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Abstract
Segal’s chronometry is based on a space–time D, which might be viewed as a Lie group with a
causal structure defined by an invariant Lorentzian form on the Lie algebra u(2). There are
exactly two more non-commutative four-dimensional Lie algebras that admit such a form.
They determine space–times L and F. The world F is based on the Lie algebra u(1,1), in terms
of which the pseudo-Hermitian realization of the Minkowski space–time is introduced and
studied. The world L is based on the oscillator Lie algebra. The main idea of the DLF
approach to modeling particles and interactions is that there are three Hamiltonians (the
‘Russian Troika’) to drive the evolution of a physical system.

PACS number: 12.90.+b

1. Introduction

This paper is dedicated to the DLF approach, which is
based on Segal’s chronometric theory. The latter theory
(see surveys [Le-93, Le-95]) has been presented in dozens
of articles (see [JFA-02] for the complete list of Segal’s
publications).

It is hardly possible to concisely state the DLF picture
before introducing substantial mathematical background. In
terms of physics-related topics, a summary of the findings and
suggestions is presented in the last section.

Let M denote the Minkowski space–time (in its
Hermitian realization, see section 5, where the Caley map
formula is given). Let D stand for the unitary group U(2).
The image of M under the Caley map (refer to [Se-76, p. 68]
or [Le-95], as well as to section 7, for more details) is a dense
open subset in D.

Let us view M as a vector group. It is commutative: each
left translation is the respective right translation, too. The
family {Cy} of subsets in M forms a bi-invariant cone field;
Cy = y + C , where C is a light cone at the origin of M. Due to
the Caley map, there is the respective cone field on D, too.

On the universal cover D∼ of D, one can introduce future
sets in a canonical way. These sets are determined by the
above cone field and by the choice of orientation in time; they
form the causal structure on D∼.

Let G denote the conformal group SU(2,2). Recall the
well-known linear-fractional G-action on D,

g(z) = (Az + B)(Cz + D)−1, (1.1)

where an element g is determined by 2 × 2 blocks A, B, C and
D. This action is canonically lifted to the G∼-action on D∼

(the latter action preserves the causal structure). Proofs of the
above statements can be found in [Se-76, PaSe-82a].

Theorem 1 ([Al-76, Se-76]). If a bijection f of D∼ preserves
its causal structure, then f is an element of the transformation
group G∼, determined by the action (1.1).

It is known ([PaSe-82a, PaSe-82b]) that to model
particles on D∼, one can start with the world D, a
compact one. The respective property is called an ‘automatic
periodicity’.

Recall that the universal cover P∼ is a two-cover of
the Poincaré group P (by which we here understand the
respective 11-dimensional (11D) group that includes scaling).
The formula for the Caley map CD from M to D will be given
in section 5. The image of this map is an open dense subset of
U(2). The group P∼ acts on D = U (2), too.

Theorem 2 ([PaSe-82a]). The isotropy subgroup of an event
x from D is isomorphic to P∼. P∼-action on D, P∼-action on
M and the Caley map determine a commutative diagram.

Remark. The Caley map is designated by CD in order to
allow a change in CF when the world F is taken instead
of D. The map CF is defined in section 6, where the
pseudo-Hermitian realization of the Minkowski world will be
introduced.
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2. Lie algebras d, f and l

Recall that invariance of a symmetric form on a Lie algebra
n means skew-adjointness (relative to this form) of all ‘ad x ’
operators. Such an operator maps y from n into [x, y]; here [,]
is a Lie bracket on n.

The following statement holds (see [Mi-76]):

Theorem 3. A metric on a connected Lie group N is
bi-invariant iff the respective form on its Lie algebra n is
invariant.

Remark 1. It is well known that a non-degenerate invariant
form in a simple Lie algebra has to be proportional to the
Cartan–Killing form.

Theorem 4 ([Le-85, GuLe-84]). There are exactly three
4D non-commutative Lie algebras that admit invariant
non-degenerate form of Lorentzian signature, namely
d = u(2), f = u(1, 1) , l = osc.

Remark 2. The first two cases are of no surprise since
there are no other non-commutative reductive Lie algebras in
dimension 4. The third one is a solvable Lie algebra that can
be defined by the following commutation table: [l2, l3] = l1,
[l2, l4] = l3, [l4, l3] = l2.

3. Conformally covariant wave operators

Quantum-mechanical states can be viewed as sections of
(certain) vector bundles over D∼; these are the so-called
‘induced bundles’, since they are determined by G∼-
representations induced from finite-dimensional Poincaré
group representations. For a scalar particle, the fiber is
complex, 1D, etc (see section 7 for more details).

In Segal’s chronometry the entire list of known particles
is mathematically derived. One chronometric particle (‘exon’)
has not been detected, yet (more details can be found
in [Se-91] or in the survey [Le-95]). It has been conjectured
in [Le-10a] that Segal’s exon is just the proton.

In chronometry, the ‘architecture’ of the scalar
bundle is determined by a certain conformally covariant
second-order differential operator (the so-called ‘curved wave
operator’, compared to the standard ‘flat wave operator’),
see [PaSe-82a].

The scalar bundle (together with known P∼

finite-dimensional representations) determines higher
spin bundles (see [PaSeVo-87, Se-98, SeVoZh-98]).

The following result is useful for describing the curved
wave operator explicitly. Proofs of stronger versions of this
statement can be found in [Ør-81].

Theorem 5. In a 4D conformally flat Lorentzian manifold
of constant scalar curvature S, if T is the Laplace–Beltrami
operator, then T + S/6 is conformally covariant.

We will use (see [PaSe-82a]) a certain basis {Li j}
(with Li j = −L j i ) in su(2,2). Here is the commutation
table:

[Lim, Lmk] = −emLik,

(e−1, e0, e1, e2, e3, e4) stands for (1, 1, −1, −1, −1, −1).

Remark 3.2. Consider a Lie group N corresponding to one
of the Lie algebras in question. There is a bi-invariant
metric of Lorentzian signature on N. In terms of a certain basis
of left-invariant (or right-invariant) vector fields on N, the
Laplace–Beltrami operator is the quadratic Casimir operator
(see sections 3.1–3.3 below).

3.1. The world D

Here are a few more chronometric settings. The G-action
results in vector fields L i j (non-boldface) on D. Their
commutators all have the minus sign as compared to the above
commutators of (abstract) generators Li j .

Vector fields

X0 = L−10, X1 = L14 − L23, X2 = L24 − L31,

X3 = L34−L12

form a left-invariant orthonormal basis on D = U (2). Let us
keep the same symbols to denote respective vector fields on
D∼. Globally, D∼ is R1

× S3, where S3 is represented by the
group SU(2). In a cosmological model based on D∼, there
is a conformal invariant R, interpreted as the radius of a 3D
(spherical) space. Segal has put it for the (long wanted by
Dirac and others) third fundamental constant—additionally
to the speed of light and to the Planck’s constant. If (for
mathematical convenience) one takes R = 1, then the scalar
curvature is 6. Bear in mind that curvature calculations are
simplified significantly due to the bi-invariance of the metric
(see [Mi-76] and section 8). The conformally covariant wave
operator is

X2
0−X2

1−X2
2−X2

3 + 1,

as shown in [PaSe-82a].

Remark 3.1.1. In the general relativity theory (GRT), D∼

is known under the name of Einstein’s static universe (see
[Kr-80, p 122]). The respective solution (of the GRT Einstein
equations) is interpreted as an ideal fluid. If we do not assume
R = 1, then the scalar curvature is 6/(R2). Energy density
and pressure both equal 1/(R2). Energy conditions hold. See
section 7 for proofs.

3.2. The world F

F∼ is R4, topologically. It is the universal cover of the Lie
group U(1,1); the latter group is introduced more formally
in section 6 . A relatively compact group F (being a 4D
orbit in D) is determined by an orthonormal basis of vector
fields H0, H1, H2 and H3 on U(2). Here H0 = L−10 − L12,
H1 = −L−12−L01, H2 = L02 − L−11, H3 = L34. These fields

2



Phys. Scr. 83 (2011) 015101 A V Levichev

generate a u(1,1)-subalgebra of su(2,2). The scalar curvature
is now negative 6; hence

(H0)
2
−(H1)

2
−(H2)

2
−(H3)

2
−1

is another conformally covariant wave operator.

Remark 3.2.1. For more details, see sections 5 and 6.

Remark 3.2.2. Treated as the solution of Einstein equations,
it is interpreted as a tachionic fluid [Kr-80, p 57]. In the
expression for the corresponding bi-invariant metric, there is
a parameter a related to a choice of an invariant form on the
simple su(1,1)-subalgebra of u(1,1). If not to choose a = 1,
then the scalar curvature is the negative of 6/a2. Energy
density and pressure equal −1/(a2). The parameter a is a
conformal invariant. Energy conditions do not hold, which is
why the world F plays a special role in what is called the DLF
approach (see section 7).

3.3. The world L

Topologically, L∼ is R4. Its relatively compact form L (being
a 4D orbit in D) is determined by a basis of vector fields l1, l2,
l3, l4 on U(2), where

l1 = −(L−10 + L04 + L−11 + L14),

l2 = (1/2)(L−12 + L24 + 2L30 + 2L31),

l3 = (1/2)(L−13 + L34 + 2L02 + 2L12),

l4 = (1/8)(−5L−10−3L−11 + 3L04 + 5L14 + 4L23).

One can prove that they generate an oscillator Lie algebra
(its commutation table has been given in section 2).
The expression for the invariant form (which determines
the bi-invariant metric) follows from the formula for the
respective wave operator (see below).

The scalar curvature is 0 (as shown in [Le-86b] where this
world L∼ has been studied separately; the three worlds have
been studied together in [Le-86a]).

The expression for the conformally covariant wave
operator is 2l1l4 − (l2)

2
− (l3)

2.In terms of GRT, we now
have an isotropic electromagnetic field determined by a
covariantly constant lightlike vector (see [Le-86b, p 123]).
Energy conditions hold.

In [NaWi-93], a conformal field theory model is based
on L. The model is an ungauged Wess–Zumino–Witten
model. In [CaJa-92, CaJa-93], the oscillator Lie algebra l is
used to formulate string-inspired lineal gravity as a gauge
theory. However, the last two publications have mathematical
errors. Namely, the upper left corner h (see expression (36)
of [CaJa-92] and formula (3.41) of [CaJa-93]) has to be an
identity matrix, rather than a diagonal matrix with 1, −1,
entries. Not surprisingly, the authors cannot believe in one of
their own conclusions (see [CaJa-93, p 249]). In [NaWi-93]
(which refers to [CaJa-92, CaJa-93]), the invariant form

in question is introduced correctly: expression (6) on
p 3751.

The group L has been called the oscillator one
in [Str-67]. Its important property of admitting a
non-degenerate bi-invariant metric was only noted in
the early 1980s: [GuLe-84, Le-85, MeRe-85].

4. The three worlds together

Each of the three is a symmetric space since the covariant
derivative of the curvature tensor vanishes. This is guaranteed
by the bi-invariance of the metric (see [Gr-71, p. 121]). The
same holds for the Minkowski world, which is related to its
vector group. That is why we can speak of four, rather than of
just three worlds.

In [Sv-95] the oscillator Lie algebra has been embedded
as a subalgebra into su(2, 2). However, the following
important condition has not been satisfied: the light cone field
(emerging due to the choice of the world L determined by the
choice of the basis in section 3.3) has to coincide with the
‘D-system’ of light cones introduced in section 1.

The following statement says that such a condition is now
satisfied for both 3.2- and 3.3-orbits.

Theorem 6. The L-, F- and D-light cone systems coincide
(over some open region in U (2) = D).

Proof. At the U(2) neutral element (which is identified, via
the Caley map, with the origin of the Minkowski space–time
M) vector fields H0, H1, H2 and H3 coincide with the
standard basis e0, e1, e2 and e3 in M. The same holds for
vector fields X0, X1, X2 and X3 from section 3.1. At the
same space–time event vector fields l1, l2, l3 and l4 have
values −2(e0 + e1), e2, e3, (1/4) (e1−e0), respectively. It is
thus shown that at that neutral element all four light cones
coincide (to be convinced, check with table 1 of [SeJa-81]).
The linear-fractional action of the entire conformal group G
leaves that cone system invariant. As a result, this system is
the same for the worlds considered since the four generators
for each of the three groups are linear combinations of L i j

with constant coefficients. This holds for the entire orbit
in question, in each of the three cases. Theorem 6 is thus
proven.

Remark 4.1. This open region (from the statement of
Theorem 6) cannot be the entire D = U (2) because of
different global topological structures of U(2), Osc, and
U(1,1). It is proven in [Le-10b] that the largest region with
the above properties is a set obtained from D by deleting a
certain 2D torus.

Remark 4.2. Theorem 6 seems to be of importance in
theoretical physics. Namely, the system of light cones in a
space–time determines its causal structure. Now, the question
is what are the most fundamental space–times? The most
accepted model is the Minkowski world M. However, in
terms of the quantum field theory, M is not the best choice.
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Its isometry group is too large and its physical space is
non-compact. That leads to (different types of) divergences
and it implies the absence of invariant vacuum. Segal’s
chronometric theory is based on D (with physical space
being a dim = 3 sphere). According to the DLF-approach,
the three worlds co-exist as a single entity. Isometry groups
are of dimension 7, whereas the role of M is reduced
to that of a tangent space–time. To model particles and
interactions, there are now three Hamiltonians (the ‘Russian
Troika’ of [Le-05]) to drive evolution of a physical system.
Each of the Hamiltonian vector fields is the center of the
corresponding Lie algebra (when it is considered as the
totality of certain left invariant fields on D, as discussed in
subsections 3.1, 3.2 and 3.3).

5. Pseudo-Hermitian realization of the
Minkowski world M

Let us first recall the well-known Hermitian model for M
(see [PaSe-82a, Le-95]). Each event (or an element of M) is
represented by a 2×2 Hermitian matrix h. All skew-Hermitian
matrices ih form a Lie algebra u(2). A typical element (t, L,
f ) of the simply connected 11D (scaling included) Poincaré
group P∼ maps h into et LhL∗ + f :

h → et LhL∗ + f. (5.1)

In equation (5.1), t is a real number, L is a matrix
from SL(2,C), f is a Hermitian matrix. It is a well-known
action of P∼.

The Caley map CD (which has already been mentioned in
section 1) is defined as follows:

CD(h) = (1 + ih/2)(1 − ih/2)−1. (5.2)

The image of this map is an open dense subset of
U(2). The group P∼ acts on D = U (2), too. The Caley map
intertwines respective actions (see theorem 2). The possibility
of the following pseudo-Hermitian picture seems to have gone
unnoticed in the literature.

Recall the following description: a 2×2 matrix h (with
complex entries allowed) is in u(1,1) iff

h∗s + sh = 0,

where s is a 2×2 matrix diag{1, −1}.

Theorem 7. There is a linear bijection Q of the Lie algebra
u(2) onto u(1,1), and there is such a P∼-action on u(1,1)
that one gets a commutative diagram (in other words, Q
intertwines respective P∼-actions).

Proof. Choose the bijection Q, which maps a Hermitian
matrix

[ a
c

b
d

]
into a pseudo-Hermitian matrix

[ a
−ib

−ic
−d

]
. Q

is a bijection between two real 4D subspaces in C4. If a matrix
L is from SL(2,C), then it maps a pseudo-Hermitian matrix h
into A∗ L̄ B∗h ALT B:

h → A∗ L̄ B∗h ALT B, (5.3)

where L̄ is a complex conjugate of L (not a transpose!),
A = diag{1, i}, B = diag{−i, − 1}, and LT is the transpose of
L. Scaling and parallel translations both act like before, see
the law (5.1). It is a straightforward exercise to verify that the
two actions commute with Q. �

Remark 5.1. One can easily verify that Q is an isometry
between the two pseudo-Euclidean vector spaces. There is
nothing special in this particular choice of the map Q, since
it can be combined with linear causal automorphisms of u(2)
and of u(1,1).

Let us now introduce an analogue of the Caley map, CF ,
from u(1,1) into U(1,1):

CF (h) = [1−(shs)/2][1 + (shs)/2]−1. (5.4)

Similarly to the original Caley map CD , its analogue
CF is globally defined. It follows from (5.4) and from the
definition of u(1,1) that the determinant of [1 + (shs)/2]
cannot be zero. More details of the pseudo-Hermitian picture
are provided in the next section.

6. F-represented SU(2,2)

As part of the DLF approach, consider the following
matrix representation of the Lie group G = SU (2,2). It
is conjugate to the D-representation (the latter has been
originally introduced in Segal’s chronometry; see [PaSe-82a,
Le-95] for a survey). This conjugation is performed by the
following 4×4 matrix W: W is the direct sum of 1 with a
certain 3×3 matrix. The only non-zero entries of the latter
matrix are 1s on the auxiliary diagonal. Clearly, W 2 is the unit
matrix.

The D-represented SU (2,2) = G (call it DG, in brief) was
composed of a certain set of pseudo-unitary matrices. Overall,
DG has been defined with the help of a distinguished diagonal
matrix, diag{1, 1, − 1, − 1}. Under the conjugation by W,
we obtain S = diag{1, − 1, − 1, 1}, which determines another
copy of SU(2,2) (denoted by FG). Clearly, an isomorphism
between DG and FG is carried out (via conjugation in
SL(4,C)) by the matrix W.

The group FG is composed of those matrices g (with unit
determinant), which satisfy

g∗Sg = S (6.1)

Similarly to the D-case, it is convenient to build each g of
2×2 blocks A, B, C and D. The maximal (essentially) compact
subgroup K in D-representation consisted of block-diagonal
matrices g, that is, B = C = 0. There is an analogue of K
in FG, call it H. Formally, H is determined by the same
condition as K was. Recall that the world F has been defined
in subsection 3.2 as the Lie group U(1,1), see below, equipped
with a certain bi-invariant metric.

The above matrix S is the following direct sum of 2×2
matrices:

S = diag{s, −s},

4
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where s = diag{1, − 1}. Define U(1,1) as the totality of all
2×2 matrices satisfying

z∗sz = s. (6.2)

Lemma (It is an analogue of lemma 2.1.4 of [PaSe-82a]).
A matrix g from SL(4,C) belongs to FG if and only if the
following conditions hold:

A∗s A−C∗sC = s, D∗s D−B∗s B = s,

D∗sC−B∗s A = 0. (6.3)

Based on (6.1) straightforward proof is omitted.
Let us now introduce the following FG-action on F :

gz = (Az + B)(Cz + D)−1. (6.4)

Theorem 8. Equation (6.4 defines a (formal) left action on
F = U (1, 1), that is, (g′g)z =g′(gz). If the matrix Cz + D is
non-degenerate, then gz belongs to F.

Proof. The left action law can be verified in a straightforward
manner. Or, one can notice that (6.4) is, formally, the same as
the linear-fractional DG-action on U(2). The latter action is
known to be the left one.

To prove the remaining part of the statement, assume that
gz is defined and show that for w = gz the condition (6.2)
holds. To do so, start with w∗sw = s and then transform it into
an obvious identity. Here are the suggested steps:

(z∗C∗ + D∗)−1(z∗ A∗ + B∗)s(Az + B) = s(Cz + D),

(z∗ A∗s + B∗s)(Az + B) = (z∗C∗ + D∗)(sCz + s D),

z∗ A∗s Az + z∗ A∗s B + B∗s Az + B∗s B

= z∗C∗sCz + z∗C∗s D + D∗sCz + D∗s D.

The last equality is verified by applying equations (6.2)
and (6.3). �

Remark. It is shown (see below) that for an arbitrarily
chosen z from U(1,1), formula (6.4) is well defined in a
certain neighborhood of z, and for elements g from a certain
neighborhood of a neutral element in FG. Such an action is
called a local one.

Let us show that (6.4) is not always defined. Take

z =

[
r b
b r

]
; g is defined by A = D =

[
ch 0
0 ch

]
,

B = C =

[
−sh 0

0 −sh

]
;

where ch = ch(t/2), sh = sh(t/2) are hyperbolic cosine and
sine of a real parameter t, and r is a real number. The matrix
Cz + D is singular if and only if e2t (r–1) = r + 1. When
t 6= 0, r is uniquely determined. The numerical value of b is
determined by (6.2). Namely, r2

= 1 + b b̄, which means that
such a choice is possible.

Theorem 9. Equation (6.4) defines a local FG-action on
F = U (1, 1). The subgroup H acts globally. The orbit of the
neutral element (as well as the orbit of any other element of
F) is the entire U(1,1).

Proof. Obviously, Cz + D = 1, a neutral element of H, when g
is a neutral element of FG. As a result, there is a neighborhood
V of z and a neighborhood R of 1 in FG such that Cv + D is
non-degenerate for all v from V and for all g from R.

For an element g from H, B = C = 0 holds, which
results in

gz = AzD−1. (6.5)

Since det g = (det A) det D = 1, equation (6.5) is well
defined. If in (6.5) we choose g = p diag{A, 1} with
p4

= (det A)−1, A from F, then (6.4) itself reduces to the left
U (1, 1)-action on itself (namely, by left shifts).

Theorem 9 is thus proven. �

7. More on Segal’s chronometry and
the DLF approach

Irving Segal (USA, 1918–1998) was one of the greatest
mathematicians of the 20th century (see [AMS]
and [JFA-02]). After World War II he spent two years
at the Institute for Advanced Study, where he held the first
of the three Guggenheim Fellowships that he was to win.
Other honors included election to the National Academy of
Sciences (USA) in 1973 and the Humboldt Award in 1981.
At the University of Chicago (1948–1960) he had 15 doctoral
students, and at MIT, where he was professor from 1960
onwards, he had 25.

‘The chronometric theory by I. Segal is the crowning
accomplishment of special relativity’ is the title of the survey
article [Le-93]. Let us adjust that claim by discussing briefly
the main aspects of that theory.

Its world D∼ consists of Einstein’s static universe E
as the underlying conformal manifold. E is supplied with a
(standard, general relativistic) metric. A future direction of
time being chosen, this determines future causal cones in
each tangent space of D∼. ‘Future sets’ are defined in D∼

itself [Se-76]. This causal structure gives rise to the symmetry
group G∼, which is the universal covering of the (15D) matrix
group G = SU (2,2). The group G acts (without singularities)
on D = U (2). This action lifts canonically to the G∼-action
on D∼. These and other notions can be found in greater
detail in many of Segal’s articles ([JFA-02] is dedicated to the
memory of I Segal and it lists all his publications) as well as
in [Le-95].

The Minkowski world is conformally embedded into D
via the Caley transform. The radius R of the (physical, 3D)
spherical space in D does not depend on the chosen metric
from this conformal class, that is, from the metric in which
it is calculated. In other words, R is a conformal invariant.
From [Se-82, p. 854]: ‘This radius R (in laboratory units)
provides a natural third fundamental constant, in addition to
h̄ and c, which is required for fundamental physical theory
to complete the program suggested by Minkowski (1908)
of replacing limiting cases (as the Galilean group is of the
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Poincaré group, when c goes to infinity, or classical physics as
h̄ goes to zero) by less degenerate and mathematically more
natural structures.’

Designate by K the 7D Einstein isometry group. It is
a so-called ‘maximal essentially compact’ subgroup of G.
It consists of translations in time and rotations in space.
Designate by P (respectively P0) the 11D (respectively
10D) Poincaré group. The group P acts in M, P0 being a
subgroup. P0 is generated by Euclidean rotations, Lorentz
transformations and parallel translations. To obtain P, one has
to add scaling transformations.

The chronometric energy H is the generator of time in
E. Relative to each point of observation in D, the Minkowski
world M is embedded P-covariantly, and the relativistic
(or Minkowski) energy H0 is the generator of time in M
relative to the Lorentz frame in M, which, at the point of
observation, osculates the frame defined by the space–time
splitting in E. For each unitary positive-energy representation
of G, the corresponding chronometric energy exceeds the
Minkowski energy by an amount that vanishes infinitesimally
but increases with the spatial support of the state in question in
terms of the appropriate quantum mechanical consideration.
The inertial mass of a cosmologically long-lived particle
is represented in accordance with Mach’s principle as
its interaction energy with the cosmic background and is
correspondingly only K-invariant, implying approximate local
P0-invariance of its rest mass.

Additional background on chronometry is given in
Segal’s book [Se-76] and in many other publications
(see [JFA-02, pp. 1–13]). In these articles the physical
particles have been modeled, in accordance with the thrust of
decades of theoretical investigation in this area, by induced
bundles over causally oriented space–times.

Let us now conclude with the justification of the
expression ‘crowning accomplishment of special relativity’.
Firstly, the conformal group G is semisimple in contrast with
the Poincaré group. Hence, G cannot be regarded as resulting
through a contraction process from a non-isomorphic Lie
group of the same dimension. Secondly, it arises as the
maximal local causal group of the special relativistic world M
(see Theorem 1) in which only the 11D Poincaré group P can
be globally (without singularities) realized. When compared
with other theories based on the world M or on a particular
space time of general relativity (GR), chronometry has other
preferable features; let us mention a few:

– the absence of the unique Lorentzian structure (such a
structure arises when a particular ‘metric observer’ is
chosen);

– a better unification of elementary particles (let us
mention a fundamental notion of ‘stability’ here, ‘stable
representations’ describe stable particles);

– the existence of ‘leaking’ ([Se-91, Le-95, sections 6.1
and 6.3]), which gives a kinematic explanation of several
decays;

– its application to extragalactic astronomy ([NiSe-86,
DS-01, Da-05] and many references therein) has shown
that it is capable of precise and detailed predictions
regarding the cosmic redshift and other directly measured
quantities, in spite of its lack of adjustable cosmological
parameters.

As stated above, there are exactly four Lie algebras (from
an infinite list in dimension 4), which admit an invariant
non-degenerate form of Lorentzian signature. Such a form is
known to correspond to a bi-invariant metric on the Lie group
in question (M and D are among them, the remaining two
being L and F).

Chronometry is derived from very general considerations
of causality, stability and symmetry. It is an effective point of
departure for elementary particle physics.

To model particles (in a given world), the Hamiltonian is
fundamental. In the context of this paper, each Hamiltonian is
the image of the central element of the Lie algebra in question.
Now, when we have F- and L-Hamiltonians (in addition to the
D-Hamiltonian), it is quite a new situation in the ‘Particles
and their Interactions’ theory (the ‘Russian Troika’, [Le-05]).
The world remains, however, a single (not many-fold) unity
of events. To specify it as D (or F or L) means to choose a
specific mode of the quantum-mechanical measurement. Here
are the mathematical specifications.

Parallelization (of a vector bundle over space–time,
see [PaSe-82a, Le-95]) is an important part of the
chronometric approach. It is even more important in the DLF
picture. Recall a few quantum-mechanical features, first.

According to quantum mechanics, each object is assigned
its state (or wave function but this latter notion we better
reserve for a more specialized situation, namely after a
parallelization has been applied). An elementary particle
(it ‘lives’ in a certain world W of events) is described by
the totality of its possible states. The latter set is a certain
subspace of the section space (sections can later be specified
as smooth, or square integrable, etc—this is not the main
concern here) of a certain vector bundle over W. At this
point, states are not yet number-valued (for a scalar particle)
or vector-valued with numerical components (for particles of
non-zero spin). One way or the other, we then need to convert
to parallelized sections (to wave functions, in other words).

The respective Hilbert space can then be determined.
It has become an acknowledged way of modern theoretical
physics to describe elementary particles and their interactions
in terms of induced representations of the (respective)
symmetry group. As it is stated in [Se-82], ‘the main
philosophical point of these developments is perhaps
the importance of induced representations, not purely as
representations, but as actions on the homogeneous vector
bundles that naturally emerge from the induction process. This
additional structure provides a spatio-temporal labelling of the
vectors in the group representation space that is absolutely
essential for the formation of local nonlinear interactions, and
relatedly, for causality considerations.’

Conventional quantum mechanics uses representations
of the Poincaré group, which are induced from its Lorentz
subgroup as in Wigner’s seminal work [Wi-39]. The
underlying space–time is the Minkowski world M (the one
of special relativity). There was no formal parallelization
involved since it was unthinkable of a better group than
M’s vector group (flat parallelization, or M-parallelization,
according to the current chronometric terminology). Almost
always in the literature, physicists merely start with sections
having values in a fixed spin space.

In general, the parallelization procedure is essentially
defined by parallelizing (4D but not necessarily commutative)
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subgroup N of the symmetry group G (see [Le-01, Le-03a,
Le-04], where some of original chronometric parallelizations
of [PaSe-82a] have been discussed from a more geometric
viewpoint). Typically, N is a finite cover of the original
space–time W. In Segal’s (with co-authors) publications the
mostly used parallelizations were the M- and the D-ones.
It is now suggested to deal with two more important
parallelizations (based on L and F).

It seems plausible that space–times D, L and F can be
used as ‘main building blocks’ to mathematically develop an
effective theory of gravity (see, for example, [Vo-03]). The
latter theory was initiated by [Sa-67]. Its development and
application to certain quantum liquids ([Vo-03, p 15]) resulted
in models where the metric field emerges as the low-energy
collective mode of the quantum vacuum. From this point of
view, gravity is not the fundamental force, but is determined
by the properties of the quantum vacuum.

The Bogoliubov theory of the weakly interacting Bose
gas is discussed on pp 21–24 of [Vo-03]. The Hamiltonian in
question admits SU(1,1)-symmetries, which is indicative of a
possible relation to the above-discussed world F. The above
Hamiltonian is then related to a set of uncoupled harmonic
oscillators ([Vo-03, p 22]), which means involvement of the
L-properties of the model. The importance of D-properties
follows from rotational symmetries of both the Minkowski
world M and Einstein’s static universe D. In the context of
quantum liquids these last symmetries are also admitted by
(certain) states of the 3H-condensate (see [Vo-03, p 78]).

Presumably, a more specific mathematical realization of
the interconnection of the D-, L- and F-properties and of
their applications in certain models can be achieved in terms
of Lie groups and Lie algebra contractions. In [LeSv-08],
some contractions of Lie algebras d = u(2), f = u(1, 1) to
the oscillator Lie algebra l and to an abelian Lie algebra m
are discussed. These contractions can be implemented via
inner automorphisms of the conformal group. Levichev and
Sviderskiy [LeSv-08] also discuss similar contractions of
(7D) isometry groups of the worlds D, L and F.

Let us now provide proofs for some of the section 3
statements about D, L and F. Recall (see [Kr-80, p 71]) the
dominant energy conditions. They mean non-positivity of the
Einstein tensor T for all timelike vectors v as well as the
condition for the energy flux vector q to be non-spacelike.
In such a context the number −T(v,v) is called the energy
density. Vector q here is the image of v under the operator
T, corresponding to the Einstein tensor. Let us refer to these
conditions merely as energy conditions. For the metric tensor
g, the +,–,–,–, signature is chosen. The constants R and a have
been introduced in sections 3.1 and 3.2. In what follows, there
is no need to consider universal covers since we now deal with
local properties.

Theorem 10. 1) The world D is an ideal fluid, determined by
the vector field X0 (see section 3.1). The scalar curvature is
6/R2. The energy density is 1/(R2). The energy flux vector q
is always timelike. Energy conditions hold.
2) F is a tachyonic fluid, defined by the vector field H3

(see section 3.2). The scalar curvature is −6/a2. The energy
density is −1/a2. The energy flux vector q is not always
timelike. Energy conditions do not hold.

3) Using the Gr terminology, the world L is an isotropic
electromagnetic field with covariant constant lightlike vector
l1 (see [Le-86b, p 123]). The scalar curvature is zero. The
energy flux vector is lightlike. Energy conditions are satisfied.

Proof. The above GR-‘names’ of the three worlds can be
determined on the basis of metric and curvature properties
(see the table on p 57 of [Kr-80]). The distinguished vector
fields have already been identified in sections 3.1–3.3. Each
of the three fields is generated by the central element of
the Lie algebra in question. In what follows, the curvature
computations (see section 8) are instrumental. Each time, they
are carried out in terms of the (already chosen) left-invariant
basis of vector fields.
1) In the D-case, the energy density is g(v,v) + 2(v0)

2, which
implies its positivity for every timelike vector v. The energy
flux vector q = –v–2v0 X0 is timelike.
2) In the F-case, the energy density is 2(v3)

2
−g(v,v). It can

thus be negative for certain timelike vectors v if the coordinate
v3 is not too big. If this coordinate is big, then the energy flux
vector q = v + 2v3 X3 is spacelike.
3) In the L-case, the energy flux vector q = (−1/2)v4l1 is
lightlike. The energy density −T (v, v) is (1/2)(v4)

2. Note that
in the L-case the subscripts take integer values from 1 to 4
rather than from 0 to 3. �

8. Curvature computations

There are different choices for a pseudo-Riemannien metric
signature and for the respective curvature tensor. This
paper uses curvature conventions from [Mi-76]. The metric
signature is the same as that in Segal’s works: +, –, –, –.

Designate by x and y the vectors in the (parallelizing)
Lie algebra n (depending on the context, the same x and
y may stand for respective left-invariant vector fields on
a group). In the situation of a bi-invariant metric on a
Lie group, the curvature transformation Rxy is an operator
(1/4)ad[x,y], see [Mi-76, p 105]. Let x0, x1, x2 and x3 be an
orthonormal basis in n. The component R0

ki j (of the curvature
tensor) is (1/4)([xi , x j ], [x0, xk]), where (. , .) is the respective
inner product. For the curvature tensor components with
superscripts 1, 2 and 3, there is an extra negative one factor.
Recall that the Ricci tensor Ric is the trace of the curvature
tensor (use the upper superscript and the second subscript for
summation).

These formulae are applied to the D-case first (n = u(2),
see section 3.1). The following commutation table has to be
used:

[x1, x3] = 2x2, [x2, x1] = 2x3, [x3, x2] = 2x1. (8.1d)

The computation results in

Ric = diag{0, −2, −2, −2}, (8.2d)

which implies S = 6 for the scalar curvature. The Einstein
tensor T (in terms of which energy conditions are usually
defined) is introduced as Ric−Sg/2, where g is the metric.
Clearly,

T = diag{−3, 1, 1, 1}. (8.3d)
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The world F (see section 3.2) corresponds to the following
commutation table:

[H0, H1] = 2H2, [H2, H1] = 2H0, [H2, H0] = 2H1. (8.1 f )

Here is the answer for the Ricci tensor:

Ric = diag{−2, 2, 2, 0}, (8.2 f )

The scalar curvature is now negative: S = –6.

T = diag{1, −1, −1, −3}. (8.3 f )

In the L-case indexation is different. Relative to the basis of
left-invariant vector fields chosen in section 3.3, both the Ricci
and the Einstein tensors equal diag{0, 0, 0, − 1/2}. The scalar
curvature is 0.

Values of curvature invariants, when there is no
assumption that R = 1 (section 3.1) or a = 1 (section 3.2),
can be found either by the same methods or by using their
behavior regarding scaling (see [Kr-80, p 55]). Some of the
resulting values have been already listed in section 3.

9. Conclusions

There are exactly three 4D non-commutative Lie algebras
that admit the invariant non-degenerate form of the
Lorentzian signature: d = u(2), f = u(1, 1), l = osc. Segal’s
chronometry is based on D. The main tenet of the DLF
theory is to start with all three worlds rather than with a
single Minkowski space–time M as special relativity does. It
is plausible that this approach may be applied to describe both
micro- and macroscopic phenomena. The space–time D takes
the place of M (say, instead of the Klein–Gordon equation
where one has to deal with the ‘curved wave equation’, which
becomes the Klein–Gordon equation in R going to infinity,
etc; a considerable part of such a program has already been
carried out by Segal and his school). Nothing is thus ‘lost’
from special relativity in its transition to the DLF theory.
What can be gained is a mathematical description of the
fundamental process ([Sta-09, p 93 onwards]). As Stapp
says: ‘it is unreasonable to impose upon process relativistic
demands drawn from the Einstein’s static realm of readings’
([Sta-09, p 101]). For example, the F-constituent of the theory
can shed light on possibilities of a mathematical description of
‘actions that transcend space–time separation, i.e. that can act
without attenuation over large spacelike distances’ ([Sta-09,
p 144]).
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