (and thus Σ) in accordance with the guidelines established in 4.2, I then apply

the model fitting procedure described in 4.3 and iteratively (i) fit the block-wise latent

genotypes for each individual and all remaining model parameters, and (ii) rank all blocks

in decreasing order according to their final estimates of E[θb|β̂EM, σ̂2EM, y] and remove the

bottom 25% of blocks. I repeat this iterative process until I either reach a desired final

number of blocks or the posterior predictive loss reaches a minimum value.

Keeping track of the PPL at each iteration of the EM filter, I remove the bottom

quartile of blocks on each chromosome until the number of remaining blocks is five or less.

Unlike the original analysis that used the spatial boost model on the raw genotypes, the

PPL curves for each chromosome in the new analysis that included the latent genotypes

each have a distinct minimum value that occurs well before the natural end of the EM filter.

As shown in Figure 5.3, the location of the natural end of the filter differs depending on the

chromosomes; however, the filter usually terminates around the twentieth iteration with

the minimum PPL value occurring somewhere between the tenth and fifteenth iterations.

Figures 5.5 and 5.5 respectively depict the signals of association observed in single

marker tests and in the spatial boost model on latent genotypes. A full numerical summary

of the top results in these plots are provided in Tables 6.1 and 6.20. Although 15 SNPs pass

the standard Bonferroni corrected genome-wide significance threshold in the single marker

tests, only two SNPs pass the threshold for inclusion in the final spatial boost model on

latent genotypes. For my final model I select a block from chromosome 7 that contains one

of the genome-wide significant SNPs in the single marker tests, rs10262109, and a block

from chromosome 10 that contains another genome-wide significant SNP, rs1733717.

The overall ranking of blocks based on the conditional expected values of θb at the

optimal EM filtering steps of each chromosome is notably different from the ranking of
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Figure 5.3: Posterior Predictive Loss curves for each chromosome in the WTCCC data set.

Figure 5.4: Visualization of the observed signal in the single marker tests for the WTCCC
data set.

individual SNPs in the analogous spatial boost models from Chapter 2. In particular, as

evident in the previous rankings of top SNPs in Tables 6.6 and 6.12, neither the analogous

spatial boost model with a non-informative gene relevance vector, r = 1, nor the analogous

model with an informative gene relevance vector taken from MalaCards scores highlights
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the region of chromosome 10 that contains rs1733717. This is especially interesting because

evidence of association betweeen this SNP and rheumatoid arthritis has already been repli-

cated in at least two additional studies. In this way, the analysis on block-wise latent

genotypes has improved upon the initial sparser signal observed in the spatial boost model

on the raw genotypes to further narrow down the regions of interest.

Figure 5.5: Visualization of the observed signal in the spatial boost model on latent geno-
types for the WTCCC rheumatoid arthritis data set.

The extraction of an important signal in an region of the genome that was not high-

lighted by the previous spatial boost models on the raw genotypes in the WTCCC data set

shows that my upgraded model that incorporates the latent genotypes is another useful,

complementary tool for GWAS.

5.2.2 GAW18 Data Set: Hypertension

In a re-analysis of the hypertension data set that was first presented in Chapter 4, I again

use the above block-wise spatial boost prior in the latent genotypes model and set ζ = 5,000

but instead set ξ0 = −4 and ξ1 = 2. This configuration of model tuning parameters takes

into account the fewer number of chromosomes and markers in the GAW18 data set and
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again allows for both a relatively larger proportion of blocks that contain more than one

SNP and a moderate gene boost effect. I again use the hypertension MalaCards relevance

scores for r and, for computational convenience, I analyze each chromosome separately

after first removing the rare variants with MAF < 5% and then running the CLUSTAG

algorithm on the remaining markers with ρ = 0.8 to select a subset of tag SNPs that best

summarizes each chromosome’s observed genotypic variation.

For this data set, at the initial step of the EM filter for each chromosome the average

number of blocks is 6,119 with a standard deviation of 2,958 blocks. Setting τ2 = 0.5 for

the prior variance of the latent genotypes for each individual and setting values for the

prior parameters of µ and φ (and thus Σ) in accordance with the guidelines established

in 4.2, I then apply the model fitting procedure described in 4.3 and iteratively (i) fit the

block-wise latent genotypes for each individual and all remaining model parameters, and

(ii) rank all blocks in decreasing order according to their final estimates of E[θb|β̂EM, σ̂2EM, y]

and remove the bottom 25% of blocks. I repeat this iterative process until I either reach a

desired final number of blocks or the posterior predictive loss reaches a minimum value.

Just as in the re-analysis of the WTCCC data set, I keep track of the PPL at each

iteration of the EM filter and remove the bottom quartile of blocks on each chromosome

until the number of remaining blocks is five or less. As shown in Figure 5.6, similar to the

original analysis that used simple Bayesian variable selection on the latent genotypes, the

PPL curves for each chromosome in the new analysis that included the spatial boost prior

monotonically decrease until close to the end of the filter where they begin to increase.

When utilizing the spatial boost prior, I observe a new ranking of the top 10 blocks as

reported in Table 6.21 where none of the blocks qualify for inclusion in the final model.

Interestingly, the spatial boost model on latent genotypes does not select or even highlight

the region on chromosome 19 that was picked up by the previous analyses. Instead, the

top 10 ranking of blocks in the spatial boost model on latent genotypes for hypertension

includes some of the other unselected blocks that appear in the results of essentially an

analagous spatial boost model where ξ1 = 0 (see Table 6.19). In the previous analysis,
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Figure 5.6: Posterior Predictive Loss curves for each chromosome in the GAW18 data set.

although I selected blocks from a region of chromosome 19, I could not find any known

connection between the genes in those blocks and hypertension. The absence of these

regions in the new final model is due to the spatial boost prior that prioritizes the blocks

which are close to relevant genes. Whereas inclusion of the latent genotypes helped to

further refine the results in the analysis of the WTCCC data set, the inclusion of the

spatial boost prior helped to remove a region of false positives in the GAW18 data set.

5.3 Conclusions

The overarching primary objective in the research that I have conducted for my thesis

is to complement and advance the state-of-the-art techniques for analyzing the statistical

relationship between a set of genetic markers and a population trait of interest in genome-

wide association studies. To that end, I have succeeded in developed a useful series of

hierarchical Bayesian models that exploit external biological knowledge to first de-correlate

short contiguous blocks of markers and to then analyze the resulting independent block-

wise latent genotypes jointly in such a way that prioritizes the blocks that are close in

genomic distance to relevant genes or other features on the chromosomes.
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Unlike some typical models for this problem that model a trait given the observed geno-

types as fixed data, the main methodological contribution of my work is the simultaneous

modeling of both a set of observed markers and a trait of interest as functions of unobserved

latent genotypes. This contribution makes it possible to first pool information from both

X and y in a SAR modeling framework in the estimation of independent latent genotypes

and to then use that set of fitted latent genotypes in the selection of regions of the genome

that are associated with the trait of interest. Overcoming the typical high computational

costs that are required when using Bayesian models, the main computational contribution

of my work is a computationally efficient pipeline for fitting my models. Moreover, I ob-

served an interesting and consistent phenomena when fitting the spatial boost model to

both quantitative and qualitative traits where the final model selected after running the

EM algorithm matched the final model selected after running the Gibbs sampler.

In several simulation studies, I have demonstrated the superior performance of my

models relative to other state-of-the-art models in terms of the observed ratio of true

positives to false positives, and I have shown that the computational speed-ups that I

exploit in my EM algorithms can make my models, depending on the size of the data set,

faster to fit than even the single marker tests. In two independent case studies on real

GWAS data concerning the presence or absence of rheumatoid arthritis and hypertension,

I demonstrated the utility of my method by filtering a set of several hundred thousand

genetic markers down to at most two interesting blocks. For rheumatoid arthritis, my final

model selects two blocks where one of them contains a SNP that has multiple replicated

associations to the trait. For hypertension, my final model does not select any blocks;

however, this is not surprising because the data set has a small sample size of 141 individuals

and even the single marker tests fail to identify any genome-wide significant SNPs.

I have also shown that even running just one component of my overall method, i.e.

the spatial boost model described in Chapter 2, or the block-wise latent genotype model

described in Chapter 4, can yield promising results on real GWAS data sets. Altogether

my contributions to this problem form a useful complementary set of techniques that can
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be efficiently used to identify causal genetic markers. To share these techniques with the

scientific community, I have developed an R package that implements all the methods

described in this thesis. For now, this package is available at the public github repository

http://github.com/ianjstats/spatialboost, but I plan to submit it to CRAN (the

Comprehensive R Archive Network, the main official repository for R packages) as soon as

I have a suitable publication to reference.
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Chapter 6

Appendix

6.1 Tables of Results in Chapter 2

Table 6.1: Genome-wide significant SNPs obtained by single marker tests when analyzing
the rheumatoid arthritis dataset provided by the Wellcome Trust Case Control Consortium.

SNP CHR Position (Mbp) MAF -log10(p-value) Gene

rs4718582 7 66.95 0.08 44.15 —

rs10262109 7 121.44 0.06 34.35 —

rs12670243 7 82.97 0.06 21.88 —

rs6679677 1 114.30 0.14 18.54 —

rs664893 19 39.76 0.12 17.44 —

rs1733717 10 54.29 0.07 15.03 —

rs1230666 1 114.17 0.18 11.36 MAGI3

rs903228 2 53.69 0.06 9.20 —

rs9315704 13 40.14 0.17 8.78 LHFP

rs1169722 12 121.64 0.17 8.44 —

rs2488457 1 114.42 0.24 7.85 AP4B1-AS1

rs16874205 8 107.20 0.06 7.78 —

rs962087 5 24.89 0.16 7.59 —

rs2943570 8 76.51 0.34 7.46 —

rs10914783 1 34.27 0.06 7.12 CSMD2
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Table 6.2: Top 15 SNPs at optimal EM filtering step using ξ0 = −8 and ξ1 = 0 when
analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case Control
Consortium.

SNP CHR Position (Mbp) MAF E(θj |·) Gene Length (kpb)

rs4718582 7 66.95 0.08 1.00 — —

rs10262109 7 121.44 0.06 1.00 — —

rs1028850 13 40.94 0.47 0.26 LINC00598 133.9

rs903228 2 53.69 0.06 0.14 — —

rs664893 19 39.76 0.12 0.11 — —

rs765534 11 91.59 0.12 0.05 — —

rs9371407 6 156.26 0.15 0.05 — —

rs577483 1 36.21 0.13 0.04 CLSPN 37.8

rs1169722 12 121.64 0.17 0.04 — —

rs11218078 11 120.84 0.18 0.04 GRIK4 326.0

rs10004440 4 80.27 0.24 0.04 — —

rs6679677 1 114.30 0.14 0.04 — —

rs6940680 6 123.34 0.35 0.04 CLVS2 67.5

rs977375 2 56.98 0.45 0.04 — —

rs17724320 16 84.04 0.35 0.03 — —

Table 6.3: Top 15 SNPs based on posterior samples using ξ0 = −8 and ξ1 = 0 when
analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case Control
Consortium.

SNP CHR Position (Mbp) MAF P̂(θj = 1|y) Gene Length (kpb)

rs4718582 7 66.95 0.08 1.00 — —

rs10262109 7 121.44 0.06 1.00 — —

rs1028850 13 40.94 0.47 0.02 LINC00598 133.9

rs903228 2 53.69 0.06 0.02 — —

rs12670243 7 82.97 0.06 0.01 — —

rs664893 19 39.76 0.12 0.01 — —

rs6679677 1 114.30 0.14 0.01 — —

rs765534 11 91.59 0.12 0.01 — —

rs577483 1 36.21 0.13 0.01 CLSPN 37.8

rs9371407 6 156.26 0.15 0.01 — —

rs11218078 11 120.82 0.18 0.01 GRIK4 326.0

rs4260892 8 34.41 0.14 0.00 — —

rs10144971 14 30.33 0.16 0.00 PRKD1 351.2

rs10004440 4 80.27 0.24 0.00 — —

rs1906470 10 63.01 0.10 0.00 — —
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Table 6.4: Top 15 SNPs at optimal EM filtering step using r = 1, ξ0 = −8, and ξ1 = 1
when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case
Control Consortium.

SNP CHR Position (Mbp) MAF E(θj |·) Gene Length (kpb)

rs4718582 7 66.95 0.08 1.00 — —

rs664893 19 39.76 0.12 1.00 — —

rs10262109 7 121.44 0.06 1.00 — —

rs6679677 1 114.30 0.14 1.00 — —

rs11983481 7 69.97 0.07 0.05 AUTS2 26.6

rs17100164 14 33.59 0.08 0.04 NPAS3 465.9

rs3773050 3 29.55 0.10 0.04 RBMS3 729.1

rs9819844 3 143.44 0.25 0.04 SLC9A9 269.9

rs3848052 13 92.08 0.49 0.03 GPC5 1,468.6

rs7752758 6 88.87 0.12 0.03 CNR1 1.4

rs4545164 9 77.85 0.40 0.03 — —

rs17671833 16 7.43 0.09 0.03 RBFOX1 380.6

rs10765177 10 129.68 0.22 0.03 CLRN3 15.1

rs17675094 16 82.95 0.40 0.03 CDH13 554.2

rs982932 15 61.06 0.36 0.03 RORA 741.0

Table 6.5: Top 15 SNPs based on posterior samples using r = 1, ξ0 = −8, and ξ1 = 1 when
analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case Control
Consortium.

SNP CHR Position (Mbp) MAF P̂(θj = 1|y) Gene Length (kpb)

rs4718582 7 66,954,061 0.08 1.00 — —

rs10262109 7 121,444,199 0.06 1.00 — —

rs664893 19 39,757,572 0.12 1.00 — —

rs6679677 1 114,303,808 0.14 1.00 — —

rs11983481 7 69,973,572 0.07 0.04 AUTS2 26.6

rs17100164 14 33,589,065 0.08 0.02 NPAS3 465.9

rs17671833 16 7,427,842 0.09 0.01 RBFOX1 380.6

rs3773050 3 29,554,121 0.10 0.01 RBMS3 729.1

rs12637323 3 61,868,242 0.11 0.01 PTPRG 733.3

rs7752758 6 88,866,376 0.12 0.01 CNR1 1.4

rs10952495 7 154,261,961 0.11 0.01 DPP6 1,101.6

rs7511741 1 7,145,417 0.14 0.01 CAMTA1 984.3

rs3807218 7 154,461,112 0.10 0.01 DPP6 1,101.6

rs10765177 10 129,682,249 0.22 0.01 CLRN3 15.1

rs6480991 10 54,834,396 0.21 0.01 — —
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Table 6.6: Top 15 SNPs at optimal EM filtering step using r = 1, ξ0 = −8, and ξ1 = 4
when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case
Control Consortium.

SNP CHR Position (Mbp) MAF E(θj |·) Gene Length (kpb)

rs1982126 7 157.74 0.33 0.08 PTPRN2 1,002.7

rs3773050 3 29.55 0.10 0.06 RBMS3 729.1

rs1279214 14 33.45 0.19 0.06 NPAS3 465.9

rs4971264 1 216.29 0.33 0.04 USH2A 249.4

rs7752758 6 88.87 0.12 0.04 CNR1 1.4

rs6969220 7 157.74 0.44 0.04 PTPRN2 1,002.7

rs4462116 1 215.96 0.24 0.04 USH2A 249.4

rs17326887 8 3.59 0.09 0.04 CSMD1 2,059.5

rs11983481 7 69.97 0.07 0.04 AUTS2 26.6

rs9644354 8 3.58 0.13 0.04 CSMD1 2,059.5

rs17100164 14 33.59 0.08 0.04 NPAS3 465.9

rs8031347 15 33.59 0.25 0.04 — —

rs7517281 1 3.22 0.22 0.04 PRDM16 369.4

rs2343466 2 45.51 0.23 0.03 — —

rs4545164 9 77.85 0.40 0.03 — —

Table 6.7: Top 15 SNPs based on posterior samples using r = 1, ξ0 = −8, and ξ1 = 4 when
analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case Control
Consortium.

SNP CHR Position (Mbp) MAF P̂(θj = 1|y) Gene Length (kpb)

rs11983481 7 69.97 0.07 0.03 AUTS2 26.6

rs1982126 7 157.74 0.33 0.02 PTPRN2 1,002.7

rs1279214 14 33.45 0.19 0.02 NPAS3 465.9

rs3773050 3 29.55 0.10 0.01 RBMS3 729.1

rs17100164 14 33.59 0.08 0.01 NPAS3 465.9

rs16958917 16 82.98 0.06 0.01 CDH13 554.2

rs1403592 8 3.86 0.08 0.01 CSMD1 2,059.5

rs9644354 8 3.58 0.13 0.01 CSMD1 2,059.5

rs6969220 7 157.74 0.44 0.01 PTPRN2 1,002.7

rs17326887 8 3.59 0.09 0.01 CSMD1 2,059.5

rs7752758 6 88.87 0.12 0.01 CNR1 1.4

rs3807218 7 154.46 0.10 0.01 DPP6 1,101.6

rs17185050 14 68.05 0.10 0.01 PLEKHH1 11.0

rs10503246 8 4.13 0.29 0.01 CSMD1 2,059.5

rs2343466 2 45.51 0.23 0.01 — —
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Table 6.8: Top 15 SNPs at optimal EM filtering step using r = 1, ξ0 = −8, and ξ1 = 8
when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case
Control Consortium.

SNP CHR Position (Mbp) MAF E(θj |·) Gene Length (kpb)

rs1982126 7 157.74 0.33 0.11 PTPRN2 1,002.7

rs1279214 14 33.45 0.19 0.07 NPAS3 465.9

rs3773050 3 29.55 0.10 0.06 RBMS3 729.1

rs4971264 1 216.29 0.33 0.05 USH2A 249.4

rs7752758 6 88.87 0.12 0.05 CNR1 1.4

rs6969220 7 157.74 0.44 0.05 PTPRN2 1,002.7

rs4462116 1 215.96 0.24 0.05 USH2A 249.4

rs17100164 14 33.59 0.08 0.05 NPAS3 465.9

rs11983481 7 69.97 0.07 0.05 AUTS2 26.6

rs17326887 8 3.59 0.09 0.05 CSMD1 2,059.5

rs7517281 1 3.22 0.22 0.04 PRDM16 369.4

rs4545164 9 77.85 0.40 0.04 — —

rs8031347 15 33.59 0.25 0.04 — —

rs9644354 8 3.58 0.13 0.04 CSMD1 2,059.5

rs2343466 2 45.51 0.23 0.04 — —

Table 6.9: Top 15 SNPs based on posterior samples using r = 1, ξ0 = −8, and ξ1 = 8 when
analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case Control
Consortium.

SNP CHR Position (Mbp) MAF P̂(θj = 1|y) Gene Length (kpb)

rs11983481 7 69.97 0.07 0.03 AUTS2 26.6

rs1982126 7 157.74 0.33 0.02 PTPRN2 1,002.7

rs1279214 14 33.45 0.19 0.02 NPAS3 465.9

rs17100164 14 33.59 0.08 0.01 NPAS3 465.9

rs3773050 3 29.55 0.10 0.01 RBMS3 729.1

rs16958917 16 82.98 0.06 0.01 CDH13 554.2

rs6969220 7 157.74 0.44 0.01 PTPRN2 1,002.7

rs1403592 8 3.86 0.08 0.01 CSMD1 2,059.5

rs17326887 8 3.59 0.09 0.01 CSMD1 2,059.5

rs1195693 1 81.58 0.16 0.01 — —

rs9644354 8 3.58 0.13 0.01 CSMD1 2,059.5

rs2498587 6 118.03 0.15 0.01 NUS1 35.3

rs10503246 8 4.13 0.29 0.01 CSMD1 2,059.5

rs7517281 1 3.22 0.22 0.01 PRDM16 369.4

rs8031347 15 33.59 0.25 0.01 — —
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Table 6.10: Top 15 SNPs at optimal EM filtering step using MalaCards, ξ0 = −8, and
ξ1 = 1 when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust
Case Control Consortium.

SNP CHR Position (Mbp) MAF E(θj |·) Gene Length (kpb)

rs4718582 7 66.95 0.08 1.00 — —

rs10262109 7 121.44 0.06 1.00 — —

rs1028850 13 40.94 0.47 0.25 LINC00598 133.9

rs664893 19 39.76 0.12 0.17 — —

rs6679677 1 114.30 0.14 0.13 — —

rs4133002 8 72.72 0.12 0.12 — —

rs903228 2 53.69 0.06 0.11 — —

rs1169722 12 121.64 0.17 0.06 — —

rs11218078 11 120.82 0.18 0.05 GRIK4 326.0

rs10893006 11 123.18 0.36 0.05 — —

rs947474 10 6.39 0.18 0.05 — —

rs16881910 8 34.13 0.14 0.04 — —

rs977375 2 56.98 0.45 0.04 — —

rs2137862 20 58.01 0.16 0.03 — —

rs7826601 8 26.41 0.29 0.03 DPYSL2 144.0

Table 6.11: Top 15 SNPs based on posterior samples using MalaCards, ξ0 = −8, and
ξ1 = 1 when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust
Case Control Consortium.

SNP CHR Position (Mbp) MAF P̂(θj = 1|y) Gene Length (kpb)

rs4718582 7 66.95 0.08 1.00 — —

rs10262109 7 121.44 0.06 1.00 — —

rs903228 2 53.69 0.06 0.03 — —

rs664893 19 39.76 0.12 0.03 — —

rs6679677 1 114.30 0.14 0.03 — —

rs12670243 7 82.97 0.06 0.02 — —

rs1028850 13 40.94 0.47 0.02 LINC00598 133.9

rs4133002 8 72.72 0.12 0.01 — —

rs947474 10 6.39 0.18 0.01 — —

rs10893006 11 123.18 0.36 0.01 — —

rs11218078 11 120.82 0.18 0.01 GRIK4 326.0

rs2137862 20 58.01 0.16 0.01 — —

rs1169722 12 121.64 0.17 0.00 — —

rs7601303 2 40.12 0.12 0.00 — —

rs6843448 4 129.47 0.31 0.00 — —
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Table 6.12: Top 15 SNPs at optimal EM filtering step using MalaCards, ξ0 = −8, and
ξ1 = 4 when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust
Case Control Consortium.

SNP CHR Position (Mbp) MAF E(θj |·) Gene Length (kpb)

rs4718582 7 66,954,061 0.08 1.00 — —

rs10262109 7 121,444,199 0.06 1.00 — —

rs903228 2 53,692,049 0.06 1.00 — —

rs664893 19 39,757,572 0.12 0.99 — —

rs1028850 13 40,941,480 0.47 0.78 LINC00598 133.9

rs1169722 12 121,641,625 0.17 0.26 — —

rs6679677 1 114,303,808 0.14 0.11 — —

rs12670243 7 82,969,350 0.06 0.10 — —

rs11629054 14 70,206,417 0.29 0.07 — —

rs4133002 8 72,718,581 0.12 0.07 — —

rs11218078 11 120,824,692 0.18 0.06 GRIK4 326.0

rs9315704 13 40,140,215 0.17 0.05 — —

rs950776 15 78,926,018 0.35 0.04 CHRNB4 17.0

rs17381815 13 109,015,760 0.19 0.04 — —

rs2356895 14 51,828,412 0.30 0.04 LINC00640 32.2

Table 6.13: Top 15 SNPs based on posterior samples using MalaCards, ξ0 = −8, and
ξ1 = 4 when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust
Case Control Consortium.

SNP CHR Position (Mbp) MAF P̂(θj = 1|y) Gene Length (kpb)

rs4718582 7 66.95 0.08 1.00 — —

rs10262109 7 121.44 0.06 1.00 — —

rs903228 2 53.69 0.06 0.29 — —

rs664893 19 39.76 0.12 0.23 — —

rs12670243 7 82.97 0.06 0.18 — —

rs1028850 13 40.94 0.47 0.06 LINC00598 133.9

rs6679677 1 114.30 0.14 0.04 — —

rs1169722 12 121.64 0.17 0.02 — —

rs9315704 13 40.14 0.17 0.01 LHFP 260.3

rs3747113 22 24.72 0.27 0.01 SPECC1L 171.5

rs11218078 11 120.82 0.18 0.01 GRIK4 326.0

rs4133002 8 72.72 0.12 0.01 — —

rs6945822 7 130.36 0.08 0.01 TSGA13 18.8

rs11629054 14 70.21 0.29 0.01 — —

rs7601303 2 40.12 0.12 0.01 — —
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Table 6.14: Top 15 SNPs at optimal EM filtering step using MalaCards, ξ0 = −8, and
ξ1 = 8 when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust
Case Control Consortium.

SNP CHR Position (Mbp) MAF E(θj |·) Gene Length (kpb)

rs4718582 7 66.95 0.08 1.00 — —

rs10262109 7 121.44 0.06 1.00 — —

rs12670243 7 82.97 0.06 1.00 — —

rs6679677 1 114.30 0.14 1.00 — —

rs664893 19 39.76 0.12 1.00 — —

rs1169722 12 121.64 0.17 0.98 — —

rs1028850 13 40.94 0.47 0.98 LINC00598 133.9

rs11218078 11 120.82 0.18 0.13 GRIK4 326.0

rs220704 6 46.87 0.12 0.08 GPR116 69.5

rs4133002 8 72.72 0.12 0.08 — —

rs10088000 8 3.53 0.41 0.08 CSMD1 2,059.5

rs17191596 15 61.04 0.12 0.05 RORA 741.0

rs11629054 14 70.21 0.29 0.05 — —

rs10892997 11 123.16 0.43 0.05 — —

rs556560 5 102.62 0.35 0.05 — —

Table 6.15: Top 15 SNPs based on posterior samples using MalaCards, ξ0 = −8, and
ξ1 = 8 when analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust
Case Control Consortium.

SNP CHR Position (Mbp) MAF P̂(θj = 1|y) Gene Length (kpb)

rs4718582 7 66.95 0.08 1.00 — —

rs10262109 7 121.44 0.06 1.00 — —

rs6679677 1 114.30 0.14 0.70 — —

rs664893 19 39.76 0.12 0.57 — —

rs12670243 7 82.97 0.06 0.49 — —

rs1028850 13 40.94 0.47 0.10 LINC00598 133.9

rs1169722 12 121.64 0.17 0.08 — —

rs220704 6 46.87 0.12 0.01 — —

rs4133002 8 72.72 0.12 0.01 — —

rs11218078 11 120.82 0.18 0.01 GRIK4 326.0

rs6959847 7 11.26 0.12 0.01 TSGA13 18.8

rs10088000 8 3.53 0.41 0.01 CSMD1 2,059.5

rs17191596 15 61.04 0.12 0.01 RORA 741.0

rs17100164 14 33.59 0.08 0.01 NPAS3 465.9

rs556560 5 102.62 0.35 0.01 — —
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6.2 Tables of Results in Chapter 3

Table 6.16: I give the mean running times and corresponding standard deviations (in
parentheses) in minutes for the SB model and the single SNP tests in R using 10 replicates.

Task (n, p) : (102, 103) (102, 104) (103, 103) (103, 104)

Compute SVD with irlba [57] 0.35 (0.00) 3.43 (0.08) 1.16 (0.00) 124.90
(4.51)

EM filter on X
after running the first pass
after retaining 25% of p

0.02 (0.00)
0.04 (0.00)

10.36
(0.03)
17.81
(0.03)

0.12 (0.00)
0.39 (0.01)

31.23
(0.25)
91.26
(0.49)

EM filter on SVD (1% MSE)
after running the first pass
after retaining 25% of p

0.03 (0.00)
0.15 (0.00)

1.99 (0.01)
3.64 (0.04)

0.13 (0.00)
1.27 (0.01)

33.88
(0.12)
60.95
(1.28)

EM filter on SVD (10% MSE)
after running the first pass
after retaining 25% of p

0.01 (0.00)
0.02 (0.00)

0.77 (0.00)
1.64 (0.01)

0.01 (0.00)
0.04 (0.00)

7.66 (0.00)
17.57
(0.33)

EM filter on SVD (25% MSE)
after running the first pass
after retaining 25% of p

0.00 (0.00)
0.01 (0.00)

0.28 (0.01)
0.83 (0.02)

0.00 (0.00)
0.01 (0.00)

1.47 (0.01)
2.48 (0.01)

Gibbs sampler on X
with N = 1,500

9.00 (0.03) 6626.99
(33.98)

9.32 (0.04) 7612.43
(94.71)

Single SNP tests 0.05 (0.00) 0.53 (0.01) 0.07 (0.00) 0.73 (0.02)
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6.3 Tables of Results in Chapter 4

Table 6.17: Top 10 SNPs after running single SNP tests when analyzing the hypertension
dataset provided by the Genetic Analysis Workshop 18.

SNP CHR Position (Mbp) − log10(p-valuej) Gene

rs2045732 9 100.19 4.67 TDRD7

rs4557815 9 100.21 4.67 TDRD7

rs11916152 3 127.45 4.31 MGLL

rs9829311 3 81.36 4.29 —

rs2827641 21 24.00 4.20 —

rs3013107 1 13.80 4.18 LRRC38

rs10982745 9 100.32 4.17 TMOD1

rs4743112 9 100.33 4.17 TMOD1

rs360490 1 33.22 4.09 KIAA1522

rs7621379 3 127.46 4.00 MGLL

Table 6.18: Top 10 SNPs after running latent genotype model with τ2 = 0.5 and ζ = 0
when analyzing the hypertension dataset provided by the Genetic Analysis Workshop 18.

SNP CHR Position (Mbp) E(θj |·) Gene

rs1143700 19 5.21 0.19 PTPRS

rs8081951 17 0.84 0.18 NXN

rs6606865 15 27.28 0.17 GABRG3

rs7501812 17 17.75 0.15 TOM1L2

rs1370722 1 80.34 0.15 —

rs10127541 1 10.17 0.14 UBE4B

rs16889068 5 21.21 0.13 —

rs945742 1 146.79 0.13 —

rs1378942 15 75.08 0.13 CSK

rs2826363 21 21.91 0.13 —
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Table 6.19: Top 10 SNPs after running latent genotype model with τ2 = 0.5 and ζ = 5,000
when analyzing the hypertension dataset provided by the Genetic Analysis Workshop 18.

SNP CHR Position (Mbp) E(θj |·) Gene

rs8112338 19 31.61 1.00 —

rs1320301 19 49.94 1.00 SLC17A7

rs4801783 19 49.43 1.00 NUCB1, DHDH

rs329548 7 35.11 0.17 —

rs9582005 13 28.73 0.15 PAN3

rs11916152 3 127.45 0.14 MGLL

rs11632150 15 46.05 0.13 —

rs16876243 5 5.77 0.12 —

rs7498047 15 92.08 0.11 —

rs3176639 9 100.46 0.11 XPA
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6.4 Tables of Results in Chapter 5

Table 6.20: Top 10 SNPs after running the spatial boost model on latent genotypes when
analyzing the rheumatoid arthritis dataset provided by the Wellcome Trust Case Control
Consortium.

SNP CHR Position (Mbp) E(θj |·) Gene

rs10262109 7 121.44 1.00 —

rs1733717 10 54.29 1.00 —

rs1169722 12 121.64 0.08 —

rs6679677 1 114.30 0.01 —

rs1230666 1 114.17 0.01 MAGI3

rs962087 5 24.87 0.01 —

rs4867173 5 29.34 0.01 —

rs6945822 7 130.36 0.01 TSGA13

rs2011703 20 54.56 0.01 —

rs11058660 12 126.94 0.01 LOC100128554

Table 6.21: Top 10 SNPs after running the spatial boost model on latent genotypes when
analyzing the hypertension dataset provided by the Genetic Analysis Workshop 18.

SNP CHR Position (Mbp) E(θj |·) Gene

rs7498047 15 92.08 0.19 —

rs9582005 13 28.73 0.16 PAN3

rs11916152 3 127.45 0.15 MGLL

rs329548 7 35.11 0.14 —

rs2607221 19 28.70 0.13 —

rs17725246 7 44.58 0.13 —

rs6690382 1 39.10 0.12 —

rs12047550 1 33.70 0.12 —

rs6576443 15 25.90 0.12 —

rs1417272 9 85.48 0.11 —



Bibliography

[1] Hisham Al-Mubaid and Rajit K Singh. A text-mining technique for extracting gene-
disease associations from the biomedical literature. International journal of bioinfor-
matics research and applications, 6(3):270–286, 2010.

[2] Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D
Watson. Molecular biology of the cell, 1994. Garland, New York, pages 139–194, 1994.

[3] Carl A Anderson, Fredrik H Pettersson, Geraldine M Clarke, Lon R Cardon, An-
drew P Morris, and Krina T Zondervan. Data quality control in genetic case-control
association studies. Nature protocols, 5(9):1564–1573, 2010.

[4] Sio Iong Ao, Kevin Yip, Michael Ng, David Cheung, Pui-Yee Fong, Ian Melhado, and
Pak C Sham. CLUSTAG: hierarchical clustering and graph methods for selecting tag
SNPs. Bioinformatics, 21(8):1735–1736, 2005.

[5] Kristin G Ardlie, Leonid Kruglyak, and Mark Seielstad. Patterns of linkage disequi-
librium in the human genome. Nature Reviews Genetics, 3(4):299–309, 2002.

[6] Kristin L Ayers and Heather J Cordell. SNP Selection in genome-wide and candidate
gene studies via penalized logistic regression. Genetic epidemiology, 34(8):879–891,
2010.

[7] David J Balding. A tutorial on statistical methods for population association studies.
Nature Reviews Genetics, 7(10):781–791, 2006.

[8] M.M. Barbieri and J.O. Berger. Optimal predictive model selection. The Annals of
Statistics, 32(3):870–897, 2004.

[9] J.O. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

[10] Andrew P Bradley. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[11] Broad Institute. SNP, 2015.

[12] Stephen P Brooks and Andrew Gelman. General methods for monitoring convergence
of iterative simulations. Journal of computational and graphical statistics, 7(4):434–
455, 1998.

[13] Paul R Burton, David G Clayton, Lon R Cardon, Nick Craddock, Panos Deloukas,
Audrey Duncanson, Dominic P Kwiatkowski, Mark I McCarthy, Willem H Ouwehand,
Nilesh J Samani, et al. Genome-wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature, 447(7145):661–678, 2007.



105

[14] Christopher S Carlson, Michael A Eberle, Mark J Rieder, Qian Yi, Leonid Kruglyak,
and Deborah A Nickerson. Selecting a maximally informative set of single-nucleotide
polymorphisms for association analyses using linkage disequilibrium. The American
Journal of Human Genetics, 74(1):106–120, 2004.

[15] L.E. Carvalho and C.E. Lawrence. Centroid Estimation in Discrete High-Dimensional
Spaces with Applications in Biology. Proceedings of the National Academy of Sciences,
105(9):3209–3214, 2008.

[16] James M Cheverud. A simple correction for multiple comparisons in interval mapping
genome scans. Heredity, 87(1):52–58, 2001.

[17] Seoae Cho, Haseong Kim, Sohee Oh, Kyunga Kim, and Taesung Park. Elastic-net
regularization approaches for genome-wide association studies of rheumatoid arthritis.
In BMC proceedings, volume 3, page S25. BioMed Central Ltd, 2009.

[18] 1000 Genomes Project Consortium et al. An integrated map of genetic variation from
1,092 human genomes. Nature, 491(7422):56–65, 2012.

[19] A Corvin, N Craddock, and PF Sullivan. Genome-wide association studies: a primer.
Psychological medicine, 40(07):1063–1077, 2010.

[20] Mary Kathryn Cowles and Bradley P Carlin. Markov chain Monte Carlo convergence
diagnostics: a comparative review. Journal of the American Statistical Association,
91(434):883–904, 1996.

[21] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), pages 1–38, 1977.

[22] Frank Dudbridge and Arief Gusnanto. Estimation of significance thresholds for
genomewide association scans. Genetic epidemiology, 32(3):227–234, 2008.

[23] Olive Jean Dunn. Multiple comparisons among means. Journal of the American
Statistical Association, 56(293):52–64, 1961.

[24] Evangelos Evangelou and John PA Ioannidis. Meta-analysis methods for genome-wide
association studies and beyond. Nature Reviews Genetics, 14(6):379–389, 2013.

[25] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American Statistical Association, 96(456):1348–
1360, 2001.

[26] J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse
group lasso. Technical Report arXiv:1001.0736, Jan 2010.

[27] Xiaoyi Gao, Lewis C Becker, Diane M Becker, Joshua D Starmer, and Michael A
Province. Avoiding the high Bonferroni penalty in genome-wide association studies.
Genetic epidemiology, 34(1):100–105, 2010.



106

[28] Alan E Gelfand and Sujit K Ghosh. Model choice: A minimum posterior predictive
loss approach. Biometrika, 85(1):1–11, 1998.

[29] Edward I George and Robert E McCulloch. Variable selection via Gibbs sampling.
Journal of the American Statistical Association, 88(423):881–889, 1993.

[30] Richard A Gibbs, John W Belmont, Paul Hardenbol, Thomas D Willis, Fuli Yu, Huan-
ming Yang, Lan-Yang Ch’ang, Wei Huang, Bin Liu, Yan Shen, et al. The international
HapMap project. Nature, 426(6968):789–796, 2003.

[31] Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a
method for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

[32] Aleksander M Grabiec, Chiara Angiolilli, Linda M Hartkamp, Lisa GM van Baarsen,
Paul P Tak, and Kris A Reedquist. JNK-dependent downregulation of FoxO1 is
required to promote the survival of fibroblast-like synoviocytes in rheumatoid arthritis.
Annals of the rheumatic diseases, pages annrheumdis–2013, 2014.

[33] Yongtao Guan, Matthew Stephens, et al. Bayesian variable selection regression for
genome-wide association studies and other large-scale problems. The Annals of Applied
Statistics, 5(3):1780–1815, 2011.

[34] D. Habier, R. Fernando, K. Kizilkaya, and D. Garric. Extension of the Bayesian
alphabet for genomic selection. BMC bioinformatics, 12:186, 2011.

[35] Michiaki Hamada and Kiyoshi Asai. A classification of bioinformatics algorithms from
the viewpoint of maximizing expected accuracy (MEA). Journal of Computational
Biology, 19(5):532–549, 2012.

[36] Daniel L Hartl, Andrew G Clark, et al. Principles of population genetics, volume 116.
Sinauer associates Sunderland, 1997.

[37] Jarvis Haupt, Rui M Castro, and Robert Nowak. Distilled sensing: Adaptive sampling
for sparse detection and estimation. Information Theory, IEEE Transactions on,
57(9):6222–6235, 2011.

[38] Edith Heard, Sarah Tishkoff, John A Todd, Marc Vidal, Günter P Wagner, Jun Wang,
Detlef Weigel, and Richard Young. Ten years of genetics and genomics: what have we
achieved and where are we heading? Nature Reviews Genetics, 11(10):723–733, 2010.

[39] Joel N Hirschhorn and Mark J Daly. Genome-wide association studies for common
diseases and complex traits. Nature Reviews Genetics, 6(2):95–108, 2005.

[40] A. Hoerl and R. Kennard. Ridge regression - applications to nonorthogonal problems.
Technometrics, 12:69–82, 1970.

[41] Gabriel E Hoffman, Benjamin A Logsdon, and Jason G Mezey. PUMA: a unified
framework for penalized multiple regression analysis of GWAS data. PLoS computa-
tional biology, 9(6):e1003101, 2013.



107

[42] John PA Ioannidis, Gilles Thomas, and Mark J Daly. Validating, augmenting and
refining genome-wide association signals. Nature Reviews Genetics, 10(5):318–329,
2009.

[43] Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist and
Bayesian strategies. Annals of Statistics, pages 730–773, 2005.

[44] Andrew D Johnson and Christopher J O’Donnell. An open access database of genome-
wide association results. BMC medical genetics, 10(1):6, 2009.

[45] Gillian CL Johnson, Laura Esposito, Bryan J Barratt, Annabel N Smith, Joanne
Heward, Gianfranco Di Genova, Hironori Ueda, Heather J Cordell, Iain A Eaves,
Frank Dudbridge, et al. Haplotype tagging for the identification of common disease
genes. Nature genetics, 29(2):233–237, 2001.

[46] Ian Johnston and Luis E Carvalho. A Bayesian hierarchical gene model on latent
genotypes for genome-wide association studies. In BMC proceedings, volume 8, page
S45. BioMed Central Ltd, 2014.

[47] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[48] LB Jorde. Linkage disequilibrium and the search for complex disease genes. Genome
research, 10(10):1435–1444, 2000.

[49] Eric Jorgenson and John S Witte. A gene-centric approach to genome-wide association
studies. Nature Reviews Genetics, 7(11):885–891, 2006.

[50] Omid Kohannim, Derrek P Hibar, Jason L Stein, Neda Jahanshad, Clifford R Jack,
Michael W Weiner, Arthur W Toga, and Paul M Thompson. Boosting power to
detect genetic associations in imaging using multi-locus, genome-wide scans and ridge
regression. In Biomedical Imaging: From Nano to Macro, 2011 IEEE International
Symposium on, pages 1855–1859. IEEE, 2011.

[51] Charles Kooperberg, Michael LeBlanc, and Valerie Obenchain. Risk prediction using
genome-wide association studies. Genetic epidemiology, 34(7):643–652, 2010.

[52] Leonid Kruglyak. Prospects for whole-genome linkage disequilibrium mapping of com-
mon disease genes. Nature genetics, 22(2):139–144, 1999.

[53] Thomas LaFramboise. Single nucleotide polymorphism arrays: a decade of biological,
computational and technological advances. Nucleic acids research, page gkp552, 2009.

[54] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody,
Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, et al.
Initial sequencing and analysis of the human genome. Nature, 409(6822):860–921,
2001.



108

[55] Robert Lawrence, Aaron G Day-Williams, Katherine S Elliott, Andrew P Morris, and
Eleftheria Zeggini. CCRaVAT and QuTie-enabling analysis of rare variants in large-
scale case control and quantitative trait association studies. BMC bioinformatics,
11(1):527, 2010.

[56] Juan Pablo Lewinger, David V Conti, James W Baurley, Timothy J Triche, and Dun-
can C Thomas. Hierarchical Bayes prioritization of marker associations from a genome-
wide association scan for further investigation. Genetic epidemiology, 31(8):871–882,
2007.

[57] B Lewis. irlba: Fast Partial SVD by Implicitly-Restarted Lanczos Bidiagonalization.
R package version 0.1, 1:1520, 2009.

[58] Chun Li and Mingyao Li. GWAsimulator: a rapid whole-genome simulation program.
Bioinformatics, 24(1):140–142, 2008.

[59] Jin Liu, Kai Wang, Shuangge Ma, and Jian Huang. Regularized regression method for
genome-wide association studies. In BMC proceedings, volume 5, page S67. BioMed
Central Ltd, 2011.

[60] Peter MacCullagh and John Ashworth Nelder. Generalized linear models, volume 37.
CRC press, 1989.

[61] MalaCards. MalaCards Scores, 2014.

[62] Peter McCullagh and John A Nelder. Generalized linear models. 1989.

[63] Xiao-Li Meng and Donald B Rubin. Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika, 80(2):267–278, 1993.

[64] Laëtitia Michou, Sandra Lasbleiz, Anne-Christine Rat, Paola Migliorini, Alejandro
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