MA122 Practice Problem Set 8

1. \#44 in section 8-1

Answer: (a) In the plane $x=c, c$ any constant, $z=4-\sqrt{4-y^{2}}$; (b) the empty set; (c) the upper half of a right circular cylinder of radius 2 whose axis is the x-axis
2. \#48 in section 8-1

Answer: (a) $a^{2}+b^{2}=c^{2}+d^{2}=r^{2}$; (b) the union of two rays with vertex $(0,0,4)$; a cone with vertex $(0,0,4)$ and the axis the z-axis which opens downward.
3. In Section 8-2, solve
(a) \# 12

Answer: 4
(b) \# 14

Answer: -6
(c) \# 16

Answer: -2.5
(d) \# 30

Answer: $-\frac{3}{x^{2} y^{2}}$
(e) \# 34

Answer: $32 x\left(1+2 x y^{2}\right)^{6}\left(1+30 x y^{2}\right)$
(f) \# 68

Answer: $f_{x x}=\frac{2}{y}-\frac{2 y^{2}}{x^{3}} ; f_{x y}=f_{y x}=-\frac{2 x}{y^{2}}+\frac{2 y}{x^{2}} ; f_{y y}=\frac{2 x^{2}}{y^{3}}-\frac{2}{x}$
(g) \# 69

Answer: see answer at the back of the textbook
(h) \# 86

Answer: 60; -20
4. In Section 8-3, solve
(a) \# 20

Answer: saddle point at $(0,0) ; f(-4,-16)=256$ and $f(4,16)=256$ are local maxima
(b) \# 24

Answer: saddle point at $(2.373,0.475)$;
(c) \# 28

Answer: (b) saddle point
(d) \# 32

Answer: (a) when $p=40$ and $q=50, x=20, y=45$; when $p=45$ and $q=55$, $x=5, y=40$; (b) a maximum daily profit of 1200 dollars is realized for $p=40$ and $q=50$.
(e) \# 38

Answer: 12 in. by 12 in. by 12 in.

