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ABSTRACT

Networks have been widely used to describe interactions among objects in diverse fields.

Given the interest in explaining a network by its structure, much attention has been drawn

to finding clusters of nodes with dense connections within clusters but sparse connections

between clusters. Such clusters are called communities, and identifying such clusters is

known as community detection. Here, to perform community detection, I focus on stochastic

blockmodels (SBM), a class of statistically-based generative models. I present a flexible

SBM that represents different types of data as well as node attributes under a Bayesian

framework. The proposed models explicitly capture community behavior by guaranteeing

that connections are denser within communities than between communities.

First, I present a degree-corrected SBM based on a logistic regression formulation to

model binary networks. To fit the model, I obtain posterior samples via Gibbs sampling

based on Pólya-Gamma latent variables. I conduct inference based on a novel, canonically

mapped centroid estimator that formally addresses label non-identifiability and captures

representative community assignments. Next, to accommodate large-scale datasets, I fur-

ther extend the degree-corrected SBM to a broader family of generalized linear models with

group correction terms. To conduct exact inference efficiently, I develop an iteratively-

reweighted least squares procedure that implicitly updates sufficient statistics on the net-

work to obtain maximum a posteriori (MAP) estimators. I demonstrate the proposed

v



model and estimation on simulated benchmark networks and various real-world datasets.

Finally, I develop a Bayesian SBM for community-structured covariance selection. Here,

I assume that the data at each node are Gaussian and a latent network where two nodes

are not connected if their observations are conditionally independent given observations

of other nodes. Under the context of biological and social applications, I expect that this

latent network shows a block dependency structure that represents community behavior.

Thus, to identify the latent network and detect communities, I propose a hierarchical prior

in two levels: a spike-and-slab prior on off-diagonal entries of the concentration matrix for

variable selection and a degree-corrected SBM to capture community behavior. I develop

an efficient routine based on ridge regularization and MAP estimation to conduct inference.
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1

Chapter 1

Introduction

Networks can be used to describe interactions among objects in diverse fields such

as physics (Newman, 2006), biology (Hancock et al., 2010), and especially social sci-

ences (Zachary, 1977; Adamic and Glance, 2005). In network theory, objects are rep-

resented by nodes and their interactions by edges. There are many ways to define commu-

nities in a network, with different connectivity properties or according to biological/social

functions of nodes. In this dissertation, I follow the standard definition and consider clus-

ters of nodes that share many edges between them but that, in contrast, do not interact

often with nodes in other clusters as communities.

1.1 Community Detection

This characterization follows a traditional approach in social sciences that aims at

discerning the structure of a network according to relationship patterns among“actors”, e.g.

friendship or collaboration. These interaction patterns may reflect“assortativity”, a concept

that originated in the ecological and epidemiological literature (Albert and Barabási, 2002):

it refers to the tendency of nodes to associate with other similar nodes in a network. Among

measures of similarity, the degree of a node is of great interest in the study of assortativity in

networks (Newman, 2002, 2003; Vázquez, 2003), that is, degree assortative networks usually

show a preference for high-degree nodes to connect with other high-degree nodes. We

expect in some applications that actors exercise assortativity and prefer to group themselves

according to similarity or kinship in communities, and so communities are dense in within-
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group associations but sparse in between-group associations. Community detection has

sparked great interest in many fields where recent applications aim at characterizing the

structure of a network by detecting its communities.

1.1.1 Prior Work

There is a large body of literature in community detection, given its significance and

interest. Traditional methods include graph partitioning (Kernighan and Lin, 1970; Barnes,

1982), hierarchical clustering (Hastie et al., 2001), and spectral clustering (Donath and

Hoffman, 1973; Von Luxburg, 2007; Rohe et al., 2011); while these methods are heuristic

and thus suitable for large networks, they do not address directly community detection but

aim instead at partitioning the network according to edge densities between groups and

thus identifying connection “bottlenecks”.

The concept of modularity better captures community structure by also taking within-

group edge densities into account (Newman and Girvan, 2004; Newman, 2006). Optimiza-

tion methods based on modularity can then be used to detect communities, but since

modularity optimization is NP-complete (Brandes et al., 2007), interest lies mostly in ap-

proximated methods such as the greedy method (Newman, 2004) and extremal optimiza-

tion (Duch and Arenas, 2005; Bickel and Chen, 2009). However, there are still drawbacks:

methods based on modularity may fail in detecting small communities and thus exhibit a

“resolution limit” (Fortunato and Barthelemy, 2007).

Latent space network models (Hoff et al., 2002), latent variable models (Hoff et al.,

2005), and latent position cluster models (Handcock et al., 2007) assume that the proba-

bility of an interaction depends on node-specific latent factors such as the distance between

two nodes in an unobserved continuous “social space”; these models are generalizations of

exponential random graph models [ERGMs; see (Robins et al., 2007)] where community

structure is assumed from cluster structure in the latent space. Krivitsky (2012) generalized

ERGMs to valued networks whose ties are counts. A more thorough review on the related

methods to network community detection can be found in the paper by Parthasarathy
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et al. (2011).

1.1.2 Stochastic Blockmodels

There are many other methods to mention as in the review by Parthasarathy et al.

(2011), but we focus on parametric statistical approaches where inference on community

structure is based on an assumed model of association. The motivation is that since there

are many possible community configurations, that is, assignment of actors to communities,

we want to not only infer communities, but also assess how likely each configuration is

according to the model.

The first endeavors in such parametric models—albeit not in community detection—

are the p1 exponential family models due to Holland and Leinhardt (1981). These models

follow a log-linear formulation (Fienberg and Wasserman, 1981) with parameters that are

related to in- and out-degrees and edge densities. A common modeling choice is to treat

actors as behaving similarly given their respective communities. This structural equivalence

assumption is at the core of blockmodels (Lorrain and White, 1971). Later, these models

were extended to incorporate actor and group parameters (Fienberg et al., 1985; Tallberg,

2005; Daudin et al., 2008). Wang and Wong (1987) further adapted the models to consider

a block structure through stochastic blockmodels [SBMs (Holland et al., 1983; Anderson

et al., 1992)], yielding p1 blockmodels. Zanghi et al. (2010), Mariadassou et al. (2010) and

Vu et al. (2013) proposed scalable approximate variational approaches based on modified

version of those p1 (block)models.

SBMs explore a simpler model structure where the probability of an association between

two actors depends on the communities to which they belong, that is, two actors within

the same group are stochastically equivalent (Batagelj et al., 2005). Karrer and Newman

(2011) developed an SBM with degree-correction, where the degree distribution of nodes

within each community can be heterogeneous. Celisse et al. (2012), Choi et al. (2012) and

Bickel et al. (2013) addressed the asymptotic inference in SBM using maximum likelihood

and variational approaches. More flexible SBM were obtained by adopting a hierarchical
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Bayesian setup that regards probabilities of association as random and group membership

as latent variables (Snijders and Nowicki, 1997; Nowicki and Snijders, 2001; Hofman and

Wiggins, 2008). As in all latent mixture models, label non-identifiability is a known problem

since multiple label assignments yield the same partition into communities; ultimately, we

only care if two actors are in the same community or in different communities. It is also

possible to incorporate node attributes in the model (Kim and Leskovec, 2011; Fosdick

and Hoff, 2013) and to allow actors to belong to more than one community (Airoldi et al.,

2008).

1.2 Covariance Selection

In the community detection problem stated above the network is given as data, which

is not always the case in practice. Under this circumstance, observations per node instead

of connections between nodes are collected. The lack of information in connections leads to

interest in identifying edges in a network via the covariance structure of the observed data.

Among such models the most widely used one is Gaussian graphical model, especially when

the observations are normally distributed.

1.2.1 Background in Gaussian Graphical Models

Gaussian graphical models (Dempster, 1972) have been widely used to describe con-

ditional independence between components of a random vector (Whittaker, 2009). In a

Gaussian graphical model, we associate to each component Xi of a Gaussian random vec-

tor X a node in a graph G = (V,E), and two nodes i and j are not connected in G if

and only if their corresponding components are conditionally independent given all the

other components, that is, if the partial correlation between Xi and Xj is zero. In other

words, (i, j) 6∈ E if and only if ρXi,Xj |XV \{i,j} = 0. Equivalently, if C is the concentra-

tion matrix of X, that is, the inverse variance of X, then, since the partial correlation

ρXi,Xj |XV \{i,j} ∝ Cij , (i, j) 6∈ E if and only if Cij = 0. Thus, inferring conditional in-
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dependence is equivalent to estimating null entries in a concentration matrix (Lauritzen,

1996).

1.2.2 Prior Work

There are several difficulties in identifying the conditional independence of Gaussian

variables. The first challenge is the “large p, small n” regimen that stems from inferring a

large concentration matrix based on relatively few observations. Under this regimen, the

sample covariance matrix is singular and thus cannot be inverted to directly compute the

concentration matrix. A commonly used alternative is to include some form of regulariza-

tion, such as graph lasso (Dempster, 1972; Meinshausen and Bühlmann, 2006; Friedman

et al., 2008). The second challenge is developing an effective procedure to identify the

corresponding network based on the estimated concentration matrix. Traditional variable

selection approaches such as stepwise regression and those especially adapted to Gaus-

sian graphical models (Drton and Perlman, 2004) offer a way to check the significance of

estimated partial correlations. However, determining edges of networks and inferring con-

centration matrices are performed separately. A potential drawback of these methods is

that once a “bad” model is selected, the estimation of concentration matrices is unreliable

as a result. To remedy this problem, efficient approaches to jointly perform model selection

and graph estimation have been proposed (Yuan and Lin, 2007; Yuan, 2008). However,

none of the methods mentioned above has taken community structure into account when

estimating the conditional independence.

1.3 Challenges

Despite the increasing interest and study in characterizing the network structure, com-

munity detection is arguably still an open problem in network analysis.

(1) The first challenge in developing a useful approach to community detection is the

flexibility in modeling node attributes, for example “degrees”, and edge attributes,
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such as “counts on edges”. Additional information in nodes and edges leads to more

reliable estimation (see the example in Section 3.1).

(2) Even though the models reviewed above are flexible enough to identify social block

structure, they might fail to actually recognize communities. Degree-correction is not

enough to accurately characterize assortative community behavior (see the examples

in Section 2.6.1).

(3) While many model-based solutions, such as degree-corrected SBMs, are available for

relatively small networks, these approaches become computationally intractable for

large-scale networks. Besides, those methods lack the flexibility in efficiently modeling

node attributes.

(4) Commonly used heuristic methods mentioned in Section 1.1.1 are feasible for large-

scale networks. However, they do not address directly community detection but aim

instead at partitioning the network according to edge densities between groups and

thus fail to consider the within-group interactions. As a result, they may suffer from

limited ability to detect small communities and thus exhibit a “resolution limit”.

1.4 Contributions and Organizations of the Dissertation

This dissertation is intended to contribute to identifying a network and detecting its

community structure. More specifically, I make the following contributions:

(1) I present a Bayesian SBM that explicitly captures the assortative community behavior

via informative prior specification and displays flexibility in modeling different types

of data and node attributes.

(2) I develop computational methods to make inference under the proposed Bayesian SBM

from both sampling and optimization prospectives.

• I propose a novel centroid estimator that accounts for label non-identifiability

issues via Gibbs sampling based on a data augmentation strategy.
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• I propose a MAP estimator based on an iteratively-reweighted least squares pro-

cedure and an active set method.

(3) To make the inference more efficient on large-scale networks, I adopt the following two

strategies:

• I develop a graph generalized linear model (GGLM) procedure tailored for graphs.

GGLM implicitly computes sufficient statistics rather than generating responses

and design matrices.

• I introduce group corrections that stem from degree assortativity and centrality.

In particular, group corrections can be interpreted to represent different assor-

tative structure such as core-periphery structure. Moreover, group corrections

reduce to degree corrections if each node is considered as a group by itself.

(4) I propose a latent formulation to covariance selection and a Bayesian approach that

jointly identifies the underlying network and detects its community structure. To

identify the latent network, I develop a Bayesian ridge-regularized covariance selection

that specifies a spike-and-slab prior.

The organization of the remainder of this dissertation is as follows.

In Chapter 2, I present a classical degree-corrected SBM and estimation adapted to

Bayesian point of view. The proposed Bayesian degree-corrected model is based on a

logistic regression formulation with degree correction terms, and explicitly captures the

community behavior via prior specification. I further adopt a data augmentation strategy

with latent Pólya-Gamma variables to obtain posterior samples. In the estimation aspect, I

propose a principled, canonically mapped centroid estimator that formally addresses label

non-identifiability and captures representative community assignments. I demonstrate the

proposed model and estimation on real-world as well as simulated benchmark networks.

In Chapter 3, I discuss more general models that can be applied to large-scale data

of various types. I generalize the SBM in Chapter 2 by (i) considering a broader fam-
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ily of generalized regression models instead of the logistic regression; (ii) making correc-

tions for groups of nodes instead of each individual node; (iii) modeling within-community

interactions rather than between-community interactions and (iv) adopting optimization

approaches instead of sampling approaches to make inference. I demonstrate the group-

corrected SBM on an amicus curiae (literally “friend of the court”) network of count data.

In addition, I show its flexibility in modeling large-scale networks through both simulation

study and case study based on real-world online social networks.

In Chapter 4, I propose a Bayesian approach that jointly identifies the underlying

network and detects its community structure. To identify the latent network, I develop

a Bayesian ridge-regularized covariance selection that specifies a spike-and-slab prior. I

offer a Bayesian approach for community detection that explicitly characterizes community

behavior and a maximum a posteriori (MAP) estimator. I compare our ridge-regularized

covariance selection to other commonly used methods on simulated benchmark networks

and apply it to a real-world meta-genomic dataset of complex microbial biofilms.
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Chapter 2

Bayesian Degree-Corrected SBM

2.1 Introduction

To tackle community detection stated in Section 1.1, we adopt a hierarchical Bayesian

SBM where group labels are considered as random. We contend that a suitable prior

specification is essential to accurately characterize assortative behavior, and thus that

a Bayesian approach is essential to community detection as shown in the examples in

Section 2.6.1.

Our results can be connected to the work of Nowicki and Snijders (2001), Karrer and

Newman (2011) and Hofman and Wiggins (2008) but we make two important distinc-

tions: (i) we capture community behavior by explicitly requiring the probability of within-

community associations to be higher than that of between-community associations; and

(ii) we address parameter and label non-identifiability issues directly by remapping config-

urations to a unique canonical space. The first point is important in light of the examples

in Section 2.6.1. The second point allows us to sample from the posterior space of label

configurations more efficiently and to formally define an estimator based on a meaningful

loss function. Moreover, our model can be related to the work of Mariadassou et al. (2010)

and Vu et al. (2013) as they are all based on exponential-family clustering frameworks, but

our model is different from theirs in two respects besides the two points just mentioned: (i)

we make exact inference by introducing latent variables, rather than adopting approximate

variational approaches; and (ii) we add more flexibility by setting hyper-prior structure on

model parameters.
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The organization of this chapter is as follows.

(1) I propose a Bayesian degree-corrected SBM for community detection that explicitly

characterizes community behavior. I discuss this new model and how to account for

parameter non-identifiability in Section 2.2.

(2) I treat label non-identifiability issues by defining a canonical projection of the space of

label configurations in Section 2.3.

(3) I develop an efficient posterior sampler by identifying good initial configurations through

approximate mode finding and then exploring a Gibbs sampler based on a data aug-

mentation strategy in Section 2.4.

(4) I propose a remapped centroid estimator for community inference in Section 2.5. This

new estimator is based on Hamming loss and is arguably a good representative of a

projected space of label configurations.

In Section 2.6 I show that the proposed method is efficient and able to fit medium-sized

networks with thousands of nodes in reasonable time. Moreover, I show that our proposed

estimator yields more reliable estimation when compared to the ML-based estimators.

Finally, I offer some concluding remarks in Section 2.7.

2.2 A Bayesian Stochastic Blockmodel for Community Detection

Under our community detection setup we assume a fixed number of groups K ≥ 2 and

we are given, as data, a matrix [A]ij representing relationships between “actors” i and j

in a network with n > K nodes. We represent the assignment of actors to communities

through σ : {1, . . . , n} 7→ {1, . . . ,K}, a vector of labels: σi = k codes for the i-th individual

belonging to the k-th community.

A simple SBM specifies that the probability of an edge between actors i and j depends
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only on their labels σi and σj , and that σ follows a product multinomial distribution:

Aij |σ, θ
ind∼ Bern

(
θσiσj

)
, i, j = 1, . . . , n, i < j,

σi
iid∼ MN(1;π), i = 1, . . . , n,

(2.1)

where π is a vector of prior probabilities over K labels, parameter θkk is the “within”

probability of a relationship in community k, and θkl is the “between” probability of a

relationship for communities k and l, k, l = 1, . . . ,K, k < l. If we define θw
.
= θ11 = · · · =

θKK and θb
.
= θ12 = · · · = θK−1,K , we have a simpler model with single within and between

probabilities (Hofman and Wiggins, 2008).

We regard SBMs as logistic models and exploit this formulation to define a degree-

corrected SBM by

Aij |σ, γ, η
ind∼ Bern

(
logit−1(γσiσj + ηi + ηj)

)
(2.2)

where, in logit scale, parameters γ capture within and between community probabilities of

association and node intercepts η = (η1, . . . , ηn) capture the expected degrees of the nodes.

To avoid redundancies, we only code γkl for k ≤ l. We note that without η, model (2.2)

is equivalent to model (2.1) with γkl =logit(θkl). We also remark that we call the above

model node-corrected, which is arguably more suitable for a broader generalized linear

model formulation besides the logistic formulation; in Karrer and Newman’s approach the

observed Aij follow a Poisson distribution, and so η is related to expected log degrees,

and hence their degree-correction denomination (Karrer and Newman, 2011). Note that

the failure in considering degree corrections may result in clustering the hubs into one

community as shown in the left panel of Figure 2.1.



12

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●● ●

●

●

●

●

●
●●

●●
●

●

●

●

●

●●●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●●
●
●

●
●
● ●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
● ● ●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●●●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●● ●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●
●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●
●

●●

●
● ●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●● ●

●

●

●

●

●
●●

●●
●

●

●

●

●

●●●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●●
●
●

●
●
● ●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
● ● ●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●●●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●● ●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●
●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●
●

●●

●
● ●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●
●

●

●

Figure 2.1: Political blogs network, illustrated in Section 2.6. Node sizes are proportional
to degree; node colors (red/green) represent groups in non-degree-corrected estimator (left)
and degree-corrected estimator (right).

2.2.1 Parameter Identifiability

In what follows, to simplify the notation we group β = (γ, η) and define the design

matrix X associated to model (2.2) such that

Aij |σ, β
iid∼ Bern

(
logit−1(xij(σ)>β)

)
.

Note that we make explicit the dependence of each row xij on the labels σ. Model (2.2)

has then
(
K
2

)
+K +n parameters, but the next result shows that only

(
K
2

)
+n parameters

are needed for the model to be identifiable if each community has at least two nodes (the

proof is in Appendix 6.0.1.)

Theorem 1. The design matrix X associated with model (2.2) has the following properties:

(1) It has K linearly dependent columns.

(2) It is full column-ranked if and only if each community has at least two nodes.
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Based on these two criteria, to attain an identifiable model we remove K parameters

from γ and modify the prior on σ to a constrained multinomial distribution,

P(σ) ∝
K∏
k=1

I(Nk > 1)
n∏
i=1

π
I(σi=k)
k ,

where I(·) is the indicator function and Nk =
∑

i I(σi = k) is the number of nodes in

community k. There are still problems with label identifiability that we address by la-

bel remapping in the Section 2.3; for now, to allow for a straightforward remapping of

community labels, we just set

γ11 = · · · = γKK = 0 (2.3)

to remove the redundant γ parameters.

2.2.2 Hierarchical model for community detection

We attain a more flexible model by further setting a hyper-prior distribution on γ =

(γ12, . . . , γK−1,K), η, and π,

β = (γ, η) ∼ I(γ ≤ 0) ·N
(

0, τ2In+(K2 )

)
,

π ∼ Dir(α1, . . . , αK),

(2.4)

where τ2 controls how informative the prior is. The prior on γ and η can be seen as a

ridge regularization for the logistic regression in (2.2). The constraint γ ≤ 0 in this SBM is

essential to community detection since we should expect as many as or fewer edges between

communities than within communities on average, and thus that the log-odds of between

and within probabilities is non-positive. The conjugate prior on π adds more flexibility to

the model, and is important when identifying communities of varied sizes and alleviating

resolution limit issues.
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2.3 Label Identifiability

Since the likelihood in (2.2) only considers if individuals are in the same community or

not, labels are not identifiable due to this stochastic equivalence. Moreover, if π follows

a strongly informative symmetric Dirichlet, α = W · 1K with W large, then the marginal

prior on σ is approximately non-identifiable:

P(σ) =

∫
P(σ |π)P(π)dπ =

∏
k Γ(Nk +W )/Γ(W )

Γ(n+KW )/Γ(KW )
≈
∏
kW

Nk

(KW )n
=

1

Kn
.

Since σi are i.i.d. multinomial, then if π is non-informative, π = (1/K, . . . , 1/K), the

labels are not identifiable in the posterior P(σ|A) either. In fact, non-identifiability issues

occur within a group of labels I whenever πi = πj for all i, j ∈ I. We need to address

non-identifiability issues since here we discuss a non-informative π, a common modeling

choice for simplicity.

A common approach in latent class models to fix label non-identifiability is to fix an ar-

bitrary order in the parameters (Gelman et al., 2003, Chapter 18), e.g. γ12 < · · · < γK−1,K .

However, as Nowicki and Snijders (2001) pointed out, this solution can lead to imperfect

identification of the classes if the parameters are close with high posterior probability; a

major drawback then is that parameters and labels can be interpreted incorrectly. To ad-

dress this problem, a label switching algorithm was proposed by Stephens (2000) in the

context of MCMC sampling, but it is slow in practice. Another approach is to simply

focus on permutation-invariant functions; in particular, when estimating σ, we can adopt

a permutation-invariant loss, such as Binder’s loss (Binder, 1978). We discuss such an

approach in more detail in Section 2.5. Next, we propose an alternative, simpler procedure

to remap labels and address non-identifiability.

2.3.1 Canonical Projection and Remapping Labels

Let L
.
= {1, . . . ,K} and L = {σ ∈ Ln : Nk(σ) > 1, k = 1, . . . ,K} be the space of

labels with positive prior probability. If ρ is any permutation of the labels then P(σ|A) =
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P(ρ(σ)|A), where (ρ(σ))j = ρ(σj) for j = 1, . . . , n. Non-identifiability here means that

P(· |A) is invariant under ρ, and that σ and ρ(σ) are P(·|A)-equivalent, which we denote

by σ ∼P ρ(σ). Moreover, we can partition L according to ∼P : if S is one subspace defined

by that partition by ∼P , then any σ ∈ S is such that σ is not P(· |A)-equivalent to any

other label configuration in S. To achieve label identifiability we anchor one such subspace

as a reference space Q and regard all other subspaces as permuted copies of Q.

Let ind(σ) be the vector with the first positions in σ where each label appears, ind(σ)k
.
=

min{i : σi = k}, and further define ord(σ) as the vector with the order in which the labels

appear in σ,

ord(σ)k = σ−1
[
ind(σ)(k)

]
, k ∈ L. (2.5)

Note that ind(σ)(k) is the k-th position in the ordered vector ind(σ). As an example, if

σ = (2, 2, 3, 1, 3, 4, 2, 1) with K = 4 (and n = 8) then ind(σ) = (4, 1, 3, 6), ordered ind(σ) is

(1, 3, 4, 6) and so ord(σ) = (2, 3, 1, 4). To maintain identifiability we then simply constrain

label assignments to the subset of L where ord(·) is fixed. As a simple, natural choice, let

us restrict assignments to Q = {σ : ord(σ) = L}. Note that any σ can be mapped to its

canonical assignment by

ρ(σ)
.
= ord(σ)−1(σ). (2.6)

Taking our previous example, σ = (2, 2, 3, 1, 3, 4, 2, 1) would then be mapped to ρ(σ) =

(1, 1, 2, 3, 2, 4, 1, 3). The definitions of ind and ord can then be used to derive a procedure

that remaps σ to ρ(σ); for completeness, we list an algorithm that implements such remap

procedure in Appendix 6.0.2.

Our proposed reference set above is also described by Q = {σ ∈ L : σ = ρ(σ)}, the

quotient space of L with respect to ord, L/ord: any pair of label configurations σ1 and σ2

such that ρ(σ1) = ρ(σ2) are identified to a single label ρ(σ1) in Q. By constraining the

labels to a reference quotient space we not only achieve identifiability, but also make the

labels interpretable: label j marks the j-th community to appear in the sequence of labels.

As a consequence, we are not restricted to estimating permutation-invariant functions of
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the labels, as in the approach of Nowicki and Snijders (2001), since now, for example,

P(σi = j |A) is meaningful. As a particular application, we derive a direct estimator of σ

based on Hamming loss in Section 2.5; in the next section we discuss how the constraint

to Q is implemented in practice.

2.4 Posterior Sampling

To sample from the joint posterior on σ, β and π, we use a Gibbs sampler (Geman and

Geman, 1984; Robert and Casella, 1999) that iteratively alternates between sampling from

[σ | γ, η, π,A], [π |σ, γ, η, A], [γ, η |σ, π,A]

until convergence. Next, we discuss how we obtain each conditional distribution in closed

form.

2.4.1 Sampling σ and π

Let us start with the most relevant parameters: the labels σ. We can sample a can-

didate, unconstrained assignment for actor i, σi, conditional on all the other labels σ[−i],

parameters (β, π), and data A from a multinomial with probabilities:

P(σi |σ[−i], β, π,A) ∝ πk∏
j 6=i

(
logit−1(γσiσj + ηi + ηj)

)Aij
(

1− logit−1(γσiσj + ηi + ηj)
)1−Aij

= πk
∏
j 6=i

exp{Aij(γσiσj + ηi + ηj)}
1 + exp{γσiσj + ηi + ηj}

. (2.7)

To guarantee that parameters are identifiable, we reject the candidate σ if Nk ≤ 1 for any

community k. Moreover, to keep the labels identifiable, we remap σ using the routine in

Section 2.3 and remap γ accordingly.

As an example, consider the label samples obtained from running the Gibbs sampler on



17

the political blogs study in Section 2.6. In Figure 2.2, we plot a multidimensional scaling

[MDS (Gower, 1966)] representation of the samples. We have K = 2 communities, and so

L is partitioned into a reference quotient space in the right and a “mirrored” space in the

left; any point in the mirrored space can be obtained by swapping labels 1 and 2 in the

reference space and vice versa. The green arrow shows a valid sampling move σ(t) → σ(t+1)

at iteration t that does not require a remap, while the red arrow is an invalid move since

it crosses spaces. The blue arrow remaps σ(t+1) to ρ(σ(t+1)) in the reference space. The

dashed green arrow summarizes both operations.
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Figure 2.2: MDS representation of the two copies of the quotient space L/ord using posterior
samples for the political blogs example in Section 2.6. Arrows are described in text.



18

For the nuisance parameter π we summon conjugacy to obtain

π |σ, γ, η, A ∼ Dir(α+ N(σ)), (2.8)

where N(σ) = (N1, . . . , NK) and Nk are community sizes.

2.4.2 Sampling γ and η

Sampling β conditional on σ, π, and data A is more challenging since the logistic

likelihood in (2.2) does not specify a closed form distribution. However, if we explore a data

augmentation strategy by introducing latent variables ω = (ωij)i<j:i,j∈{1,...,n} from a Pólya-

Gamma distribution, then the above conditional distribution of β given ω is now available

in closed form (Polson et al., 2012). More specifically, if ωij |σ, β ∼ PG(1, xij(σ)>β), then

β |ω, σ,A ∼ I[γ ≤ 0] ·N(m,V )

where, with Ω = Diag(ωij) and latent weighted responses zij = (Aij − 1/2)ω−1
ij ,

V =
(
X>ΩX +

1

τ2
In+(K2 )

)−1
and m = V X>Ωz. (2.9)

The assortativity constraint γ ≤ 0 in the β prior is clearly also present in the conditional

posterior, and so we can use a simple rejection sampling step for the truncated normal:

sample from unconstrained marginals N(m,V ) and accept only if γ ≤ 0. However, since

β =

 γ

η

 ∣∣∣∣∣ω, σ,A ∼ N
(
m =

 mγ

mη

 , V =

 Vγ Vγη

Vηγ Vη

),
we can adopt a more efficient way of sampling β by first sampling η marginally,

η |ω, σ,A ∼ N(mη, Vη), (2.10)
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and then sampling

γ | η, ω, σ,A ∼ I(γ ≤ 0) ·N(mγ + VγηV
−1
η (η −mη), Vγ − VγηV −1

η Vηγ) (2.11)

from a truncated normal. In practice, we compute the Schur complement of Vη, Vγ −

VγηV
−1
η Vηγ , using the SWEEP operator (Goodnight, 1979).

2.4.3 Gibbs sampler

To summarize, after setting initial parameters σ, β and π arbitrarily, we then iterate

until convergence the following Gibbs sampling steps:

1. Sample σ |β, π,A: for each node i,

(a) Sample σi |σ[−i], β, A from a multinomial distribution as in (2.7). If Nk(σ) < 2

for some community k, reject and keep the previous value of σi.

(b) Remap σ using the procedure in Section 2.3.

2. Sample π |σ, β,A from the Dirichlet distribution in (2.8).

3. Sample β |σ, π,A:

(a) Sample ω |σ, β, π,A: for each pair i < j, ωij |σ, β ∼ PG(1, xij(σ)>β).

(b) Sample β |σ, π, ω,A: compute m and V as in (2.9), sample η marginally as

in (2.10), and then sample γ | η from a truncated multivariate normal distribu-

tion as in (2.11).

To speed up convergence and improve precision, we set the initial σ to be an approx-

imate posterior mode obtained from a greedy optimization version of the above routine,

similar to a gradient cyclic descent method. The main changes are:

1. In Step 1.a we take σi to be the mode of σi |σ[−i], β, A (but we might still reject σi if

Nk(σ) < 2 for some k and remap σ in Step 1.b).
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2. In Step 2, we take π to be the mode of the Dirichlet distribution in (2.8).

3. Step 3 is substituted by a regularized iterative reweighted least-squares (IRLS) step,

which is commonly used when fitting logistic regression models (McCullagh and

Nelder, 1989). At the t-th iteration we define µij = logit−1(xij(σ)>β(t)) and W =

Diag(µij(1− µij)) to obtain the update

V =
(
X>WX +

1

τ2
In+(K2 )

)−1
and β(t+1) = V X>Wz(t)

where z(t) = Xβ(t) +W−1(y − µ) is now the “working response”. To guarantee that

the community constraints γ ≤ 0 are met, we use an active-set method (Nocedal and

Wright, 2006, Chapter 16).

Since we expect the posterior space to be multimodal, we adopt a strategy similar

to Karrer and Newman (2011) and sample multiple starting points for σ according to its

prior distribution and then obtain approximate posterior modes for each simulation. We

elect the best approximate mode over all simulations as the starting point for the Gibbs

sampler, which is then run until convergence to more thoroughly explore the posterior

space.

2.5 Posterior Inference

One common estimator for label assignment is the MAP estimator,

σ̂M = arg min
σ̃∈{1,...,K}n

Eσ |A
[
I(σ̃ 6= σ)

]
= arg max

σ̃∈{1,...,K}n
P(σ = σ̃ |A),

which, albeit based on a zero-one loss function (Besag, 1986), has the advantage of being

invariant to label permutations. However, given the flexibility in our model due to the

hierarchical levels, the posterior space is often complex and so the MAP might fail to

capture the variability and might focus on sharp peaks that gather a small amount of

posterior mass around them.
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Another estimator for label assignment arises from minimizing Binder’s loss B (Binder,

1978, 1981),

σ̂B = arg min
σ̃∈{1,...,K}n

Eσ |A
[
B(σ̃, σ)

]
, (2.12)

where

B(σ̃, σ) =
∑
i<j

I(σ̃i 6= σ̃j)I(σi = σj) + I(σ̃i = σ̃j)I(σi 6= σj).

The advantage of Binder’s loss is that since it penalizes pairs of nodes it is invariant

to label permutations—that is, B(σ̃, σ) = B(σ̃, φ(σ)) = B(φ(σ̃), σ) for any permutation

φ. However, Lau and Green (2007) have shown that minimizing Binder’s loss is equivalent

to binary integer programming, which is an NP-hard problem. Moreover, as Fritsch and

Ickstadt (2009) pointed out, even the approximated solution given by Lau and Green (2007)

is only feasible when the dataset is of moderate size.

In contrast, when compared to MAP inference, centroid estimation (Carvalho and

Lawrence, 2008) offers a better representative of the space since it arises from a loss func-

tion:

σ̂H = arg min
σ̃∈{1,...,K}n

Eσ |A
[
H(σ̃, σ)

]
,

where H is Hamming distance, H(σ̃, σ) =
∑n

i=1 I(σ̃i 6= σi). The Hamming loss is more

refined than the 0-1 loss of MAP estimation in the sense of offering more resolution. Take

σ̃ = (1, 1) and σ = (1, 2) as an example, H(σ̃, σ) = 1 while LMAP(σ̃, σ) = 0. The centroid

estimator also identifies the median probability model, and thus is known to offer better

predictive resolution than the MAP estimator (Barbieri and Berger, 2004). However, Ham-

ming loss is only invariant to double label permutations but not to single label permuta-

tions, i.e., H(σ̃, σ) = H(φ(σ̃), φ(σ)) but it is not necessarily true that H(σ̃, σ) = H(φ(σ̃), σ)

or H(σ̃, σ) = H(σ̃, φ(σ)), and thus, in order for Hamming loss to be meaningful for esti-

mation when the labels are non-identifiable we need to account for label aliasing. We

then redefine the centroid estimator to depend on a specific permutation, for instance the
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canonical permutation ρ in (2.6),

σ̂C = ρ

(
arg min

σ̃∈{1,...,K}n
Eσ |A

[
H(σ̃, ρ(σ))

])
.

This remapped centroid estimator considers only one version of the posterior space, namely

the reference quotient space L/ord with ord in (2.5). The main advantage of this new

estimator is to allow the following characterization (see Appendix 6.0.3 for the proof):

Theorem 2. The centroid estimator σ̂C is a mapped consensus estimator: if P∗(σ |A) is

the induced posterior probability of σ ∈ L / ord and

(σ̂∗)i = arg max
k∈{1,...,K}

P∗(σi = k |A)

then σ̂C = ρ(σ̂∗).

In practice, we estimate

P̂∗(σi = k |A) ≈ 1

N

N∑
t=1

I(σ
(t)
i = k)

using N realizations from the Gibbs sampler presented in Section 2.4 to define σ̂C . Since

we only need to elect, for each actor, the most likely label according to Theorem 2, ob-

taining the centroid estimator is much simpler computationally than MAP and Binder

estimation. Note that due to the remap step when sampling σ | θ,A, we are always con-

strained to the quotient space L/ord and identifying label realizations under ρ, and thus

really approximating P∗(σ |A).

2.5.1 Relating Binder and Centroid Estimators

We start by noting that if we define an extended matched map M(σ) = {I(σi =

σj)}1≤i<j≤n that makes pairwise comparisons among labels in σ, then Binder and Hamming

losses are related through B(σ̃, σ) = H(M(σ̃),M(σ)) and so Binder’s estimator in (2.12)
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is also a centroid estimator in the extended matched space M(L).

Back to the original space L of labels, we observe that, in practice, the Binder and cen-

troid estimators are often close (in either loss). To explain these observations, we need the

next result relating Binder and Hamming losses (the proof can be found in Appendix 6.0.4):

Theorem 3. For any pair of label assignments σ̃ and σ, Binder loss is related to Hamming

loss through

B(σ̃, σ) ≤ H(σ̃, σ)
(
n− 1

2
H(σ̃, σ)

)
. (2.13)

Moreover, if K = 2 then B(σ̃, σ) = H(σ̃, σ)(n−H(σ̃, σ)).

From (2.13) we see that Binder’s loss can be approximately linearly bounded by Ham-

ming loss when the Hamming distance between σ̃ and σ is small. Thus, when the marginal

posterior distribution on σ has a compact cluster of label configurations with high posterior

mass we expect this cluster to contain the centroid estimator and also, according to (2.13),

Binder estimator since minimizing the posterior expected Hamming loss is approximately

equivalent to minimizing the posterior expected Binder loss in this case. In the next section

we run experiments on simulated datasets and observe that the two estimators are often

close and show similar performance for simple networks (check, for instance, Figure 2.6.)

2.6 Experimental Results

In this section, we demonstrate the performance of the centroid estimator and compare

it to Binder estimator under our model and to KN estimator (Karrer and Newman, 2011),

MAP estimator, Fast-Greedy (FG) estimator (Clauset et al., 2004), Multi-Level (ML)

estimator (Blondel et al., 2008), Walktrap (WT) estimator (Pons and Latapy, 2004) and

Label Propagation (LP) estimator (Raghavan et al., 2007) through an empirical study. In

the case studies we run repeated experiments on the same dataset and obtain the error

rates of the estimators mentioned above when compared to known or bona fide ground

truth references. To compare those estimators, we define a q-error interval as the interval

with endpoints being the q/2 and 1− q/2 quantiles of the error rates.
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Before discussing the experimental results, we present two illustrative examples next.

2.6.1 Illustrative Examples

Even though the models reviewed above are flexible enough to identify social block

structure, they might fail to actually recognize communities defined in Chapter 1. We now

show two simple examples to demonstrate how this happens, and compare our proposed

solution to the results from applying Karrer and Newman’s (KN) popular degree-corrected

SBM (Karrer and Newman, 2011).

The first dataset is a synthetic network, denoted as the “spike” dataset, which we

intentionally designed to show that degree correction is not sufficient to elicit communities.

The network considered is split into K = 2 communities. The first community contains

2n1 nodes with n1 of them being strongly connected as a complete graph Kn1 (a “kernel”)

and having a one-to-one connection with the remaining n1 nodes (a “crown”). The other

community is formed in a similar way, but with a complete Krn1 kernel connected to a rn1

crown, totaling 2rn1 nodes (see Figure 2.3). We add some between-community edges in

such a way that each node from the complete graph Kn1 in the first community is connected

to r nodes from the complete graph Krn1 in the second community.

We note that this network can still be characterized as having a community behavior

since the edge density between communities is smaller than the density within communities.

Moreover, due to the crowns, we also need to account for degree heterogeneity in each

community. Let us then consider the case when n1 = 10 and r = 5. Figure 2.3 compares

the KN estimator and our estimator. The kernel-crown structure of both communities is

not reflected in KN estimator; moreover, there are more edges between groups than within

groups, which is not prescribed by community behavior.

We observe that degree correction is not enough to correctly capture the community

structure in the synthetic network that we designed. However, similar results are also ob-

served in some real-world datasets. Consider, for example, the “sampson” network reported

by Sampson (1968) at time point T4 among a group of 18 trainee monks at a New England
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Figure 2.3: Spike network, n1 = 10, r = 5. Node sizes are proportional to degree; node
colors (red/green) represent groups in KN estimator (left) and our estimator (right). Node
borders mark the reference.

monastery. Four types of relations—affection, esteem, influence, and sanctioning—between

the monks are collected. In this network, each node represents a monk in the monastery,

and two nodes are considered to be connected if they considered each other as being in

at least one of the four relations when asked by Sampson. Sampson reported a partition

of trainee monks into three communities (K = 3): Young Turks, Loyal Opposition and

Outcasts. Figure 2.4 compares KN estimator to our estimator and shows a similar pattern

where within group connections are sparser than between group connections according to

the KN estimate; in particular, there are more edges between the red and green communi-

ties than within the green community.

2.6.2 Empirical Study

First, we evaluate our estimator on simulated datasets with known references. The

networks are generated from a class of benchmark graphs that account for heterogeneities

in node degree distributions and community sizes (Lancichinetti et al., 2008a). The model

used in the simulation considers the following parameters: both degree distribution and

the community sizes are assumed to follow power law distributions with exponents a and

b, respectively; each network consists of n nodes and has average degree 〈k〉; and mixing
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Figure 2.4: Sampson network at T4, n = 18. Node sizes are proportional to degree;
node colors mark KN estimator (left) and our estimator (right). Node borders mark the
reference.

parameter µ represents the proportion of between-community edges.

We simulate 100 networks for each combination of n = (100, 500), a = (2, 3), b = (1, 2),

and µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6). Figure 2.5 shows one realization of the benchmark

networks as an example. We compare the performance of the centroid, Binder, MAP, KN,

FG, ML, WT and LP estimators in terms of the normalized mutual information (NMI)

defined in (Danon et al., 2005). The NMI measures the similarity between two community

labels σ and σ̃:

NMI(σ, σ̃) =
2MI(σ, σ̃)

H(σ) + H(σ̃)

where MI(σ, σ̃) is the mutual information and H(σ) is the entropy of σ. The NMI is

bounded below by 0, when two labels are independent, and above by 1, when two labels

are identical.

The NMI of estimators is summarized in Figure 2.6. We observe from the figure that

the centroid estimator performs comparably well as Binder, ML and WT estimators while

slightly better than KN, MAP and FG estimators when the community structure is strong

(mixing parameter µ ≤ 0.3). The centroid estimator outperforms KN, MAP, FG, ML and

WT estimators to a large extent when the community structure is weak (mixing parameter

µ ≥ 0.4). Of all estimators compared here, LP performs worst in terms of NMI while it
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is the most computational efficient. Not surprisingly, all estimators perform worse as the

mixing parameter µ increases (so that the communities are defined in a weaker sense) or

the average degree 〈k〉 decreases (so that there are fewer edges). Similar results are found

under other different combinations of (a, b, 〈k〉), as shown in Figure ?? and Figure ?? in

the Appendix.

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●●

●
●

●●

●

● ●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

● ●

●●●

●

●

●
●

●
●
●

●

●
●

●

●

●●
●●

● ●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●●

●

●

●
●

● ●

●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●
●

●

●

●

●
●

●

●●●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●●
●●●

●●

●

●●
●●

●●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

● ●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●

●●
●

● ●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●
●●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●
● ●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●●

●

●

●

●
●●

●
●●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●
● ●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●●●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●
●

●●●
●
●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●● ●
●●

●
●

●

●

● ●

●
● ●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●●
●●

●
●

●

●
●

●

●
●●●

●●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●
● ●

●

●

●
●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●
●●

●
●

●
●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●●

●●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

● ●

●

●
●●●

●
●●

●●

●●
●

●

●
●

●

●
●

●
●●

●
●

●●
●●

●

●
●

●

●
●

●
●

●

●

●●

●●

●●

●
●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●
●●

●

●

●
●

●

●● ●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●●
●●

●
●

●●

●

●

●●
●
●
●

●

●●

●
●

●

●
●

●

●
●

●
●●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

● ●●
●

●●

●
●●

●

●●
●

●

●●
●

●
●

●
●●

●●●
●

●●●
●●●

●
●

●●

●

●

●

●

●

●

● ●
●

●
●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●
●

●

●
●●

●

●
●

●

●

●●
●

●

●●
●●

●

●
●

●

●●

●

●

●
●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
● ●

●

●

●

●
●

●

●●

●
●●

●

●

● ● ●●

●●
●

●●●
●

●

●
●

●
●

●●

●

●
●●

●●

●

●

●
●●●●● ●

●●

●

●

●

●

●

●●

●

●

●●
●●

●
●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●
● ●

●

●

● ●

●

●
●●

●

●

●

●
●

●

●●

●

●●
●

●●

●

●

●

●●

●

●
●
●

●
●●●

●●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

● ●●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●
●

●
●

●

●●●
●●●●●●

●
●

●●
●●●●

●
●

●●
●

● ●

●

●

●
●

●●●●●●

●●
●

●

●
●

●
●

●●
●●●

●● ●●

●

●
●●

●
●● ●

● ●●●●
●

● ● ●●
●
●
●●
●●

●●
● ●

●
●●●

●●
●●
●

●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●
●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●●●●●●

●
●

●
●

●●

●

●
●

●

●●●
●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●●
●

●

●

●●●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
● ●

● ●

●
●

●

● ●

●

●
●

●●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●●

●

● ●
●
●●

●
●●

●●● ●●

●●

●

●

●● ●●●
●

●

●

●●

●●
●

●

●
●

●
●

●
●

●

●

●
●●

●
●
●

●
●

●

●

●●

●●●●●
●●
●●

●

●
●

●

●●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●●
● ●

●
●

●

●
●●

●●

●
●

●●

●

●
●●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●●
●
●

●

●
●●●

●

●

●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●● ●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

● ●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●
●●

●●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●

● ●
●

●●

●

●

●

●
●

●

●

●
●

●
●
●

●

● ●

●

●

●

●●

●
●

●●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●● ●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
● ●

●
●
●

●●

●

●
●● ●

●●

●

●
●

● ●

●

●

●
●

●

●
●

●●

●

●
●●

●

●
●

●●
●

●
●

●
●

●●

●

●●

●
●

●
●●

●●●●●●
●

●
●

●

●●●
●

●●●●
●

●●

●
●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

● ●●●

●

●

●

●

●

●

● ● ●
●

●
●

●
●

●
●

●

●

●
● ●

● ●

● ●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●
●

●

●

●

●
●

●
●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●●

●
●

●
●●

●

●

●

●●

●

●

● ●

●
●

●

●
●

● ●●

●●

●

●
●

●

●
●

●

●

● ●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●
●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●●●
●●

●●
●

●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●
●

●

●
●

●
●

● ●

●●
●

●

●

●

●
●

●

●
●●

●
●

●

●
●

● ●
●

●●

●
● ●

●

●

●
●

●
●

●●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●
●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●●●

●●●●●●

●

●
●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

0 20 40 60 80 100

0
50

0
10

00
20

00

Centroid

Hamming

B
in

de
r

●

●

●

●

●

●

●

K = 2
K = 3
K = 4
K = 5
K = 6
K = 7
K = 9

Figure 2.5: Left: one realization of the benchmark networks with n = 100 nodes, a =
2, b = 1, µ = 0.4, and 〈k〉 = 10. Right: Binder loss against Hamming loss over 50
graph realizations of such benchmark networks. Colors mark different values of K. Lines
correspond to the upper bound in (2.13) for K > 2 and K = 2.

2.6.3 Case Study

Next, we evaluate our estimator for community detection on two real-world network

datasets.

2.6.3.1 Political blogs

The first case study is the political blogs network (Adamic and Glance, 2005), which is

a medium real-world network containing over one thousand nodes. In this network, each

node is a blog over the period of two months preceding the U.S. Presidential Election of
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Figure 2.6: Benchmark networks of n = 100 and 500 nodes, with different combinations
of exponents a, b and average degrees 〈k〉. Each box plot corresponds to the NMI of the
estimator over 100 graph realizations.

2004, and two nodes are considered to be connected if they referred to one another and

there was overlap in the topics they discussed. Adamic and Glance label the blogs as either

liberal or conservative and discover that a political blog rarely links to another blog of a

different political ideology. It is expected that blogs in favor of the same political party

are more likely to be linked and discussing the same topics than those in favor of different

political parties, which corroborates a community behavior. This structure of the network

leads to a polarization of those blogs into two communities, liberals and conservatives. We

use this prior information on the political learning and pick K = 2, a choice also used

by Karrer and Newman (2011).
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The centroid estimator agrees well with the reference labeled by Adamic and Glance

(2005), as depicted in the leftmost panel in Figure 2.7. We estimate each ηi for node i by

its posterior mean using the converged samples and plot the estimated ηi against the logit

normalized degree of node i in the middle panel. There is a positive linear relationship

between ηi and the logit of the normalized degrees, indicating that the expected degree,

thus the probability of building an edge, is positively related to the observed degree of the

node. If there is a community effect driven by political ideology, that is, if the network

can be better explained by partitioning nodes into two different political communities,

then γ12 is expected to be significantly negative. The rightmost panel in Figure 2.7 shows

the estimated posterior distribution of γ12. An estimated 95% credible interval for γ is

[−3.16,−2.99], which shows a clear deviation from 0 and thus indicates a strong community

effect in the network.

We further compare the centroid estimator with Binder estimator and KN estimator,

as in the previous section. The estimated 90% error intervals for the centroid, Binder, and

KN estimators are [0.053, 0.054], [0.053, 0.054], and [0.045, 0.051], respectively. In general,

the three estimators perform equally well while the KN estimator yields a slightly smaller

error rate on average.

2.6.3.2 Political books

Finally, we pick the political books dataset compiled by Krebs (2004). This is a network

of 105 books on politics sold by the online bookseller Amazon around the time of the

U.S. presidential election in 2004. Each node represents a book on politics, and an edge

between two nodes is built if the two books are frequently copurchased by the same buyers.

These books appear to form communities of copurchasing that align closely with political

ideologies—liberal or conservative—except for a few books that were explicitly centrist.

The books were labeled as “liberal”, “neutral”, or “conservative” by Newman (2006) based

on a reading of the descriptions and reviews of the books posted on Amazon. We use the

prior information that books are of three political opinions and obtain the centroid, Binder,
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Figure 2.7: Political blogs network. Left: Node sizes are proportional to degree; node
colors signal the centroid estimators (red/green). Node color intensities are proportional to
P̂∗(σi |A) and node border colors mark the reference. Middle: ηi on logit(degreei/(n−1)) for
each node i; color for each node i represents (σ̂C)i. Right: estimated posterior distribution
for γ12.

and KN estimators under K = 3.

The left panel in Figure 2.8 shows the centroid estimator of the political books network.

The communities corresponding to liberal (blue) and conservative (green) are clearly sepa-

rated by the neutral (red) community. The estimated liberal and conservative communities

agree with the reference well while there are a few nodes in or close to the estimated neu-

tral community not matching the reference. The middle panel plots estimated ηi against

normalized degrees in logit scale. It is evident that the neutral (red) community has a dif-

ferent intercept for η, indicating that it is less connected. The right panel shows estimated

marginal posterior distributions for γ. Not surprisingly, γ23 < γ12 and γ23 < γ13 with high

posterior probability since communities 2 (green) and 3 (blue) are separated by community

(red) and so do not share many edges.
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We also use weakly-informative priors and run multiple chains as in the previous ex-

ample. The estimated 90% error intervals for the centroid, Binder, and KN estimators

are [0.167, 0.175], [0.167, 0.175], and [0.171, 0.171], respectively. Most of the nodes not

matching the reference are in or close to the neutral (red) community. The reason might

be that those books appeal to buyers with different political opinions and thus are often

copurchased with books in neighboring communities. The community labels (under the

definition of “community” in this dissertation) of neutrals or nodes near neutrals do not

reflect their stated political ideology in the descriptions or reviews.
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Figure 2.8: Political books network. Left: node sizes are proportional to degree; node
colors signal the centroid estimators. Node color intensities are proportional to P̂∗(σi |A)
and node borders mark the reference. Middle: ηi on logit(degreei/(n− 1)) for each node i;
color for each node i represents (σ̂C)i. Right: estimated posterior distribution for γ.

2.7 Discussion

If the posterior space is multimodal then a single point estimator has difficulty in

representing the space, and the centroid estimator is not immune to this problem. The
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proposed estimation procedure can be extended to account for multiple modes by exploring

conditional estimators on partitions of the space. While this can be done empirically by

clustering posterior samples, we next pursue a more principled way of identifying partitions.

As simple extensions to the proposed model, we incorporate parameters for node attributes

and to generalize the formulation to account for count, categorical, and ordinal data in

Chapter 3. Other directions for future work, albeit not related to community detection,

include extending the remap procedure to other settings such as clustering and mixture

model inference.
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Chapter 3

Bayesian Group-Corrected SBM

3.1 Introduction

In this chapter, we generalize the degree-corrected SBM mentioned in Chapter 2 to

make it suitable for a larger variety of applications. It is computationally prohibitive to fit

the degree-corrected SBM on large networks (∼ 10, 000) due to the sampling approach used

in the inference. Besides, model (2.2) is based on a logistic regression, and thus limited to

applications with binary data. We can only model the absence or presence of an interaction

under model (2.2). However, strengths of connections can be of great significance and used

to obtain more reliable inference results. We next present a simple example to demonstrate

a case where modeling richer data improves inference.

The dataset we use here as an illustrative example is the well-known “karate club”

network (Zachary, 1977), which is a social network of friendships between n = 34 members

of a karate club at a U.S. university. In this network, nodes represent members of the karate

club and weighted edges indicate how often two members interact outside club activities.

This network is well-studied and is known to split into two communities (K = 2) due

to a dispute over whether to raise the club fee. Figure 3.1 shows the community labels

estimated using binary data (presence/absence of interactions) and count data (strengths

of interactions), respectively. Node 10 prefers to be classified into the community with

node 3 using binary data while into the community with node 34 using count data. A

further look at node 10 shows that it is connected to only two nodes—3 and 34—which

are “hubs” or “popular members” in the two communities. Binary data fails to tell the



34

Table 3.1: Karate network: weighted adjacency matrix

Actor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 . 4 5 3 3 3 3 2 2 . 2 3 1 3 . . . 2 . 2 . 2 . . . . . . . . . 2 . .
2 4 . 6 3 . . . 4 . . . . . 5 . . . 1 . 2 . 2 . . . . . . . . 2 . . .
3 5 6 . 3 . . . 4 5 1 . . . 3 . . . . . . . . . . . . . 2 2 . . . 2 .
4 3 3 3 . . . . 3 . . . . 3 3 . . . . . . . . . . . . . . . . . . . .
5 3 . . . . . 2 . . . 3 . . . . . . . . . . . . . . . . . . . . . . .
6 3 . . . . . 5 . . . 3 . . . . . 3 . . . . . . . . . . . . . . . . .
7 3 . . . 2 5 . . . . . . . . . . 3 . . . . . . . . . . . . . . . . .
8 2 4 4 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 2 . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 3 4
10 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
11 2 . . . 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 1 . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 3 5 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2
16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4
17 . . . . . 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 2 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
20 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1
22 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3
24 . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 4 . 3 . . 5 4
25 . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . . . 2 . .
26 . . . . . . . . . . . . . . . . . . . . . . . 5 2 . . . . . . 7 . .
27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . 2
28 . . 2 . . . . . . . . . . . . . . . . . . . . 4 3 . . . . . . . . 4
29 . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2
30 . . . . . . . . . . . . . . . . . . . . . . . 3 . . 4 . . . . . 4 2
31 . 2 . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . 3 3
32 2 . . . . . . . . . . . . . . . . . . . . . . . 2 7 . . 2 . . . 4 4
33 . . 2 . . . . . 3 . . . . . 3 3 . . 1 . 3 . 2 5 . . . . . 4 3 4 . 5
34 . . . . . . . . 4 2 . . . 3 2 4 . . 2 1 1 . 3 4 . . 2 4 2 2 3 4 5 .

difference between these two interactions while count data in Table 3.1 shows that node 10

shares a stronger interaction with node 34, thus should be classified into the community

with node 34.

To address these hurdles, I generalize the SBM by making changes as follows.

1. I adopt a broader family of generalized regression models to fit count, categorical

and ordinal data. The broader family may include Poisson, Gaussian, zero-inflated

Poisson and response factor model. A better resolution is expected to be achieved

through fitting richer data.
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Figure 3.1: Karate network, n = 34. Node sizes are proportional to degree; node colors
mark the estimator obtained using binary data (left) and that using count data (right).
Node borders mark the reference given by Zachary. Edge widths indicate the weights on
edges.

2. I model within-community interactions instead of between-community interactions

to involve fewer parameters in a way that still captures the community behavior. By

the definition of communities used in this dissertation, it is more likely to have an

interaction within communities than between communities. Previously we required

that
(
K
2

)
log odds of between-community interactions to be non-positive while next

we require K log odds of within-community interactions be non-negative.

3. I make group corrections on groups of nodes instead of degree corrections on in-

dividual nodes and propose a simpler model where groups may correspond to the

“popularity” or the core-periphery structure. Note that group corrections reduce to

degree corrections when each node forms a “group” by itself.

4. I develop MAP estimators from an iterative optimization procedure, which is more

computationally efficient compared with centroid estimators from Gibbs sampling.

The generalized SBM is discussed in Section 3.2 and Section 3.3. I then apply the model
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to an amicus curiae network as an example of count data in Section 3.4. I also demonstrate

its flexibility through fitting large-scale networks based on simulated benchmark networks

and three real-world datasets with ground truth communities in Section 3.5. I conclude

with a discussion in Section 3.6.

3.2 Group-Corrected Generalized SBM

Given a social network with n individuals and observed interactions Aij ∈ N between

individuals i and j, our goal is to identify K clusters of nodes such that there are more in-

teractions within clusters and fewer connections between clusters. This behavior is usually

attributed to social assortativity—individuals with similar interests interact more inten-

sively, “birds of a feather flock together”—and thus these clusters are called “communities”.

We can then see these social associations as a graph with A as its adjacency matrix.

Following the approach in Chapter 2, we can consider a general Bayesian model to

infer network assortativity parameters γ, degree correction terms η, and community labels

σ with

Aij |σ, η, γ ∼ F
[
g−1(γσi,σj + ηi + ηj)

]
.

Here, F represents a family of distributions where possible options are Bernoulli, Poisson

and so on. g is the corresponding link function under F. To guarantee identifiability, we set

γss = 0 for s ∈ {1, . . . ,K}, and to capture community behavior we set γrs ≤ 0, r 6= s, w.p.

1 under the prior, that is, we expect the probability of an interaction between communities

to be smaller than that within community.

This model has K(K− 1)/2 +n parameters, and is computationally infeasible for large

K and/or n. To alleviate this problem, we propose to amend the above model in two ways

as follows.

1. We expect that, for large networks, individuals are exchangeable modulo certain

criterion, for example “popularity” or centrality. Thus, we pool individuals into L

groups according to their criterion profiles, and assume that the degree distribution
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within each criterion class is homogeneous. To this end, we assign a “group” label Zi

to the i-th individual.

2. Previously, we set a different γrs ≤ 0 w.p. 1 for each between-community interaction

and γss = 0 for all within-community interactions. We next reduce the number of γ

parameters by setting γrs = 0 for r 6= s, and requiring γss ≥ 0 w.p. 1 through the

prior specification to keep the community behavior.

With these two changes, the model has K + L parameters and is more computational

amenable. The new likelihood is then

Aij |σ, γ, η
ind∼ F

[
g−1

(
K∑
k=1

γkI(σi = σj = k) + ηZi + ηZj

)]
. (3.1)

The prior distributions are

(γ, η)
ind∼
∏
k

I(γk ≥ 0)N(0, τ2IL+K)

σi
iid∼ MN(1;π).

(3.2)

Hyper-parameter τ2 can be chosen to be large to form a weakly informative prior. Sim-

ilarly, π informs about the expected size of the communities; for a flat prior we take

π = (1/K, . . . , 1/K). In some networks, nodes with similar centrality properties are ex-

pected to behave similarly in building an interaction. An example of this is a network

with core-periphery (CP) structure. CP structure is a common but informal notion in

social network analysis which entails dense, cohesive cores and sparse, less-connected pe-

ripheries (Borgatti and Everett, 2000). It is worth mentioning that parameters η indicate

the local CP structure when nodes are grouped by centrality scores while parameters γ

capture the community structure. Both structures are important and irreplaceable by one

another in the analysis of networks (Rombach et al., 2014). The differences between the

CP structure and community structure can be found in Figure 3.2. The left and mid-

dle panels depict the adjacency of a network with global community structure and global
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CP structure, respectively; the right panel shows the adjacency of a network with global

community structure and local CP structure (or global CP structure and local community

structure after reordering).

Additional covariates y may also be included to model Aij . An example is presented

in Section 3.4.

Aij |σ, γ, η, Y
ind∼ F

[
g−1

(
K∑
k=1

γkI(σi = σj = k) + ηZi + ηZj +

S∑
s=1

ξsyis[+/·]yjs

)]
,

(γ, η, ξ)
ind∼
∏
k

I(γk ≥ 0)N(0, τ2IL+K+S).

(3.3)

Figure 3.2: Simple illustrative networks with (i) global community structure; (ii)global core-
periphery structure; (iii) global community structure and local core-periphery structure /
global CP structure and global community structure

3.2.1 Parameter Identifiability

In what follows, to simplify the notation we set β = (γ, η) and define the design matrix

X associated to model (3.1) such that

Aij |σ, β
iid∼ Bern

(
logit−1(xij(σ)>β)

)
.

Model (3.1) has then K + L parameters, and the next result demonstrates the conditions

required for the model to be identifiable (the proof is in Appendix 6.0.5).
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Theorem 4. The design matrix X associated with model (3.1) is full column-ranked if

each community has at least two nodes and

(1) K > 2; or

(2) none of the groups is completely covered by a community when K = 2.

In practice, K is chosen with some information criterion. The model is identifiable if

the selected K is greater than two. We only need to check if there is a group completely

covered by one of the communities when K = 2 to guarantee model identifiability. It is

worth pointing out that analyzing parameter identifiability is difficult for model (3.3) which

includes covariates y of various types and values in addition to community labels and group

labels.

3.3 Model Inference

3.3.1 Initializing Z and σ

Fitting community labels σ and group labels Z simultaneously is prohibitive due to

combinatorial issues, especially when the groups and communities have overlaps. Moreover,

it is difficult to determine the number of groups and the number of communities jointly.

Hence, we adopt an optimization procedure with two passes: learning group labels Z (as

well as the number of groups) and then fitting labels σ. Heuristic methods are used to find

good initials in our proposed procedure, as common in other SBM inference. Among the

many ways to initialize Z, we settle with two main strategies stated below.

(i) Probability of connecting : We treat the connected network as an ergodic Markov chain

and let P = [pij ] be the corresponding transition matrix where pij =
Aij∑

j̃:(i,j̃)∈E(G) Aij̃
.

We find the stationary distribution Π such that PΠ = Π and expect that Πi roughly

captures the probability of connecting with node i. We then perform hierarchical

clustering on Π and cut the hierarchical structure to form L clusters for a range of L.
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(ii) Degree quantile: In networks with degree assortativity, for example a network where

hubs are more likely to be connected to hubs, quantiles of degrees are adopted to

characterize initial groups. We define a maximum number Lmax of popularity classes,

ranking the observed degrees, and splitting them according to their quantiles. More

precisely, if di =
∑

j 6=iAij is the degree of i, we set Zi = j if (j − 1)/Lmax <∑
v I(dv < di)/n ≤ j/Lmax. Some degree strata might not have any nodes, and so

the maximum popularity label L might not be Lmax.

A heuristic approach based on the conductance is exploited to derive initial community

labels. We use maximum spanning tree (MST) and cut the MST into K parts by min-

imizing the “generalized” conductance for a range of K. The generalized conductance is

approximated in MST by

Φ = max
k

{∑
i∈Sk,j 6∈Sk,(i,j)∈T PijΠi∑

i∈Sk
Πi

}

where Sk are built by breaking edges in MST.

To estimate γ, η, σ and Z we explore a cyclic gradient descent method on the log

posterior defined by (3.3) and (3.2) with three conditional steps:

[γ, η, ξ, |σ, Z,A] and [σi |σ[−i], γ, η, ξ, Z,A] and [Zi |Z[−i], γ, η, ξ, σ,A],

where σ[−i] denotes all labels but the i-th one. The update step on σ and Z can get stuck

in local maxima, and so we run this procedure from multiple starting points and select the

fit with highest joint posterior probability. The following subsections explain these steps

in detail.

3.3.2 Updating γ, η and ξ

Conditional on community labels σ, we update γ, η and ξ using a ridge-regularized

version of IRLS, an efficient and commonly used method when fitting generalized linear
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models. In this case, we have a design matrix X such that Aij |σ, γ, η, ξ ∼ F(µij) with

µij = g−1(xij(σ)>β) and β = (γ, η, ξ) according to (3.3). That is,

xij(σ)>β =
K∑
k=1

γkI(σi = σj = k) + ηZi + ηZj +
∑
s

ξsyis[+/·]yjs.

Then, defining W
.
= Diag[Var(µij)], the update is β(t+1) = V X>Wz(t), with

V =
(
X>WX +

1

τ2
IK+L

)−1

as the covariance and z(t) = Xβ(t) +W−1(A−µ) as the “working response”. In addition, to

guarantee that γss ≥ 0 for every community s, we use an active-set method when updating

β (Nocedal and Wright, 2006). Instead of allocating the whole adjacency matrix A and

perform a GLM, we compute the sufficient statistics used in the update procedure which

makes this step much more computational efficient and suitable for large-scale networks.

3.3.3 Updating σ and Z

Now, given the updated values of β, we seek to update σ. A group update as in the

previous step is however not possible, so we update each label σi in turn, conditional on

the remaining labels σ[−i] and model parameters β. From (3.3), we have that

P(σi = k |σ[−i], β, A) ∝ πk
∏
j 6=i

exp{Aijx>ijβ}
1 + exp{x>ijβ}

.

In practice, we do not compute the product above at each iteration but instead keep track

of sufficient statistics when tentatively assigning σi = k for k = 1, . . . ,K. We then pick

σ
(t+1)
i as the argument maximizer of P(σi |σ(t)

[−i], β
(t), A) and update the sufficient statistics

accordingly. We will not go into details of updating Z since the procedure is very similar to

that updating σ. The only difference is that we check for different identifiable constraints

when updating Z.
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number of nodes 3, 512
number of edges 54, 134
edge density 0.0088
simple graph TRUE
(mean, median, max, SD) degree (30.83, 19, 234, 30.75)
(mean, median, max, SD) adjacency (0.01, 0, 59, 0.15)
global clustering coefficients 0.79

Table 3.2: Amicus curiae network: summary statistics of largest connected component

Table 3.3: Amicus curiae network: table summary of weighted adjacency matrix

weight 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
number of edges 6111182 46942 5389 1236 298 119 52 31 13 3 5 6 4 3 1 3 1 4

weight 21 22 28 30 31 34 35 36 37 38 40 41 44 45 47 49 50 59
number of edges 1 1 1 1 1 4 1 1 1 1 1 1 2 2 2 1 1 1

3.4 Case Study: Amicus Curiae Network

3.4.1 Background

In political science, an interest group refers to a formally organized association that

seeks to influence public policy and other political outcomes (e.g., case decisions, con-

tracts and appointments). Interest groups often make their opinion known before the U.S.

Supreme Court through signing an amicus curiae brief. Interest groups usually work to-

gether by cosigning on amicus curiae briefs to achieve their goals at reduced cost and receive

symbolic benefits (Hula, 1999; Box-Steffensmeier and Christenson, 2014). Such coalitions

form an amicus curiae network, where nodes represent interest groups and edges indicate

cosigner status. We obtain an amicus curiae network by considering interest groups active

in the decade from 2000 to 2010 as nodes and the number of briefs cosigned by interest

groups as weighted edges. The amicus curiae network measures not only interest groups

coalitions, but also intensities of coalitions. The amicus curiae network consists of a highly

connected component and other small isolated clusters of nodes. Of interest is the largest

connected component with n = 3, 512 nodes and e = 54, 134 edges.



43

3.4.2 Zero-Inflated Poisson SBM

Poisson regression models are commonly used in modeling counts on edges. However, a

strong assumption for Poisson regression is that the event’s conditional mean and variance

are equal. In practice, the phenomenon that counts having greater variance than the mean

is often observed. And such phenomenon is described as overdispersion, which indicates

that Poisson regression is not adequate. The descriptive analysis shown in Table 3.2 and

Table 3.3 suggests the presence of excess zeros and large variance in the amicus curiae

network, leading to overdispersion if fitted with Poisson. We address the problem by

adopting a zero-inflated Poisson (ZIP) model, a simple mixture model for count data with

excess zeros (Lambert, 1992). The model is a combination of a Poisson distribution and a

degenerate distribution at zero.

Hence, we propose a two-state model: (i) a latent level binary network Bij modeling the

linkage between interest groups i and j; (ii) a main level weighted network Aij modeling

strengths of connections. In addition, we consider other factors that help in explaining

interest group coalitions. Among the many business characteristics of an interest group,

industry is of significance since it is a measure of shared issue interests. Interest groups

in the same industry are expected to cosign amicus curiae briefs more often because they

share industrial demands to seek out mutual benefits via corporation (Box-Steffensmeier

and Christenson, 2014). We measure industry by the associated U.S. Standard Industrial

Classification (SIC) system available at https://www.osha.gov/pls/imis/sic_manual.

html. We parse SIC codes in accordance with major divisions but do split one major

division “Services” and its major groups such as “Membership Organization” to make sure

the obtained industry groups are of moderate size. Sharing common membership and SIC

codes may contribute to coalitions as well as frequencies of coalitions. Hence, communities

and SIC codes are expected to play a role in modeling both latent and main network. The

https://www.osha.gov/pls/imis/sic_manual.html
https://www.osha.gov/pls/imis/sic_manual.html
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proposed generalized SBM in (3.3) is adjusted as:

Aij |Bij , σ, θ, ζ, ρ, Y ∼ Bij · Poisson

(
K∑
k=1

θkI(σi = σj = k) + ζZi + ζZj +

S∑
s=1

ρsyisyjs

)
,

Bij |σ, γ, η, ξ, Y ∼ Bern

[
logit−1

(
K∑
k=1

γkI(σi = σj = k) + ηZi + ηZj +
S∑
s=1

ξsyisyjs

)]
.

(3.4)

Notation yis is the indicator that interest group i belongs to industry s. Note that we need

S 0-1 indicators since one interest group may belong to more than one industry. There is

expected to be a “boost” effect in both the probability of a coalition and the intensity of

the coalition if two interest groups are in the same industry. The prior distributions are

(θ, ζ, ρ)
ind∼
∏
k

I(θk ≥ 0)N(0, ν2IL+K+S)

(γ, η, ξ)
ind∼
∏
k

I(γk ≥ 0)N(0, τ2IL+K+S)

σi
iid∼ MN(1;π).

(3.5)

Hyper-parameters ν2 and τ2 can take on large values to form weakly informative priors.

Parameters η, ζ are expected to capture the coreness of the latent and main network,

respectively. Parameters γ and θ capture the community structure of the latent and main

network, respectively. The inference on ZIP models is similar to that on one-state models

as described in Section 3.3.

3.4.3 Results

Figure 3.3 shows the relation between industry and interest group coalitions. The

higher darkness of diagonal terms relative to that of off-diagonal terms indicates that

interest groups in the same industry tend to cosign more frequently in this amicus curiae

network. Given this result, we always take industry into account when performing inference

procedures later. We also observe that the edge densities within agriculture industry is
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Table 3.4: Amicus curiae network: parsed industries

1 A Agriculture 12 I EduServices
2 B Mining 13 I SocialServices
3 C Construction 14 I MbspBusiness
4 D Manufacturing 15 I MbspProfessional
5 E Transportation 16 I MbspLabor
6 F WholesaleTrade 17 I MbspCivic
7 G RetailTrade 18 I MbspPolitical
8 H Finance 19 I MbspReligious
9 I GeneralServices 20 I MbspOther
10 I HealthServices 21 I OtherServices
11 I LegalServices 22 J PublicAdmin

very high and the sum of its between-industry densities is low, indicating that agricultural

organizations work very closely with each other while rarely form coalitions with interest

groups in other industries.

We partition interest groups into L classes according to the connecting probabilities. To

determine the number of classes, we perform a GGLM on the latent network with industry

incorporated and select L based on posterior predictive loss (PPL). PPL penalizes the

departure from “fit” and “smoothness”, and is commonly used in Bayesian analysis.

PPLk =
k

k + 1
G+ P, G =

n∑
l=1

(µl − yl,obs), P =

n∑
l=1

σ2
l ,

where µl = E[Yl,rep|y] and σ2
l = Var[Yl,rep|y].

Based on Figure 3.4, we choose L = 6. Similarly, the number of communities K is

chosen to be three. The left panels of Figure 3.5 depict the inferred communities and

groups. The middle panels of Figure 3.5 show estimated degrees against degrees for the

main and latent network, respectively. The right panels of Figure 3.5 demonstrate the

heat maps of the expected adjacency matrix versus the observed adjacency matrix for

the main and latent network, respectively. We observe from the heat maps that there

is a local core-periphery structure besides community structure. Our model successfully

captures the pattern of the network in general while tends to underestimate the strengths

of a few connections. Some other factors are needed to fully explain the strong strengths of
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Table 3.5: Amicus curiae: community & industry

Community 1 Community 2 Community 3

G 6 conservative(economic), agriculture liberal(civil rights) conservative(moral)
G 5 conservative(more general economic), corporate interest liberal(less issue-focused) conservative(moral)
G 4 conservative(media, oil, computer, finance) liberal conservative(moral)
G 3 conservative liberal NA
G 2 conservative mostly liberal NA
G 1 conservative mostly liberal NA

these coalitions, such as the issue area of an brief. Figure 3.6 presents the estimated 95%

credible intervals for industry and community coefficients in the latent and main network.

All industries and communities play an significant role in forming a coalition while only

half is still significant in determining strengths of coalitions.

We are mostly interested in the inferred community labels. Table 3.5 is a list of what

interest groups in the same community and group share in common. Communities appear

to explain political ideologies to some extent. Interest groups with the highest coreness in

the first community are conservative in the economic aspect. All such interest groups are

agricultural organizations seeking anti-regulation from the government. Interest groups in

the third community are mostly medical organizations, which are also conservative but in

the moral aspect. Interest groups with the highest coreness in the second community are

powerful liberal unions related to civil rights.

3.5 Application to Large-Scale Networks

In this section, we evaluate the performance of our proposed MAP estimator on both

simulated benchmark networks and large-scale real-world networks. Similarly as in Sec-

tion 2.6 we compare it to KN, FG, ML, WT and LP through an empirical study in terms

of the NMI. Both benchmark networks and the large-scale real-world networks we use here

involve binary data only, thus we apply the generalized SBM with F = Bern and g = logit.
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3.5.1 Empirical Study

Our empirical study generates networks with ground truth from a popular bench-

mark suite that accounts for heterogeneities in node degree distributions and commu-

nity sizes (Lancichinetti et al., 2008b). The model generating networks considers the

following parameters: assumed to follow power law distributions with exponents 2 and

1, respectively; the network consists of n = (500, 1000) nodes and has average degree

〈k〉 = (10, 15, 25). Mixing parameter µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) captures the propor-

tion of between-community edges. The ratio between n and the maximum degree controls

the size of the communities relative to that of the network. We highlight two commu-

nity structures formed by relatively large communities with ratio = 2, and relatively small

communities with ratio = 10. The parameter “ratio” marks the difference between these

benchmark networks and that in Chapter 2, and is introduced to control the two types of

community structures.

We generate 100 networks for each combination of the parameters mentioned above

and assume that the number of group classes is bn/10c. The NMI of other estimators (KN,

FG, ML, WT, LP) and our proposed MAP estimator is summarized in Figure ??. We

can conclude from the figure that the MAP estimator outperforms the other estimators

on average in terms of the NMI, especially when the network is formed by relatively large

communities. Not surprisingly, all estimators perform worse as the mixing parameter µ

increases (so that the communities are defined in a weaker sense) or the average degree 〈k〉

decreases. Besides, our community detection procedure outperforms Karrer and Newman’s

significantly in computational time as shown in Figure ??. Our MAP estimator is as

computational efficient as FG, ML, WT estimators. While LP estimator beats all other

estimators in terms of running time, it leads to the lowest NMI on average.

It is also worth pointing out that the NMI is less powerful in comparing communities

as K increases, as shown in column “ratio = 10” that the NMI is unusually high (above

0.75). Consider a simple illustration where
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σ: 1 1 2 2 . . . . . . K K

σ̃: 1 2 . . . K 1 2 . . . K.

NMI(σ, σ̃) = 1− log 2/ logK approaches 1 as K increases while the actual labels might be

quite different. Similar loss of power happens to some other measures, such as Binder’s

loss and adjusted Rand Index.

3.5.2 Case Study

Next, we evaluate our estimator for community detection on a collection of large-scale

real-world network datasets with ground-truth communities (Yang and Leskovec, 2012).

We consider three networks: an online social network Youtube, where nodes represent

the users of Youtube, edges indicate the friendship formed by the users and ground-truth

communities are defined by the user-defined interest groups; a co-authorship network DBLP

where nodes represent authors published in a comprehensive list of research papers in

computer science, edges indicate co-authorship in at least one paper and ground-truth

communities are defined by Publication venues; a product co-purchasing network Amazon,

where nodes represent products sold on Amazon website, edges indicate frequently co-

purchase and ground-truth communities are defined by product categories provided by

Amazon. All datasets are publicly available at http://snap.stanford.edu/data/.

An interesting phenomenon we discovered when processing the ground truth commu-

nities is that the difference in community sizes is huge, ranging from two to hundreds of

thousands. A large proportion of the communities are negligible given the existence of the

top largest communities. How to effectively learn the significant portions of networks and

shrink the number of communities is fundamental to community detection on large-scale

networks. First, we order the communities by their sizes |C(i)|, i = 1, . . . ,K and consider

the cumulative size of the largest k communities | ∪i≤k C(i)| (increasing trend) as well as

the sequence {|C(i)|, i = 1, . . . , k} (decreasing trend) for some k ≤ K. We then pick the

number of communities k? that appears after the elbow of the decreasing trend while main-

tains most of the nodes. Figure 3.9 shows an example on the DBLP co-authorship network

http://snap.stanford.edu/data/
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where k? = 1, 000 is a good choice. Then we consider the induced sub-graph generated by

the nodes in the largest k? communities and further shrink the number of communities by

merging communities that are closely connected by conducting a hierarchical clustering.

We regard each connected component in a group as a separate ground-truth community

and provide an analysis on the largest connected component.

For each network, we choose a set of different numbers of popularity and carry out

our proposed MAP estimation procedure. Figure 3.10 visualizes the edge densities within

communities and between communities based on the MAP estimator. It is evident that

the edge densities are greater within communities than between communities. Since KN

estimator used for comparison in Section 3.5.1 is infeasible on real-world large networks

within reasonable amount of time, we only make comparisons with some fast algorithms for

community detection. The top panels in Figures 3.11, 3.12, and 3.13 plot the estimated ηi

(box plots) and the average normalized degrees in logit scale (points) against the popularity

class; it is clear that η is closely related to the degree of nodes. The remaining panels in

Figures 3.11, 3.12, and 3.13 show a comparison among FG, LP, ML, WT estimators, our

MAP estimator and randomly generated labels in terms of NMI. We conclude that our

MAP estimator performs comparably well as FG, LP, ML, WT estimators on real-world

large-scale networks while outperforms the random labels.

3.6 Discussion

The number of communities K is first fixed and then selected under certain model

selection choice in the approach proposed in this chapter. Possible extension of this work

may include a procedure that efficiently models K jointly with other parameters. Other di-

rections for future work, albeit not related to community detection, include proposing more

powerful measures for comparing communities, especially when the number of communities

is large relative to the network.
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Figure 3.3: Diagonal/off-diagonal terms of the heat map represent edge densities
within/between industries. The darker the color, the larger the edge densities. The number
of nodes in each industry is proportional to the area of the corresponding square along the
diagonal. The top bar graph shows the between-industry edge densities. The right-rail bar
graph indicates the average weighted degree of nodes in each industry.
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Figure 3.5: Left: (top) MAP estimate where node colors represent inferred communities;
(bottom) MAP estimate where node colors indicate groups, coloring red to white from
less powerful to powerful. Middle: (top) degree v.s. estimated degree plot; (bottom)
weighted degree v.s. estimated weighted degree plot. Right: (top) estimated weighted
adjacency matrix v.s. weighted adjacency matrix; (bottom) estimated adjacency matrix
v.s. adjacency matrix, where nodes are order by key value pair (community, group).
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Figure 3.6: 95% credible interval of industry and community coefficients in both the main
level and the latent level.
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Figure 3.9: Co-authorship network DBLP with k = 2, 000. Red: the decreasing sequence
{|C(i)|, i = 1, . . . , k}; black: the cumulative size of the largest k communities.
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Figure 3.10: The community-by-community heat maps showing the edge densities within
communities and between communities based on the MAP estimator. The left two plots
correspond to the Youtube network under the smallest and largest L. The right two plots
correspond to the DBLP and Amazon networks under the largest L. Red indicates low
edge densities while white indicates high edge densities.
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Figure 3.11: Online social network Youtube. Top: ηi (box plots) and logit(degreei/(n− 1))
(points) for each popularity class i. Bottom: the NMI of randomly generated labels, MAP
estimates under different number of popularity classes, FG, LP, ML and WT estimates
relative to the ground truth.
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Chapter 4

Ridge-Regularized Covariance Selection

In this chapter, we focus on covariance selection (introduced in Section 1.2), where

networks describing interactions between nodes are unknown and to be inferred rather than

given as data. Our motivation to covariance selection is driven by a dataset in periodontitis

study. Periodontitis is the inflammation of tissues surrounding the teeth, and is caused by

specific bacteria. These bacteria form a latent network, in which an edge indicates that the

two connected bacteria share some common biological functions. Moreover, these bacteria

often explore symbiotic relations, and are thus expected to be found in communities. We

observe the ribonucleosomal expression level of each bacterium as data. Our goal is to

identify the latent network as well as detect the bacteria communities based on the observed

expression levels of each bacterium.

Our main contribution in this project is to jointly estimate concentration matrices and

latent networks while taking community structure into account. To this end, we propose a

Bayesian approach with a hierarchical prior with two levels in Section 4.1:

1. We develop a Bayesian ridge-regularized covariance selection that specifies a spike-

and-slab prior on each off-diagonal entry of the concentration matrix. With this

approach, we are able to obtain a positive-definite estimate of the concentration

matrix and determine the underlying network simultaneously. We relate covariance

selection and variable selection for Gaussian graphical models through an efficient

algorithm in Section 4.2.

2. We offer a Bayesian approach for community detection that explicitly characterizes
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community behavior and a MAP estimator to efficiently conduct inference in Sec-

tion 4.2.

Results from a simulation study comparing our ridge-regularized covariance selection to

other methods are reported in Section 4.3. We show that our proposed method is efficient

and as reliable as other commonly used methods. A real-world meta-genomic dataset of

complex microbial biofilms is used to demonstrate the covariance selection as well as com-

munity detection in Section 4.4. Finally, we offer some concluding remarks and directions

for extension in Section 4.5.

4.1 Model Framework

We develop a hierarchical model to (i) perform covariance selection on a latent network

of associations between individuals and (ii) identify the set of communities to which these

individuals belong. We start by assuming that the data X = (X1, . . . , Xn) for each sample

follows

Xi |µ,C
iid∼ N(µ,C−1), i = 1, . . . , n, (4.1)

where each Xi is p-dimensional. The mean µ can have more structure than a single vector,

as we will see in Section 4.4. We set an non-informative prior on µ, P(µ) ∝ 1.

Equation (4.1) implicitly defines a Gaussian graphical model on a undirected graph

with p nodes and adjacency matrix A. Recall that in a Gaussian graphical model, node i

and node j are conditionally independent (Cij = 0) if and only if there is no edge between

them (Aij = 0). To select which off-diagonal entries in C are zero we adopt a spike-and-slab

prior (George and McCulloch, 1993; Ishwaran and Rao, 2005) with A as indicators:

Cij |Aij
ind∼ N

(
0, ρ2Aij + ρ2ν0(1−Aij)

)
, i, j = 1, . . . , p, i < j, (4.2)

where ρ2 is chosen to be large (the “slab”) while ν0 is small (the “spike”.) For the diagonal
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entries we set

Cii |λ
ind∼ Exp(λ/2), i = 1, . . . , p, (4.3)

for computational convenience. In addition, we settle on a non-informative prior for λ,

P(λ) ∝ 1.

Finally, to model the adjacency matrix A, we adopt a degree-corrected stochastic block-

model which specifies that the probability of an edge between node i and node j depends on

their labels (σi, σj) and their expected degrees, and that σ follows a product multinomial

distribution as in Chapter 2:

Aij |σ, γ, η
ind∼ Bern

(
logit−1(γσiσj + ηi + ηj)

)
, i, j = 1, . . . , p, i < j,

σi
ind∼ MN(1;π), i = 1, . . . , p.

(4.4)

Hyper-parameters γ capture within and between community probabilities of association

(in logit scale) and node intercepts η = (η1, . . . , ηp) capture the expected degrees of the

nodes. A more realistic model is attained by further setting a hyper-prior distribution on

γ and η,

(γ, η) ∼ I(γ ≤ 0) · N
(

0, τ2I
)
, (4.5)

where τ2 controls how informative the prior is. The constraint γ ≤ 0 in this SBM is

essential to community detection since we should expect as many as or fewer edges between

communities than within communities on average, and thus that the log-odds of between

and within probabilities is non-positive. The parameter identifiability of model (4.4) is

described in the Section 3.2. The model is identifiable if each community has at least two

nodes and the number of communities is greater than two.

To summarize, in the likelihood, we adopt a Gaussian graphical model; in the next

level, we select the covariance structure in C−1 with a spike-and-slab prior; and finally, we

capture community behavior in the components of X via a SBM on A.
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4.2 Inference

To develop the MAP estimator for C, A, σ, γ and η, we follow a cyclic gradient descent

approach where each parameter is obtained by optimizing

[C,A |σ, γ, η, µ, λ,X], [σ | γ, η, C,A, µ, λ,X], [γ, η |σ,C,A, µ, λ,X],

[µ |σ,C,A, σ, γ, η, λ,X], [λ |σ,C,A, σ, γ, η, µ,X]

in turn. While we have a step using µ, in general we have µ̂ =
∑n

i=1Xi/n and so we often

consider Xi |C
iid∼ N(0, C−1) by pre-centering X. Similarly, the MAP estimator for λ is

straightforward: λ̂ = 2/
∑p

i=1Cii.

Now, we want to find a concentration matrix C and latent network A that maximize

logP(C,A|σ, γ, η,X), or equivalently,

logP(C,A,X|σ, γ, η) =
n

2
log |C| − 1

2

n∑
i=1

(Xi − µ)>C(Xi − µ)

− 1

2ρ2

∑
1≤i<j≤p

C2
ij

Aij + ν0(1−Aij)
− λ

2

p∑
i=1

Cii +
∑

1≤i<j≤p
Aij(γσiσj + ηi + ηj). (4.6)

Note that the prior on C, A and β can be seen as a ridge regularization in the following

optimization aiming to obtain a symmetric positive definite matrix C,

max
C�0

n

2
log |C| − 1

2

n∑
i=1

(Xi − µ)>C(Xi − µ) (4.7)

To find the conditional MAP estimator for C and A, we focus on each of their rows

(or columns) at a time. For the i-th row and column, we consider the log-likelihood as a

function of Ci,·, that is,

logP(Ci,·, X,A) =
n

2
log |Cii − Ci,−iC−1

−i,−iC−i,i| −
1

2
(SiiCii + 2Si,−iC−i,i)

− 1

2ρ2

∑
j 6=i

C2
ij

Aij + ν0(1−Aij)
− λ

2
Cii,
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up to terms that do not involve Ci,·. Here S =
∑n

i=1(Xi − µ̂)(Xi − µ̂)> is a sufficient

statistic. Then, if Vi = Diagj 6=i

{
1/[ρ2Aij + ρ2ν0(1−Aij)]

}
, Ci,−i is the i-th row with i-th

column removed and C−1
−i,−i is the sub-matrix of C−1 with i-th row and column removed,

the ridge-regularized estimator for Ci,· is given by

Ĉi,−i = −
[
(Sii + λ)C−1

−i,−i + Vi
]−1

Si,−i,

Ĉi,i =
n

Sii + λ
+ Ĉi,−iC

−1
−i,−iĈ

>
i,−i.

(4.8)

We note that C is kept positive definite along the whole procedure. Since C � 0,

C−i,−i � 0 for any i; after the update Ci,·, C is still positive definite since

Cii − Ci,−iC−1
−i,−iC−i,i =

n

Sii + λ
> 0,

as noted in Yuan (2008). We can obtain the estimate by solving (4.8) for each row and

iterating until convergence. Thus, if the initial value of the concentration matrix is sym-

metric and positive definite, then the estimate based on (4.8) is also symmetric and positive

definite throughout the iterative procedure.

This series of updates is conditional onA, as seen in Equation (4.6). However, we further

propose an approach where the adjacency matrix is estimated along with the concentration

matrix in the covariance selection procedure, that is, we update C and A jointly. Moreover,

to avoid the risk of getting stuck if we update the whole row Ai,· each time, we propose

to update at most one entry in A at each iteration. That is, we move to A
(t+1)
i,· where

the candidate move set for Ai· is {Ai,· : H(Ai,·, A
(t)
i,· ) ≤ 1} and H(·, ·) is the Hamming

distance. In practice, we adopt the SWEEP operator (Goodnight, 1979) and Cholesky

up/down-dates to make the iterative algorithm more efficient.

W =

 Cii − Ci,−iC−1
−i,−iC−i,i −Ci,−iW−i,−i

W−i,−iC−i,i C−1
−i,−i

 SWEEP ith row←−−−−−−−−−−→SWEEP ith row⇐⇒ C−1
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where W11 remains constant in the i-th iteration according to (4.2).

Once we are given the adjacency matrix A representing relationships between “actors”

i and j in a network, we adopt a Bayesian degree-corrected SBM given in (4.4) to detect

the community structure in the network, that is, to find a conditional MAP estimator for

[σ|γ, η, C,A,X] and [γ, η|σ,C,A,X]. First, we take σi to be the mode of σi|σ[−i], β, A.

Next, a regularized IRLS is carried out. To guarantee that the community constraints

γ ≤ 0 are met, we use an active-set method (Nocedal and Wright, 2006). More details can

be found in Chapter 2.

To summarize, the Bayesian ridge-regularized graph estimate is obtained by iterating

until convergence the steps in Algorithm 1.

Algorithm 1 Bayesian ridge-regularized covariance selection

Set initial C, A; obtain initial λ, σ, η and γ based on C, A.
repeat

for i = 1, . . . , p do
Set lhoodmax = −∞, W = SWEEP(C−1, i)
for j 6= i do{

Aij = 0 =⇒ Ĉ
(0)
i,· ; compute lhood0

Aij = 1 =⇒ Ĉ
(1)
i,· ; compute lhood1

}
, lhood = maxk∈{0,1} lhoodk

if lhood > lhoodmax
lhoodmax = lhood, j? = j, k? = arg maxk∈{0,1} lhoodk, Ĉi,· = Ĉ

(k?)
i,·

end if
end for
Update Aij? = Aj?i ← k?

Update W−i,i ←W−i,−iĈ−i,i, Wi,−i ← −W>−i,i,Wi,i = n
Sii+λ

Update C−1 ← SWEEP(W, i)
end for
Update λ
Update σ, η and γ from the community detection procedure in Section 4.2

until the change in the log-likelihood is within certain tolerance

4.3 Experimental Results

In this section, we evaluate the performance of our proposed Bayesian ridge-regularized

estimator in identifying latent networks. For comparison, we also estimate the concentra-
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tion using sample estimates and a lasso-regularized estimator (Yuan, 2008). There has not

been a method that jointly estimate the concentration matrices and detect the community

structure in literature. The graph lasso estimator is the most similar approach as ours,

but it fails to take the community structure into account when estimating the adjacency

matrix. Hence, the following comparison among methods are made in terms of recovering

concentration matrices. We expect that accounting for community structure when inferring

adjacency matrices and concentration matrices yields more reliable estimation.

Our simulation study generates networks from a popular benchmark suite due to For-

tunato Lancichinetti et al. (2008b) that accounts for heterogeneities in node degree distri-

butions and community sizes. The model used in the simulation considers the following

parameters: both degree distribution and the community sizes are assumed to follow power

law distributions with exponents a = 2 and b = 1, respectively; each network consists of

p = 50 nodes and has average degree 〈k〉 = 10. Mixing parameter µ captures the pro-

portion of between-community edges. We highlight two community behaviors: gregarious,

with µ = 0.1 , or non-assortative, with µ = 0.4.

We further generate concentration matrices based on the networks as ground truth

according to Equation (4.2) with fixed ρ2 = 100 and ν0 = 10−6 for simplicity. The value

ρ2 = 100 is large enough to distinguish the differences in the concentration matrix when

edges in the latent network are present or absent. The data X = {X1, . . . , Xn} for n =

(10, 25, 50, 100, 200) is generated as in Equation (4.1). We estimate concentration matrices

based on X by sample concentration, our approach with A known as well as unknown

(latent), and Lasso estimates with different tuning parameters ranging from 0.001 to 10.

The comparison in terms of the log relative Frobenius norm of estimated concentration

matrices, log
(
‖Ĉ − C‖F /‖C‖F

)
, is shown in Fig. 4.1. Our proposed approach outperforms

the sample and Lasso estimates in terms of the log relative Frobenius norm. In addition,

the error we made in estimating latent networks is mainly due to false negatives (failing to

detect an edge when there is one), especially when we have fewer observations.
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Figure 4.1: (Top) The log relative Frobenius norm of estimated concentration matrices
under different approaches. The sample estimates when n < p have relatively large norms
are not shown to maintain a short scale. (Bottom) The false positive and negative rates of
estimated adjacency matrices under our proposed model.
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4.4 Case Study

In this case study, we take a dataset that measures 16S ribonucleosomal expression

levels using the Human Oral Microbe Identification Microarray (HOMIM) for 276 bacteria

and contrasts 90 sites in healthy individuals to 514 sites in patients with varying degrees of

periodontitis (Duran-Pinedo et al., 2011). We assume, as before, that individual samples

are independent, but now we exploit a decomposable mean model where the mean response

for bacteria i and sample j is given by:

µijc = θic + φj , i = 1, . . . , p, j = 1, . . . , n, (4.9)

where c is the condition, either healthy or diseased. Parameters θic capture the expression

effect of each bacteria per condition, while parameters φj represent the baseline expression

level per sample and are considered nuisance.

After running our proposed procedure for K = 2, . . . , 10 communities, we select K = 3

based on BIC. The two first panels in Figure 4.2 depict the inferred networks and com-

munities. As can be seen, the “diseased” bacterial community is more connected and has

a stronger community effect. To compare the joint effect of expression via θ and connec-

tivity, we compute alpha-centralities (Bonacich and Lloyd, 2001) using θ̂·c as weights. The

rightmost panel in Figure 4.2 contrasts alpha-centrality between the two conditions; for

comparison, we mark bacterial species according to Socransky et al. (1998) complexes. In-

terestingly, bacteria from the red complexes—usually associated to the most severe forms of

periodontitis—tend to have higher alpha-centralities in the diseased sample group relative

to the healthy group.

4.5 Discussion

In this chapter, we developed a Bayesian ridge-regularized covariance selection model

that incorporates community behavior through a latent network. This class of models has
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Figure 4.2: Inferred networks for healthy (left) and diseased (right) samples. Colors mark
inferred communities. In the right, alpha-centrality with α = 0.5 with θ estimates as
exterior weights; colors mark Socransky complex classification Socransky et al. (1998).

many practical applications in social sciences and systems biology. Good results based

on our simulation study indicate that the proposed approach is a serious contender for

covariance selection when compared to Lasso-based estimators. Moreover, as the case study

shows, our estimator reliably captures biological assortativity in bacterial communities,

and is able to classify bacteria with respect to their different responses in expression and

connectivity under two scenarios. Moreover, since most of the bacteria in dental biofilms

are not cultivable, the proposed model gives insight into which partnerships are needed

for these bacteria under different conditions. Possible extensions of this work may include

developing dynamic models to fit time series data.
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Chapter 5

Conclusions

In Chapter 2, I have proposed a Bayesian model based on degree-corrected SBMs that

is tailored for community detection. More specifically, our model is flexible due to its hi-

erarchical structure and aims to capture the notion of gregarious community behavior by

requiring, through prior specification, that the probability of within-community associa-

tions to be no smaller than the probability of between-community associations. Moreover, I

argue that the model is a better representative of assortatively mixing networks with binary

data coding the associations instead of frequency counts, since I model binary observations

using a suitable logistic regression with parameters for within and between-community

probabilities of association. I devise a Gibbs sampler to obtain posterior samples and

exploit a latent variable formulation to yield closed-form conditionals.

I formally address label identifiability by restricting label configurations to a canonical

reference subspace, and propose a remap procedure to implement this constraint in prac-

tice. As a consequence, labels are interpretable and we are able to estimate any function of

the labels as opposed to previous approaches that were restricted to permutation-invariant

functions. In particular, I propose a novel remapped centroid estimator to infer commu-

nity assignments. I contend that while the model can arguably represent the data well,

the posterior space can be complex and a bad estimator can spoil the analysis; it is then

imperative to adopt an estimator that arises from a principled and refined loss function

and thus better summarizes the posterior space. Our proposed remapped centroid esti-

mator is more similar to a posterior mean. Hence, it tends to situate itself in regions of

high concentration of posterior mass in the meanwhile of considering the whole posterior
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distribution in the space of remapped label assignments. From a practical point of view, I

show that the proposed estimator performs as well as the Binder, KN, MAP, FG, ML, LP

and WT estimators when the community structure is strong while performs better than

other estimators mentioned when the community structure is defined in a weaker sense.

In Chapter 3, I extend the basic SBM to incorporate parameters for group attributes

and generalize the formulation to account for more node and edge attributes. The model

aims to capture the gregarious community behavior by requiring that the probability of

within-community associations to be no smaller than that of between-community associa-

tions. What’s more, I take the degree heterogeneity into consideration and make a group

correction that reflects degree assortativity. The method has connection to some of the

existing methods, but is expected to be more efficient and suitable for large-scale networks.

I develop a graph generalized linear model (GGLM) procedure tailored for graphs to make

the inference more computational efficient. GGLM implicitly computes sufficient statistics

rather than generating responses and design matrices. I have presented an application to

an amicus curiae network of count data. I have demonstrated the proposed MAP estima-

tor on simulated benchmark networks as well as real-world networks with ground truth

communities and shown that the MAP estimator outperforms KN, FG, ML, WT and WT

estimators in terms of NMI on average.

In Chapter 4, I focus on the problem where networks are considered as latent and to

be inferred. I relate identifying latent networks to estimating concentration matrices, and

thus focus on covariance selection. To this end, a Bayesian approach that jointly estimate

concentration matrices and identifying networks has been presented. I develop a Bayesian

approach with a hierarchical prior with two levels: (i) a ridge-regularized covariance selec-

tion that specifies a spike-and-slab prior; (ii) a MAP estimator that explicitly characterizes

community behavior. I compare our ridge-regularized covariance selection to other com-

monly used methods on simulated benchmark networks and have shown that including

block structures when estimating concentration/adjacency matrices improves the inference

results. Moreover, I have demonstrated the approach on a real-world meta-genomic dataset
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of complex microbial biofilms. The proposed estimator reliably captures biological assor-

tativity in bacterial communities, and is able to classify bacteria with respect to their

different responses in expression and connectivity under healthy and diseased scenarios.
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Chapter 6

Appendix

6.0.1 Proof of Theorem 1

For the proof we first note that we can split each row xij in the design matrix of (2.2)

according to γ and η entries, xij
.
= [bij cij ], where

bij,kl = I[min(σi, σj) = k,max(σi, σj) = l], k, l = 1, . . . ,K, k ≤ l,

cij,v = I(i = v) + I(j = v), v = 1, . . . , n,

(6.1)

that is, bij identifies the pair of communities at the endpoints of (i, j) for γ and cij marks

each node-correction from η.

Proof of (a). Let us pick an arbitrary community k and a pair (i, j). There are then three

ways to classify (i, j): (i) it is outside of community k; (ii) one of its endpoints is in

community k; or (iii) it is inside community k. If we now define dij,k =
∑

v:σv=k cij,v then

(i, j) is classified exactly according to dij,k: dij,k = 0, 1, or 2 if (i, j) is in cases (i), (ii), or

(iii), respectively. Thus, it follows that

2bij,kk +
∑
l 6=k

bij,kl =
∑

v:σv=k

cij,v,

for each k = 1, . . . ,K, and so X has K constraints in its columns.

Proof of (b). Note that X is full column-ranked if and only if X>X is invertible, so

we just need to show that X>X is invertible if Nk ≥ 2 for k = 1, . . . ,K. Let B =
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[bij,12, . . . , bij,K−1K ]i<j and C = [cij,1, . . . , cij,n]i<j . Then X = [B,C] and

X>X =

 B>B B>C

C>B C>C

 .
Thus, X>X is invertible if and only if both B>B and the Schur complement of C>C,

∆
.
= C>[I −B(B>B)−1B>]C are invertible. First,

B>B = Diag

(∑
i<j

I[σi = k, σj = l or σi = l, σj = k]

)
= Diag(NkNl),

and so, for this diagonal matrix to be invertible we need Nk 6= 0 for k = 1, . . . ,K.

As for the Schur complement ∆, we have that

∆ii = n− 1−
∑
k 6=i

∑
l 6=i I[σi 6= σk = σl]

NσiNσk

,

and, for i < j,

∆ij = 1−
∑
k 6=i

∑
l 6=j I[σi = σj 6= σk = σl or σi = σl 6= σk = σj ]

NσiNσk

.

But if σi 6= σj ,

∆ij = 1−
∑
k 6=i

∑
l 6=j I[σi = σl 6= σk = σj ]

NσiNσk

= 0,

and otherwise, if σi = σj ,

∆ij = 1−
∑
k 6=i

∑
l 6=i I[σi 6= σk = σl]

NσiNσk

, (6.2)

and so ∆ii −∆ij = n− 2. Thus, after some row and column operations, ∆ can be written
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as a block diagonal matrix where each block of size Nk has the form:



p q . . . q

q p . . . q

...
. . .

...

q q . . . p


with q = ∆ij in (6.2) and p = n− 2 + q. The determinant of the block diagonal matrix is

nonzero if and only if n 6= 2 and Nk 6= 1. Moreover, the determinant of X>X is the same

as that of the block diagonal matrix since one can be obtained from the other through row

and column operations. Thus, the conditions Nk 6= 0 from B>B and now Nk 6= 1 can be

summarized into Nk ≥ 2.

6.0.2 Remap Algorithm

Algorithm 2 lists a routine that finds the canonical map ρ based on the canonical order

in σ as in Equation (2.6) and remaps σ in-place.

Algorithm 2 Remapping labels in σ to ρ(σ).

assigned ← {}
ρ← {}
n← 0 {number of different labels in σ}
for i = 1, . . . , |σ| do {obtain ρ

.
= ord(σ)−1}

if not assigned(σ(i)) then {first appearance?}
assigned(σ(i))← true {mark σ(i)}
n← n+ 1
ρ(σ(i))← n

end if
end for
for i = 1, . . . , |σ| do {remap σ}
σ(i)← ρ(σ(i))

end for
return σ
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6.0.3 Proof of Theorem 2

Proof. It is sufficient to find the pre-map estimator

σ̂∗
.
= arg min

σ̃∈{1,...,K}n
Eσ |A

[
H(σ̃, ρ(σ))

]
since, by definition, σ̂C = ρ(σ̂∗).

Denoting Σ = {1, . . . ,K}n and Σ∗ = Σ / ord, we have that

Eσ |A
[
H(σ̃, ρ(σ))

]
=
∑
σ∈Σ

H(σ̃, ρ(σ))P(σ |A)

=
∑
σ∈Σ∗

∑
σ∗:ρ(σ∗)=σ

H(σ̃, σ)P(σ∗ |A).

Since P(σ∗ |A) = P(σ |A) follows from the lack of identifiability we further obtain

Eσ |A
[
H(σ̃, ρ(σ))

]
=
∑
σ∈Σ∗

n(σ)H(σ̃, σ)P(σ |A),

where n(σ) = |{σ∗ : ρ(σ∗) = σ}| = K!/(K − k(σ))! is the number of assignments that are

identified to σ through ord, and k(σ) is the number of different labels in σ. We can then

define P∗(σ |A)
.
= n(σ)P(σ |A) as the induced measure in the quotient space Σ∗ to thus

have

Eσ |A
[
H(σ̃, ρ(σ))

]
=
∑
σ∈Σ∗

H(σ̃, σ)P∗(σ |A) =
∑
σ∈Σ∗

n∑
i=1

I(σ̃i 6= σi)P∗(σ |A)

= n−
n∑
i=1

∑
σ∈Σ∗

I(σ̃i = σi)P∗(σ |A) = n−
n∑
i=1

P∗(σi = σ̃i |A).

But then

arg min
σ̃∈{1,...,K}n

Eσ |A
[
H(σ̃, ρ(σ))

]
= arg max

σ̃∈{1,...,K}n

n∑
i=1

P∗(σi = σ̃i |A)
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and so

(σ̂∗)i = arg max
k∈{1,...,K}

P∗(σi = k |A),

that is, σ̂∗ is a consensus estimator, as desired.

6.0.4 Proof of Theorem 3

Proof. To compare σ̃ and σ let us define nij
.
=
∑

k,l I(σk = i, σ̃l = j), the number of

nodes that belong to community i in σ and to community j in σ̃. Then, B(σ̃, σ) =∑
i

∑
j<k(nijnik + njinki), H(σ̃, σ) =

∑
i 6=j nij , and n =

∑
i,j nij .

For instance, if K = 2 then H(σ̃, σ) = n12 + n21 and

B(σ̃, σ) = (n11n12 + n21n22) + (n11n21 + n12n22)

= (n12 + n21)(n11 + n22)

= H(σ̃, σ)
(
n−H(σ̃, σ)

)
.

More generally, for K > 2, we have:

nH(σ̃, σ) =
∑
i 6=j

nij
∑
i,j

nij =
∑
i 6=j

nij

(∑
i 6=j

nij +
∑
i

nii

)

=
∑
i 6=j

nij
∑
i 6=j

nij +
∑
i 6=j

nij
∑
i

nii

=
∑
i 6=j

n2
ij︸ ︷︷ ︸

A

+
∑

i 6=j,k 6=l
k 6=i,j 6=l

nijnkl

︸ ︷︷ ︸
B

+2
∑

i 6=j,i6=k
j<k

(nijnik + njinki)

︸ ︷︷ ︸
C

+
∑

i 6=j,i6=k
j 6=k

niinjk

︸ ︷︷ ︸
D

+
∑
i 6=j

(niinij + niinji)︸ ︷︷ ︸
E

.
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Thus, B(σ̃, σ) = C + E and, in particular,

H2(σ̃, σ) =
(∑
i 6=j

nij

)(∑
i 6=j

nij

)
=
∑
i 6=j

n2
ij +

∑
i 6=j,k 6=l
k 6=i,j 6=l

nijnkl + 2
∑

i 6=j,i6=k
j<k

(nijnik + njinki)

= A+B + 2C.

The bound B(σ̃, σ) ≤ H(σ̃, σ)(n−H(σ̃, σ)/2) then follows from

nH(σ̃, σ)−B(σ̃, σ)− 1

2
H2(σ̃, σ) =

1

2
A+

1

2
B +D ≥ 0

since A,B and D are all non-negative.

6.0.5 Proof of Theorem 4

Proof. The proof of Theorem 4 is similar to that of Theorem 1. We first consider the case

where each node forms a group. We can generalize the identifiability conditions found

for this group partition with finest resolution to any group partitions, since any non-

overlapping group partition is a linear combination of that with finest resolution. We split

each row xij in the design matrix of (3.3) according to γ and η entries, xij
.
= [bij cij ],

where

bij,k = I(σi = σj = k) k = 1, . . . ,K,

cij,v = I(i = v) + I(j = v), v = 1, . . . , n,

(6.3)

that is, bij identifies the pair of nodes in the same community for γ and cij marks each

group-correction (also node-correction since we are using the finest partition) from η.

Note that X is full column-ranked if and only if X>X is invertible, so we just need to

show thatX>X is invertible if the conditions in Theorem 4 hold. LetB = [bij,1, . . . , bij,K ]i<j
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and C = [cij,1, . . . , cij,n]i<j . Then X = [B,C] and

X>X =

 B>B B>C

C>B C>C

 .
Thus, X>X is invertible if and only if both B>B and the Schur complement of C>C,

∆
.
= C>[I −B(B>B)−1B>]C are invertible. First,

B>B = Diag

(∑
i<j

I(σi = σj = k)

)
= Diag

((
Nk

2

))
,

and so, for this diagonal matrix to be invertible we need Nk ≥ 2 for k = 1, . . . ,K.

Next, We consider the Schur complement ∆
.
= C>[I − B(B>B)−1B>]C. After rows

and columns operations, the Schur complement ∆ can be written in the form

∆ =



A1 1 . . . 1

1 A2 . . . 1

...
. . .

...

1 . . . 1 AK


where

Ak =



p q . . . q

q p . . . q

...
. . .

...

q q . . . p


Nk

, q =
2

Nk
− 1, p− q = n− 2. (6.4)

We consider the determinant of one block

|D| =

∣∣∣∣∣∣ A1 1

1 A2

∣∣∣∣∣∣ = |A1| · |A2 − 1A−1
1 1>|

Simple linear algebra shows that matrix A2 − 1A−1
1 1> is in the form of (6.4) with some p



81

and q satisfying p− q = n− 2. In other words, D shares the same formulation as A1, with

which we can compute the determinant of matrix including the next block

∣∣∣∣∣∣ D 1

1 A3

∣∣∣∣∣∣ = |D| · |A3 − 1D−11>|.

Hence, the determinant of ∆ can be computed consecutively using this property. And

|∆| 6= 0 if and only if the first such block matrix D is invertible, which requires N1+N2 6= n.

In other words, K > 2.

Note that when K = 2, model (3.1) is not identifiable if each node is partitioned into

a group by itself. However, the model is identifiable under other group partitions, as long

as none of partitioned groups is completely covered in a community. The node correction

is a special case when each group (node) is completely contained in the community of that

node.

6.0.6 Derivation of P(σi = k |σ[−i], β, A)

P(σi = k |σ[−i], β, A) =
P(A |σi, σ[−i], β)P(σi)P(σ[−i])P(β)∑
σ̃i
P(A | σ̃i, σ[−i], β)P(σ̃i)P(σ[−i])P(β)

=

∏
i 6=j P(Aij |σi, σj , β)P(σi)∑

σ̃i

∏
i 6=j P(A | σ̃i, σj , β)P(σ̃i)

∝
∏
i 6=j

P(Aij |σi, σj , β)P(σi)

= πk
∏
j 6=i

exp{Aijx>ijβ}
1 + exp{x>ijβ}
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