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Observed dynamics

2D incompressible Navier-Stokes on the torus with small viscosity:

[Fluid dynamics laboratory, Eindhoven]

e Vorticity evolves from small scale to large scale structures
e Localized vortices persist and organize the dynamics
e Separation of time scales

— Rapid convergence to localized vortices

— Slow motion and merger of vortices



2D Navier-Stokes: decaying turbulence

Some questions:
e How to characterize the quasi-stationary states? [Y, M, C 2003]
e What causes the separation in time scales? [This talk]

Determine quasi-stationary states via statistical mechanics:
e Stationary solutions of inviscid Euler equations seem to play a role
e Such states with maximum entropy are good candidates
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Quasi-stationary states

Yin, Montgomery, Clercx 2003:
e Euler: formal calculations and numerical analysis determined these states
e Navier-Stokes: dynamic calculations confirmed predictions (v = 1/5000)
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Related work for stochastically forced Navier-Stokes equation
Statistical equilibrium consists of bars and dipoles [Bouchet, Simonnet 09]:
e Square torus: dipole dominates
e Asymmetric (rectangular) torus: bar dominates
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Related work for Burgers equation

1D Burgers equation; figure is for similarity variables:

Ut = VlUxx — Ulx k i
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Nonzero viscosity:

Diffusion waves stable T=07 7 =100

[Kim & Tzavaras, SIAM J. Math.Anal., 01]
Results from [Kim & Tzavaras 01]:
e Observed numerically
e Explained formally using asymptotic expansions



Related work for Burgers equation

Burgers Equation:

Ut = UVl — Ulx, xeR, t>0,
u(x,0) = uo(x), 0<puxl

Scaling variables - deal with continuous spectrum:

1 X
u(x,t) = \/mw (m, log(t + 1))
5:\/1‘)(—1—71’ 7 = log(t+1)

Scaled Burgers equation:
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Low = &w+ %ag(gw)



Related work for Burgers equation
wr = L,w — wwg
In the space

)= {we 2@ [0+ @@ <

the spectrum of L is [Gallay & Wayne 02]
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Cole-Hopf still applies:

W(E, ) = w(g,T)e & Fmm? o W= r,w.



Related work for Burgers equation

t/?;ﬁ;gt%rr);\ Diffusive N-waves

/ Invariant, normally attractive manifold

Fast transient
7=0(logv|)

Metastable region

— T=0(1/v)

Self-similar
. Diffusion waves

Center manifold of fixed points

[Beck, Wayne 09]

Reason for timescales:
e Spectrum independent of v
.

- . . . 1
e Large coefficients in eigenfunction expansion: w(7) = codo + c1p1e™ 2
e Due to pseudospectrum or Cole-Hopf?



Related results in reaction-diffusion equations
Metastability in gradient systems:
Uy = €t — u(v® — 1), x € (0,1)

Eg: [Carr & Pego 89], [Fusco & Hale 89], [Chen 04], [Otto & Reznikoff 07]
u(x)

-1
e Stable states: u = +1 H ’7 —‘

e Metastable states: step functions con-
necting £1 numerous times J H L
1

Different mechanisms:

e Gradient: utilize energy functional
11e 1
E[u](t) :/ [—uf + e 1)2] dx
0 L2 4

e Burgers: spectrum independent of viscosity.
e Navier-Stokes: “spectrum” depends strongly on viscosity.
e Timescale differences



2D Navier-Stokes on the torus

Oru =vAu — (u-V)u— Vp, V-u=0, (Xu)/)ETZ

Assume viscosity is small

0<r<l, physical range = O(107).

Vorticity formulation: w =V X u

_ _ (-9, A7w
Oiw = VAw —u - Vw, /Tzw—o7 u-(axA_lw).

Decay of energy due to diffusion

il/ w?(x, y)dxdy = —V/ Ve (x, y)|*dxdy < —l// w?(x, y)dxdy
dt 2 T2 T2 T2
is very slow

lw(®)]lz = O(e™).



Explicit families of metastable states

WP (x,y, t) = e ' cos(x), WP (x,y, t) = e “*[cos(x) + cos(y)]

Bar Dipole
These solutions:
Are quasi-stationary if 0 < v < 1.
Match observations of [Yin et al 03] and [Bouchet and Simonnet 09].
Are stationary solutions of the Euler equations when v = 0.
Should attract (some) nearby solutions faster that O(e™"?).

Are part of an infinite family:

SIOW( —vm?t

x,y,t)y=e [a1 cos(mx) + az cos(my) + a3 sin(mx) + as sin(my)]



Linearization about a bar state

~1
Oww = vVAw —u - Vw, u:<7ayA w)'

A w

Ansatz: w = w? 4+ v

v =vAv — e [sinxdy(1+ A N)]v —u" - Vv.

Approximate linearization similar to advection of passive scalar by a shear flow:
Orv = VAv — sinx0yv

e Asymptotic of eigenvalues in [Vanneste, Byatt-Smith 07]: O(e™V"*)

e Compute spectrum (Eigtool; Fourier approximation, (k,/) = (k,1)):

o~ —V

-
dim = 1000 dim = 1000
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Approximate operator v = 0.001 Full operator



What causes the fast decay?

ur = Lu
Villani, 2009, considers operators of the form

L=A"A+B, B =-B

e AB = BA: antisymmetry of B implies || u|| = ||u||, and so

L A*At_B
= e =

A* At
[e” Te [

lle e

)

so B cannot increase the decay rate of the semigroup.

e AB # BA: rapid decay possible via hypoceorcivity
Define commutator C = [A, B] = AB — BA and an inner product
((u, u)) = (u, u) + a(Au, Au) — 2Re(Au, Cu) + v(Cu, Cu)

Careful choice of «, 8, and =y can show faster than expected decay.



Back to our problem...

dev = vAv — e V[sin xd, (1 + A™Y)]v =: L(t)v

Slow modes: Cannot expect rapid decay on all of L2

/\Vs/ow = 8tVslow = l:(t)vS/OW7 A= O(V)

2, - .
—vmt+imx _—vtxiy |
Vsiow € {€ e :m € Zo}.

Like an infinite-dimensional eigenspace — need to “project” off it.

Intuitively:
— Expect something like a center manifold with slow decay O(e™"*)
— and something like a stable manifold with rapid decay O(e™V"*)
— Use hypocoercivity to get rapid decay rate in stable manifold.
— But operator is time-dependent.
— Can't use spectral projections to obtain manifolds.

Invariant subspaces:
— Need an alternative way to construct them
— Should be related to movement of energy between Fourier modes.



Construct invariant subspaces

vixy) = Ok, et
k,1€Z,(k,1)#(0,0)

Goal: don't excite the slow modes

{efumthrimx’efz/tiiy} = (k,l) c {(0,:|:1),(m, 0)}

In Fourier space, v = vAv — e~ ', sin x(1 + A_l)v becomes

<

oev(k, 1) = —v(k® + 1P)o(k, 1)

[ 1
3¢ Kl k1

[y

2+I2>\7(k—1,l)— (1—m) 0(k+1,/)]

Try My = {v € [3(T?): ¢(m,0) =0, m € Z}

~—

d:0(m,0) = —vm’9(m, 0) invariant

Try: M, = {v € [3(T?) : 0(0,+1) = 0}

0:9(0,4£1) = —v¥(0,4+1) F %eﬂ’t [0(—1,4£1) — 9(1, £1)] not invariant



Construct invariant subspaces

Recall: we don’t want to excite the modes e=™ and e*"

o x-modes: M, = {w € L*(T?) : w(m,0) = 0}
e y-modes: Formal calculations with Fourier equation lead to...

Define

pi = W(2), £1) + W(—2j,+1), g = W(2j + 1,£1) — w(-2j — 1,+1)

()-wo(;)

Propositon A solution of w; = L(t) satisfies w(0,+1)(t) = 0 for all t > 0 if
and only if w(0) € M,, where

One can show:

M, ={wel’:pf=q" =0V}

Recall: In [YCM '03], only special initial data converge rapidly to bar states.



Rapid decay in this subspace

From now on, we only work in M, N M,.

dev = vAv — e V[sin xd, (1 + A H)]v.
Since there is no y-dependence in the bar state: v(x,y) =3, 01(x)e™

A0 = v — ile [sinx(1+ A D0, A =8 -

Recall: want L = A*A+ B, with B* = —B
o A=0y, A* = —0, so that v9? = —VA*A
e But the second term is not anti-symmetric! Change variables...

Motivated by Wilkinson's book “The algebraic eigenvalue problem"”:

ui=/1+ A9
1
k2 + I2
Invertible transformation in our subspace.

1+4A'=1 & 1] + k| > 1.



Transformed equation

Ot = v — ile”"" {\/1 + A7t sinx\/l + A,‘l} u.

We have
o A:= 0,

o Bi= —ile [\/1 + A7 sinxy 1+ A,*l}, B* =B
o C:=[0,B]=—ile ™" {‘/1 + A cosxy/1+ A,‘l] Cc*=-C.

Problem: [B, C] # 0; will lead to difficult terms in Villani's framework.
Partial solution: first consider only the approximate equation

Ot = vAju — ile™ " sin xu 1= Lapprox(t)u.
A= 0y
B := —ile”"'sinx, B* = —B
C :=[0x,B] = —ile "' cosx, C* = —C.
[B,C] =0



Why is this new inner product useful?

Motivated by work of Gallagher, Gallay, and Nier 2009, we rescale time:

O = (8f — /2)u + %Bu.

Define, for (u,u) = ||u||?2, o, 8,7 >0,

&(t) := (u, u) + aOxu, dxu) — 28Re(Oxu, Cu) + v(Cu, Cu)
If 3% < ay/4, Young's inequality implies

@ ¥ 3a 3y
el + 5 sl + ZlCulP < & < [l + = el + 21 Cul”

Therefore, by controlling the dynamics of ®, we can control the above norm.

Strategy:
e Compute do/dt
e Chose «a, 3, to obtain a decay estimate
e Show this implies rapid convergence of solutions to the bar states



Main result

Function space: C = C(/) = —ile™"" cos x

~ ~ v N 1 .
X=Qu:to=0 [+, /|T|H8XU/H2 + WHC(/)U/W} < oo

140

Theorem Pick T € [0,1/v]. There exist constants K and M, O(1) with
respect to v, such that the following holds. If v is sufficiently small, then the
solution to u; = Lapprox(t)u with initial condition u® € X satisfies

lu(®)x < Ke ™Y1k
for all t € [0, T].
Implies rapid decay of solutions:

e Decay e~ Mv¥t much faster than the viscous time scale e~
e If T =1/v, then

vt

_M _ _
efMﬁT:eﬁ<<l’ e VT — ot




Proof of Theorem

deu = (02 — PYu + %Bu
®(t) := (u, u) + aOxu, dxu) — 28Re(Oxu, Cu) + v(Cu, Cu)

Differentiate:

%¢(t) = [(ue, u) + (u, ur)] + af(Oxue, Oxu) + (Oxu, Oxut)]
—2fRe[(xur, Cu) + (dxu, Cur)] +~[(Cur, Cu) + (Cu, Cuy)]
+7[(Cru, Cu) + (Cu, Ceu)).

The first term gives

(v, 0) + (u, 1) = ((—l2—|—85+%B)u,u)+(u,(—/2+8§+%B)u)

1
—2P[|ulf* = 2]l ux]|* + = [(Bu, u) + (u, Bu)]
[ —
=0

by the anti-symmetry of B.



Proof of Theorem

Deu = (92 — P)u+ LBu
v
&(t) := (u, u) + a(Oxu, Oxu) — 2Re(dxu, Cu) + v(Cu, Cu)

The o term gives

(Oxut, Oxu) + (Oxu, Oxue) =

We can bound

[(9x(Bu), ux) + (ux; 0x(Bu))]

(O~ + 22+ B)u, us)

(e, Ox(—P + &2 + %B)u)
=2 ux ]| = 2| |

J%[(ax(su), 1) + (ux, 0x(Bu))]

=C
= (Buu) + ([r, Blu.w)
+(ux, Bux) + (ux, [0, Blu)
2Re(ux, Cu)
2| [ 1| Cu|-

IN



Proof of Theorem

deu = (02 — PYu + %Bu
&(t) := (u, u) + a(Oxu, Oxu) — 28Re(dxu, Cu) + v(Cu, Cu)
The 8 term gives
(Oxur, Cu) + (B, Cuy) = —2IPRe(Byu, Cu) + [(thoo, Cu) + (ux, Cuix)]
+L[(0:(Bu), Cu) + (s, C(Bu)]
One can show

(0(Bu), Cu) + (ux, C(Bu)) = || Cull® + (ux, [C, Blu) = || Cul?

Important term: —(23/v)||Cul|?

The v and C; terms are similar.



Proof of Theorem
Collecting these estimates, we have shown

d
520 < —2F|u® = 2+ 20| uc|* — 20| e

2a
+ (32 20028 4 140)) ol Cul + 481 o]

2
~ (@ 207+ 2 2 )l - 2l + 25l

We now use the fact that 2ab < a® + b? and scale the parameters as
1

06:\/;0407 /8:503 V= ﬁ’yo

With appropriate conditions on ag, B0, Y0, this gives

d 2 Yo 2 1 2 3/80
Zo(t) < —2 2% 1 Bull? = Hlu)? —
£ () < —2ul* + 222 | Bul? - § e

NG gHCUHQ

Goal: Show ¢’ < —(M//v)®



Proof of Theorem

2 | oV 2 3040\f 370
x Cu ¢ Ux Cu
lull” + == llux +2f“ 12 <& < lul®+ [Ju? +2f” &
d Py Yo 2 350
Do) < - Liwpr =32 cu
dt¢(t)— 2||u]] +2f“B ul> = ||U | H &

Proposition If |/| > 1, then there exists a constant My such that, for all

0<t< T,
1 3 Moll|\/B
D+ 2oy cupp > MlllVBoy 2
8 2v N

Proof: Follows like a similar result in [Gallagher, Gallay, & Nier '09].
Essentially due to connection with harmonic oscillator:

H=adu +bx* = (Hu, u)2w) > Vab(u, u)2)
Need to be careful about the role of |/|. Also, My = O(e™"").

This implies (after choosing aq, o, 7o)
, M
P(t) < ——=P(t
()< ~2o()



Summary and future directions

We have shown:
e Rapid decay for approximate operator: O(e™ V") < O(e™"*)
e Proof based on Villani's treatment of L = A*A+ B, [A, B] # 0.

To extend to full linear operator:
e Existence of invariant subspaces (and projections) for full operator.
e Use transformation u = v/1 4+ A~!v to make B antisymmetric.

Nonlinear equation; metastability of bar states:
e Use projection operators
e Use estimates similar to invariant manifold existence proofs

Dipoles:
w(x,y, t) = e”"*[cos(x) + cos(y)],

e Much of the proof could be similar
e Need to understand slow modes and invariant subspaces



