MA122 In-class Practice Problem Set 2

(1) Find the areas bounded by the indicated equations:
(a) $y=-x(3-x) ; y=0 ; 1 \leq x \leq 2$

Answer: 2.167
(b) $y=x^{2}+1$; $y=2 x-2 ;-1 \leq x \leq 2$

Answer: 9
(c) $y=-\sqrt{100-x^{2}} ; y=\sqrt{100-x^{2}} ;-10 \leq x \leq 10$

Answer: 314.159
(d) $y=x^{3}+1 ; y=x+1$

Answer: 0.5
(2) Gini Index:

A country is planning changes in tax structure in order to provide a more equitable distribution of income. The two Lorenz curves are: $f(x)=x^{2} .3$ currently, and $g(x)=$ $0.4 x+0.6 x^{2}$ proposed. Will the proposed changes work?
Answer: $0.3939,0.20$, The Gini index is decreasing, so the future distribution will be more equitable.
(3) Probability:

In a certain city, the daily use of water in hundreds of gallons per household is a continuous random variable with probability density function

$$
f(x)= \begin{cases}0.15 e^{-0.15 x}, & x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability that a household chosen at random will use between 300 and 600 gallons.
Answer: $-e^{-0.9}+e^{-0.45} \approx 0.23$
(4) Drug assimilation:

The rate at which the body eliminates a certain drug (in milliliters per hour) is given by

$$
R(t)=\frac{60 t}{(t+1)^{2}(t+2)}
$$

where t is the number of hours since the drug was administered. How much of the drug is eliminated during the first hour after it was administered? During the fourth hour?
Answer: $4.522 \mathrm{~mL} ; 1.899 \mathrm{~mL}$
(5) Continuous Income Stream:

Find the total income produced by a continuous income stream in the first 2 years if the rate of flow is

$$
f(t)=600 e^{0.06 t}
$$

Answer: 1275 dollars
(6) Future Value of a Continuous Income Stream:

Lets continue the previous example where

$$
f(t)=600 e^{0.06 t}
$$

Find the future value in 2 years at a rate of 10%.
Answer: 1408.59 dollars
(7) Consumers' Surplus:

Find the consumers' surplus at a price level of $\bar{p}=120$ for the price-demand equation

$$
p=D(x)=200-0.02 x
$$

Answer: $\bar{x}=4,000, C S=160,000$ dollars
(8) Producers' Surplus:

Find the producers' surplus at a price level of $\bar{p}=55$ for the price-supply equation

$$
p=S(x)=15+0.1 x+0.003 x^{2}
$$

Answer: $\bar{x}=100, P S=2,500$ dollars
(9) Find:
(a) $\int x^{3} \ln x d x$

Answer: $\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+C$
(b) $\int x^{3} e^{x} d x$

Answer: $\left(x^{3}-3 x^{2}+6 x-6\right) e^{x}+C$
(c) $\int_{0}^{1} \ln e^{x^{2}} d x$

Answer: $\frac{1}{3}$
(10) Use table of integrals to find:
(a) $\int \frac{1}{\sqrt{x+16}} d x$

Answer: $\frac{1}{4} \ln \left|\frac{\sqrt{x+16}-4}{\sqrt{x+16}+4}\right|+C$
(b) $\int x^{2} \sqrt{9 x^{2}-1} d x$

Answer: $\frac{1}{72} 3 x \sqrt{18 x^{2}-1} \sqrt{9 x^{2}-1}-\frac{1}{216} \ln \left|3 x+\sqrt{9 x^{2}-1}\right|+C$
(c) $\int x^{3} e^{-x} d x$

Answer: $-x^{3} e^{-x}-3 x^{2} e^{-x}-6 x e^{-x}-6 e^{-x} C$

