MA122 Practice Problem Set 6

• Taylor polynomials

- 1. (a) Find the 7-th degree Taylor polynomial at x = 0 for $f(x) = \sin x$ Answer: $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$
 - (b) Find the (2n + 1)-th degree Taylor polynomial at x = 0 for $f(x) = \sin x$ Answer: $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!}$
 - (c) Find the 6-th degree Taylor polynomial at x = 0 for $g(x) = \cos x$ Answer: $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$
 - (d) Find the 2*n*-th degree Taylor polynomial at x = 0 for $g(x) = \cos x$ Answer: $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!}$
- 2. Use the second order Taylor polynomial $p_2(x)$ of f(x) to approximate the given quantities.
 - Compute the absolute error in the approximation assuming the exact value is given by a calculator.
 - (a) $f(x) = \sqrt[3]{1+x}$. Approximate $\sqrt[3]{1.1}$. Answer: $p_2(0.1) \approx 1.032$, the absolute error $\approx 5.79 \times 10^{-5}$
 - (b) $f(x) = \ln(1+x)$. Approximate $\ln(1.06)$. Answer: $p_2(0.1) \approx 0.0582$, the absolute error $\approx 6.89 \times 10^{-5}$
 - (c) $f(x) = e^{-x}$. Approximate $e^{-0.15}$. Answer: $p_2(0.1) \approx 0.86125$, the absolute error $\approx 5.42 \times 10^{-4}$

3. Match the following six functions with the given six Taylor polynomials of order 2.

a. $\sqrt{1+2x}$	A. $p_2(x) = 1 + 2x + 2x^2$
b. $\frac{1}{\sqrt{1+2x}}$	B. $p_2(x) = 1 - 6x + 24x^2$
c. e^{2x}	C. $p_2(x) = 1 + x - \frac{x^2}{2}$
d. $\frac{1}{1+2x}$	D. $p_2(x) = 1 - 2x + 4x^2$
e. $\frac{1}{(1+2x)^3}$	E. $p_2(x) = 1 - x + \frac{3}{2}x^2$
f. e^{-2x}	F. $p_2(x) = 1 - 2x + 2x^2$

Answer: a-C, b-E, c-A, d-D, e-B, f-F