# Boston University MA 581 <br> Probability, Discussion 4 <br> Summer 2, 2013 

## 1 Expectation

1. Consider $n$ cards, labeled with $1,2, \ldots, n$, draw $k$ cards with replacement. What is the expectation of sum of numbers of this $k$ cards.
2. $n$ balls numbered by $1, \ldots, n$ are to be placed in $n$ boxes numbered by $1, \ldots, n$, each box with one ball. We call it a match if the $i$ th ball is place in the $i$ th box. Let $X$ be the number of matches. Find $E(X)$.
3. Consider $n$ keys that look identical where only one of them can be used to open a lock. Luis selected the keys randomly and then tried it on the lock. If the key could not open the lock, then it was removed from the key set. Let $X$ denote the number of times Luis tried until the lock was opened.
(a) Find the PMF of $X$
(b) Find $E(X)$
4. In an ordinary blood test, a medical center collected $N$ blood samples from $N$ people to test for a specific disease. It is known that $p \times 100 \%$ of the population has the disease. There are two ways to carry out the blood test (1) one test on each blood sample, so that $N$ tests are needed. (2) one test on $k$ samples together. If the test result is negative, there is evidence that those $k$ people do not have the disease. While if the result is positive, then $k$ more tests will be performed on the $k$ blood samples separately. Which test method requires fewer tests on average when (1) $k=4$ and $p=0.1$; (2) $k=4$ and $p=0.8$ ?
5. The following problem was posed and solved by Daniel Bernoulli in the 18th century. Suppose a jar contains $2 n$ cards, two of them marked 1, two of them marked 2 , and so on. Draw out $m$ cards at random. What is the expected number of pairs remained in the jar.
6. Suppose there are $N$ different types of coupons and each time a person obtains a coupon it is equally likely to be any one of the $N$ types.
(a) Find the expected number of different types of coupons that are contained in a set of $n$ coupons.
(b) Find the expected number of coupons that one needs to amass before obtaining a complete set of at least one of each.

## 2 Variance, Covariance

1. Let $I_{A}$ and $I_{B}$ be the indicator random variables of event $A$ and $B$, respectively.
(a) Find $\operatorname{Cov}\left(I_{A}, I_{B}\right)$
(b) Based on (a), determine when is $A$ and $B$ positively correlated, negatively correlated and uncorrelated.
2. Let $X$ have a discrete uniform distribution on $S=\{-1,0,1\}$ and let $Y=X^{2}$.
(a) Are they correlated?
(b) Are they independent?
3. Random variables $X_{1}, \ldots, X_{n}$ are i.i.d. $E\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$.
(a) Find $E(\bar{X}), \operatorname{Var}(\bar{X})$ and $E\left(S^{2}\right)$ where $S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
(b) Show that $X_{i}-\bar{X}$ and $\bar{X}$ are uncorrelated.
4. Suppose that $X \sim \operatorname{Pois}(\lambda)$.
(a) For $n \in \mathcal{N}$, determine $E(X(X-1) \cdots(X-n+1))$, called the $n$th factorial moment.
(b) Use part (a) to find $E(X)$ and $\operatorname{Var}(X)$
5. $E(X)=1, E(Y)=1, \operatorname{Var}(X)=1, \operatorname{Var}(Y)=4, \rho(X, Y)=-0.5$. Find
(a) $\operatorname{Cov}(X, Y)$
(b) $\operatorname{Cov}(X+Y, X-Y)$
(c) $\operatorname{Var}(X+Y)$
(d) $\operatorname{Var}(X-Y)$
(e) $\operatorname{Var}(3 X+2 Y)$
(f) $\operatorname{Cov}(2 X+Y,-3 X+2 Y)$

## 3 Conditional Expectation, Variance

1. Let $X$ and $Y$ be i.i.d. Binomial random variables with parameters $n$ and $p$. Identify the PMF of $X \mid(X+Y)$ and find the conditional expectation and variance of $X$ given that $X+Y=m$.
2. An urn contains $a$ white balls and $b$ black balls. One ball at a time is withdrawn randomly until the first white ball is withdrawn. Find the expected number of black balls that are withdrawn.
3. Let $X$ denote the number of Bernoulli trials until the first success. Next, $X$ more trials are performed. Let $Y$ denote the number of successes in the second group of Bernoulli trials. Find $E(X)$ and $\operatorname{Var}(X)$.
