Boston University
MA 581
Probability, Discussion 3
Summer 2, 2013

PMF of a Discrete Random Variable

1. Find c such that $P(X=k)=c \lambda^{k} / k!, k=1,2, \ldots, \lambda>0$ is a PMF.
2. A points moves along a line to the right and the left with probability p and $1-p$, respectively, at each unit of time. It starts from the origin at time 0 . Let X_{n} be the number of right moves until time n and Y_{n} be the position of the point at time n. Find the PMF of X_{n} and Y_{n}.
3. (a) Consider a bag with 5 balls numbered by 1, 2, 3, 4, 5. Draw 3 balls randomly from the bag at one time. Let X be the maximum number on the balls and Y be the minimum number on the balls. Find the PMF of X and Y, respectively.
(b) Members of a population are numbered $1,2, \ldots, N$. A random sample of size n is taken without replacement. Determine the PMF of (1) the largest numbered member obtained; (2) the smallest numbered member obtained
(c) Repeat (b) if the sample is taken with replacement.
4. X is a Poisson Random Variable. $p_{X}(1)=p_{X}(2)$. Find $p_{X}(4)$.

Joint and Conditional PMF

1. Refer to the example about two electric components in lecture, where the joint PMF of X and Y is

$$
p_{X, Y}(x, y)=p^{2}(1-p)^{x+y-2}, x, y \in \mathcal{N}
$$

and $p_{X, Y}(x, y)=0$ otherwise, where $0<p<1$.
(a) Determine $P(X=Y)$
(b) Use FPF to determine $P(X>Y)$. Interpret your answer.
(c) Without doing any computations, explain why $P(X>Y)=P(X<Y)$
(d) Use the results of (a) and (c) to obtain $P(X>Y)$.
2. (a) Let X and Y be independent Poisson random variables, $X \sim \operatorname{Pois}\left(\lambda_{1}\right)$ and $Y \sim$ $\operatorname{Pois}\left(\lambda_{2}\right)$. Determine and identify the PMF of $X+Y$.
(b) Determine and identify the conditional PMF of $X \mid(X+Y)$.
(c) Can you generalize (a) and (b) to the case where there are n independent Poisson random variables? Why or why not.
3. (a) (Combination) Explain that $\binom{m+n}{z}=\sum_{x=0}^{m}\binom{m}{x}\binom{n}{z-x}$.
(b) Let X and Y be independent random variables, $X \sim \operatorname{Bin}(m, p)$ and $Y \sim \operatorname{Bin}(n, p)$. Determine and identify the PMF of the random variable $X+Y$.
(c) Determine and identify the conditional PMF of $X \mid(X+Y)$.
(d) Can you generalize (b) and (c) to the case where there are n independent Binomial random variables with the same success probability p ? Why or why not.

