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Observed dynamics

2D incompressible Navier-Stokes on the torus with small viscosity:

[Fluid dynamics laboratory, Eindhoven]

• Vorticity evolves from small scale to large scale structures

• Localized vortices persist and organize the dynamics

• Separation of time scales

− Rapid convergence to localized vortices

− Slow motion and merger of vortices



2D Navier-Stokes: decaying turbulence

Some questions:

• How to characterize the quasi-stationary states? [Y, M, C 2003]

• What causes the separation in time scales? [This talk]

Determine quasi-stationary states via statistical mechanics:

• Stationary solutions of inviscid Euler equations seem to play a role

• Such states with maximum entropy are good candidates

[Yin, Montgomery, Clercx 2003]



Quasi-stationary states

Yin, Montgomery, Clercx 2003:

• Euler: formal calculations and numerical analysis determined these states

• Navier-Stokes: dynamic calculations confirmed predictions (ν = 1/5000)
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Related work for stochastically forced Navier-Stokes equation
Statistical equilibrium consists of bars and dipoles [Bouchet, Simonnet 09]:

• Square torus: dipole dominates

• Asymmetric (rectangular) torus: bar dominates

Figures produced by Gabriel Lord (Heriot-Watt)



Related work for Burgers equation

1D Burgers equation; figure is for similarity variables:

ut = νuxx − uux

0 < ν " 1

Zero viscosity:
N-waves stable

Nonzero viscosity:
Diffusion waves stable

τ = 0
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τ = 100

[Kim & Tzavaras, SIAM J. Math. Anal., 01]

Results from [Kim & Tzavaras 01]:

• Observed numerically

• Explained formally using asymptotic expansions



Related work for Burgers equation

Burgers Equation:

ut = νuxx − uux , x ∈ R, t > 0, u ∈ R
u(x , 0) = u0(x), 0 < µ " 1

Scaling variables - deal with continuous spectrum:

u(x , t) =
1√
t + 1

w

(
x√
t + 1

, log(t + 1)

)

ξ =
x√
t + 1

, τ = log(t + 1)

Scaled Burgers equation:

wτ = νwξξ +
1
2
ξwξ +

1
2
w − wwξ

Lνw = ∂2
ξw +

1
2
∂ξ(ξw)



Related work for Burgers equation

wτ = Lνw − wwξ

In the space

L2(m) :=

{
w ∈ L2(R) :

∫

R
(1 + ξ2)mw 2(ξ)dξ < ∞

}

the spectrum of L is [Gallay & Wayne 02]

σ(L) =
{
−n
2
: n ∈ N

}
∪
{
λ ∈ C : Reλ ≤ 1− 2m

4

}

C
(2m− 1)

4

Cole-Hopf still applies:

W (ξ, τ) = w(ξ, τ)e−
1
2ν

∫ ξ
−∞ w(y,τ)dy ⇒ Wτ = LνW .



Related work for Burgers equation

Diffusive N-waves 
Arbitrary 
trajectory 

Self-similar 
Diffusion waves

τ = O(| log µ|)
Fast transient τ = O(1/µ)

Metastable region 

Invariant, normally attractive manifold

Center manifold of fixed points

τ = O(| log ν|)
τ = O(1/ν)

[Beck, Wayne 09]

Reason for timescales:

• Spectrum independent of ν

• Large coefficients in eigenfunction expansion: w(τ) = c0φ0 + c1φ1e−
1
2 τ . . .

• Due to pseudospectrum or Cole-Hopf?



Related results in reaction-diffusion equations

Metastability in gradient systems:

ut = ε2uxx − u(u2 − 1), x ∈ (0, 1)

Eg: [Carr & Pego 89], [Fusco & Hale 89], [Chen 04], [Otto & Reznikoff 07]

• Stable states: u ≡ ±1

• Metastable states: step functions con-
necting ±1 numerous times

x

u(x)

-1

1

Different mechanisms:

• Gradient: utilize energy functional

E [u](t) =

∫ 1

0

[
ε2

2
u2
x +

1
4
(u2 − 1)2

]
dx

• Burgers: spectrum independent of viscosity.

• Navier-Stokes: “spectrum” depends strongly on viscosity.

• Timescale differences



2D Navier-Stokes on the torus

∂tu = ν∆u− (u · ∇)u−∇p, ∇ · u = 0, (x , y) ∈ T2

Assume viscosity is small

0 < ν " 1, physical range = O(10−3).

Vorticity formulation: ω = ∇× u

∂tω = ν∆ω − u · ∇ω,

∫

T2
ω = 0, u =

(
−∂y∆−1ω
∂x∆−1ω

)
.

Decay of energy due to diffusion

d
dt

1
2

∫

T2
ω2(x , y)dxdy = −ν

∫

T2
|∇ω(x , y)|2dxdy ≤ −ν

∫

T2
ω2(x , y)dxdy

is very slow
‖ω(t)‖L2 = O(e−νt).



Explicit families of metastable states

ωbar (x , y , t) = e−νt cos(x), ωdipole(x , y , t) = e−νt [cos(x) + cos(y)]

DipoleBar
These solutions:

• Are quasi-stationary if 0 < ν " 1.

• Match observations of [Yin et al 03] and [Bouchet and Simonnet 09].

• Are stationary solutions of the Euler equations when ν = 0.

• Should attract (some) nearby solutions faster that O(e−νt).

• Are part of an infinite family:

ωslow (x , y , t) = e−νm2t [a1 cos(mx) + a2 cos(my) + a3 sin(mx) + a4 sin(my)]



Linearization about a bar state

∂tω = ν∆ω − u · ∇ω, u =

(
−∂y∆−1ω
∂x∆−1ω

)
.

Ansatz: ω = ωbar + v

∂tv = ν∆v − e−νt [sin x∂y (1 + ∆−1)]v − uv · ∇v .

Approximate linearization similar to advection of passive scalar by a shear flow:

∂tv = ν∆v − sin x∂yv

• Asymptotic of eigenvalues in [Vanneste, Byatt-Smith 07]: O(e−
√
νt)

• Compute spectrum (Eigtool; Fourier approximation, (k, l) = (k, 1)):

Approximate operator Full operatorν = 0.001

−
√
ν −

√
ν

• Hope to show ‖w(t)‖ " O(e−νt); expect ‖w(t)‖ = O(e−
√
νt)

• Second term must increase the decay rate, but how?



What causes the fast decay?

ut = Lu

Villani, 2009, considers operators of the form

L = A∗A+ B, B∗ = −B

• AB = BA: antisymmetry of B implies ‖eBtu‖ = ‖u‖, and so

‖eLt‖ = ‖eA
∗AteBt‖ = ‖eA

∗At‖,

so B cannot increase the decay rate of the semigroup.

• AB -= BA: rapid decay possible via hypoceorcivity

Define commutator C = [A,B] = AB − BA and an inner product

((u, u)) = (u, u) + α(Au,Au)− 2βRe(Au,Cu) + γ(Cu,Cu)

Careful choice of α, β, and γ can show faster than expected decay.



Back to our problem...

∂tv = ν∆v − e−νt [sin x∂y (1 + ∆−1)]v =: L(t)v

Slow modes: Cannot expect rapid decay on all of L2

λvslow = ∂tvslow = L(t)vslow , λ = O(ν)

vslow ∈ {e−νm2t+imx , e−νt±iy : m ∈ Z0}.

Like an infinite-dimensional eigenspace – need to “project” off it.

Intuitively:

− Expect something like a center manifold with slow decay O(e−νt)

− and something like a stable manifold with rapid decay O(e−
√

νt)

− Use hypocoercivity to get rapid decay rate in stable manifold.

− But operator is time-dependent.

− Can’t use spectral projections to obtain manifolds.

Invariant subspaces:

− Need an alternative way to construct them

− Should be related to movement of energy between Fourier modes.



Construct invariant subspaces

v(x , y) =
∑

k,l∈Z,(k,l) %=(0,0)

v̂(k, l)e i(kx+ly)

Goal: don’t excite the slow modes

{e−νm2t+imx , e−νt±iy} ⇒ (k, l) ∈ {(0,±1), (m, 0)}

In Fourier space, vt = ν∆v − e−νt∂y sin x(1 + ∆−1)v becomes

∂t v̂(k, l) = −ν(k2 + l2)v̂(k, l)

− l
2
e−νt

[(
1− 1

(k − 1)2 + l2

)
v̂(k − 1, l)−

(
1− 1

(k + 1)2 + l2

)
v̂(k + 1, l)

]

Try Mx = {v ∈ L2(T2) : v̂(m, 0) = 0, m ∈ Z}

∂t v̂(m, 0) = −νm2v̂(m, 0) invariant

Try: M̃y = {v ∈ L2(T2) : v̂(0,±1) = 0}

∂t v̂(0,±1) = −νv̂(0,±1)∓ 1
4
e−νt [v̂(−1,±1)− v̂(1,±1)] not invariant



Construct invariant subspaces

Recall: we don’t want to excite the modes e±imx and e±iy

• x-modes: Mx = {w ∈ L2(T2) : ŵ(m, 0) = 0}
• y-modes: Formal calculations with Fourier equation lead to...

Define

p±
j := ŵ(2j ,±1) + ŵ(−2j ,±1), q±

j := ŵ(2j + 1,±1)− ŵ(−2j − 1,±1)

One can show: (
p±

q±

)
= A±(t)

(
p±

q±

)

Propositon A solution of wt = L(t) satisfies ŵ(0,±1)(t) = 0 for all t ≥ 0 if
and only if w(0) ∈ My , where

My = {w ∈ L2 : p±
j = q±

j = 0 ∀j}.

Recall: In [YCM ’03], only special initial data converge rapidly to bar states.



Rapid decay in this subspace
From now on, we only work in Mx ∩My .

∂tv = ν∆v − e−νt [sin x∂y (1 + ∆−1)]v .

Since there is no y -dependence in the bar state: v(x , y) =
∑

l∈Z v̂l(x)e
ily

∂t v̂l = ν∆l v̂l − ile−νt [sin x(1 + ∆−1
l )]v̂l , ∆l = ∂2

x − l2.

Recall: want L = A∗A+ B, with B∗ = −B

• A = ∂x , A∗ = −∂x , so that ν∂2
x = −νA∗A

• But the second term is not anti-symmetric! Change variables...

Motivated by Wilkinson’s book “The algebraic eigenvalue problem”:

u :=
√

1 + ∆−1
l v̂l

̂1 + ∆−1
l = 1− 1

k2 + l2
⇔ |l |+ |k| > 1.

Invertible transformation in our subspace.



Transformed equation

∂tu = ν∆lu − ile−νt

[√
1 + ∆−1

l sin x
√

1 + ∆−1
l

]
u.

We have

• A := ∂x

• B := −ile−νt

[√
1 + ∆−1

l sin x
√

1 + ∆−1
l

]
, B∗ = −B

• C := [∂x ,B] = −ile−νt

[√
1 + ∆−1

l cos x
√

1 + ∆−1
l

]
, C∗ = −C .

Problem: [B,C ] -= 0; will lead to difficult terms in Villani’s framework.
Partial solution: first consider only the approximate equation

∂tu = ν∆lu − ile−νt sin xu := Lapprox(t)u.

• A := ∂x

• B := −ile−νt sin x , B∗ = −B

• C := [∂x ,B] = −ile−νt cos x , C∗ = −C .

• [B,C ] = 0



Why is this new inner product useful?

Motivated by work of Gallagher, Gallay, and Nier 2009, we rescale time:

∂tu = (∂2
x − l2)u +

1
ν
Bu.

Define, for (u, u) = ‖u‖2L2 , α, β, γ > 0,

Φ(t) := (u, u) + α(∂xu, ∂xu)− 2βRe(∂xu,Cu) + γ(Cu,Cu)

If β2 < αγ/4, Young’s inequality implies

‖u‖2 + α
2
‖ux‖2 +

γ
2
‖Cu‖2 < Φ < ‖u‖2 + 3α

2
‖ux‖2 +

3γ
2
‖Cu‖2.

Therefore, by controlling the dynamics of Φ, we can control the above norm.

Strategy:

• Compute dΦ/dt

• Chose α, β, γ to obtain a decay estimate

• Show this implies rapid convergence of solutions to the bar states



Main result

Function space: C = C(l) = −ile−νt cos x

X =




u : û0 = 0,
∑

l %=0

[‖ûl‖2 +
√

ν
|l | ‖∂x ûl‖2 +

1√
ν|l3/2

‖C(l)ûl‖2] < ∞






Theorem Pick T ∈ [0, 1/ν]. There exist constants K and M, O(1) with
respect to ν, such that the following holds. If ν is sufficiently small, then the
solution to ut = Lapprox(t)u with initial condition u0 ∈ X satisfies

‖u(t)‖2X ≤ Ke−M
√

νt‖u0‖2X

for all t ∈ [0,T ].

Implies rapid decay of solutions:

• Decay e−M
√
νt much faster than the viscous time scale e−νt

• If T = 1/ν, then

e−M
√

νT = e
− M√

ν " 1, e−νT = e−1



Proof of Theorem

∂tu = (∂2
x − l2)u +

1
ν
Bu

Φ(t) := (u, u) + α(∂xu, ∂xu)− 2βRe(∂xu,Cu) + γ(Cu,Cu)

Differentiate:

d
dt
Φ(t) = [(ut , u) + (u, ut)] + α[(∂xut , ∂xu) + (∂xu, ∂xut)]

−2βRe[(∂xut ,Cu) + (∂xu,Cut)] + γ[(Cut ,Cu) + (Cu,Cut)]

+γ[(Ctu,Cu) + (Cu,Ctu)].

The first term gives

(ut , u) + (u, ut) = ((−l2 + ∂2
x +

1
ν
B)u, u) + (u, (−l2 + ∂2

x +
1
ν
B)u)

= −2l2‖u‖2 − 2‖ux‖2 +
1
ν
[(Bu, u) + (u,Bu)]
︸ ︷︷ ︸

=0

by the anti-symmetry of B.



Proof of Theorem

∂tu = (∂2
x − l2)u +

1
ν
Bu

Φ(t) := (u, u) + α(∂xu, ∂xu)− 2βRe(∂xu,Cu) + γ(Cu,Cu)

The α term gives

(∂xut , ∂xu) + (∂xu, ∂xut) = (∂x(−l2 + ∂2
x +

1
ν
B)u, ux)

+(ux , ∂x(−l2 + ∂2
x +

1
ν
B)u)

= −2l2‖ux‖2 − 2‖uxx‖2

+
1
ν
[(∂x(Bu), ux) + (ux , ∂x(Bu))]

We can bound

[(∂x(Bu), ux) + (ux , ∂x(Bu))] = (Bux , ux) + (

=C︷ ︸︸ ︷
[∂x ,B] u, ux)

+(ux ,Bux) + (ux , [∂x ,B]u)

= 2Re(ux ,Cu)

≤ 2‖ux‖‖Cu‖.



Proof of Theorem

∂tu = (∂2
x − l2)u +

1
ν
Bu

Φ(t) := (u, u) + α(∂xu, ∂xu)− 2βRe(∂xu,Cu) + γ(Cu,Cu)

The β term gives

(∂xut ,Cu) + (∂xu,Cut) = −2l2Re(∂xu,Cu) + [(uxxx ,Cu) + (ux ,Cuxx)]

+
1
ν
[(∂x(Bu),Cu) + (ux ,C(Bu))]

One can show

(∂x(Bu),Cu) + (ux ,C(Bu)) = ‖Cu‖2 + (ux , [C ,B]u) = ‖Cu‖2

Important term: −(2β/ν)‖Cu‖2

The γ and Ct terms are similar.



Proof of Theorem
Collecting these estimates, we have shown

d
dt
Φ(t) ≤ −2l2‖u‖2 − [2 + 2αl2]‖ux‖2 − 2α‖uxx‖2

+

(
2α
ν

+ 2β(2l2 + 1 + ν)

)
‖ux‖‖Cu‖+ 4β‖uxx‖‖Cux‖

−
(
(2l2 + 2)γ +

2β
ν

− 2γν

)
‖Cu‖2 − 2γ‖Cux‖2 + 2γ‖Bu‖2.

We now use the fact that 2ab ≤ a2 + b2 and scale the parameters as

α =
√
να0, β = β0, γ =

1√
ν
γ0

With appropriate conditions on α0, β0, γ0, this gives

d
dt
Φ(t) ≤ −2‖u‖2 + 2

γ0√
ν
‖Bu‖2 − 1

4
‖ux‖2 −

3β0

2ν
‖Cu‖2

Goal: Show Φ′ ≤ −(M/
√
ν)Φ



Proof of Theorem

‖u‖2 + α0
√
ν

2
‖ux‖2 +

γ0
2
√
ν
‖Cu‖2 < Φ < ‖u‖2 + 3α0

√
ν

2
‖ux‖2 +

3γ0
2
√
ν
‖Cu‖2

d
dt
Φ(t) ≤ −2‖u‖2 + 2

γ0√
ν
‖Bu‖2 − 1

4
‖ux‖2 −

3β0

2ν
‖Cu‖2

Proposition If |l | > 1, then there exists a constant M0 such that, for all
0 < t < T ,

1
8
‖ux‖2 +

β0

2ν
‖Cu‖2 ≥ M0|l |

√
β0√

ν
‖u‖2 .

Proof: Follows like a similar result in [Gallagher, Gallay, & Nier ’09].
Essentially due to connection with harmonic oscillator:

H = a∂xx + bx2 ⇒ (Hu, u)L2(R) ≥
√
ab(u, u)L2(R)

Need to be careful about the role of |l |. Also, M0 = O(e−νt). !

This implies (after choosing α0, β0, γ0)

Φ′(t) ≤ − M√
ν
Φ(t)



Summary and future directions

We have shown:

• Rapid decay for approximate operator: O(e−
√

νt) " O(e−νt)

• Proof based on Villani’s treatment of L = A∗A+ B, [A,B] -= 0.

To extend to full linear operator:

• Existence of invariant subspaces (and projections) for full operator.

• Use transformation u =
√
1 + ∆−1v to make B antisymmetric.

Nonlinear equation; metastability of bar states:

• Use projection operators

• Use estimates similar to invariant manifold existence proofs

Dipoles:
ωd(x , y , t) = e−νt [cos(x) + cos(y)],

• Much of the proof could be similar

• Need to understand slow modes and invariant subspaces


