
Sample Exam, F10PC Solutions, Topology, Autumn 2011

Question 1

(i) Carefully define what it means for a topological space X to be Hausdorff.

Solution: A space X is Hausdorff if, given any two points x, y ∈ X such that x 6= y, there exist
disjoint open sets U and V such that x ∈ U and y ∈ V . [2 marks]

(ii) Are the following spaces Hausdorff?

(a) The metric space (X, d) with the associated metric topology, where X contains at least two
elements.

Solution: Yes, such a space is always Hausdorff. Let x, y ∈ X such that x 6= y. If d(x, y) = ε,
then Bε/2(x) and Bε/2(y) are disjoint open sets containing x and y, respectively. [2 marks]

(b) The set R2, with the particular point topology where the particular point is chosen to be (5,−2).

Solution: No, this space is not Hausdorff. No two nonempty open sets are disjoint, because
they must both contain (5,−2). [2 marks]

(c) The circle S1 with the finite complement topology.

Solution: This set is not Hausdorff, because no two (nonempty) open sets are disjoint. If U
is open, then its complement is finite. Thus, if V is disjoint from U , V must be finite, which
means it cannot be open. [2 marks]

Provide brief arguments supporting your answers.

(iii) Let X be Hausdorff. Prove that every subset of the form {x} for x ∈ X is closed.

Solution: To show that {x} is closed we must show that X \ {x} is open. This set will be open
if, given any point y in the set, we can find a neighborhood N of y such that N ⊂ X \ {x}. Since
y ∈ X \ {x}, x 6= y, so let U and V be disjoint open sets containing the two points. But then
U ⊂ X \ {x}, and U is a neighborhood of y. Hence, the set is open, so {x} is closed. [6 marks]

(iv) If f : X → Y is one-to-one and continuous and Y is Hausdorff, is it necessarily true that X is
Hausdorff? If so, provide an proof, if not, provide a counterexample.

Solution: Yes, this is true. Let x1, x2 ∈ X be distinct points, so that f(x1) 6= f(x2) because f
is one-to-one. Let U and V be disjoint open sets in Y containing these points. Then x1 ∈ f−1(U)
and x2 ∈ f−1(V ), and both f−1(U) and f−1(V ) are open since f is continuous. Also, they must be
disjoint, since U and V are. Thus, X is Hausdorff. [6 marks]

Question 2

(i) Given a subset A ⊂ X, where X is a topological space, carefully define what it means for p to be a
limit point of A.
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Solution: The point p is a limit point of A if, given any open set U containing p, U ∩ (A \ {p}) 6= ∅.
[2 marks]

(ii) Consider the set K = {1/n : n = 1, 2, . . . } ⊂ R. Determine the closure of K when R is endowed with
the following topologies.

(a) The topology determined by the basis β = {[a, b) : a < b}.
Solution: In this case, K̄ = K ∪ {0}. For any other point x, we can consider three cases. If
x < 0, then for some ε the set [x,−ε) is an open set that doesn’t intersect K. if x > 1, then
[x, x+1) is such an open set. If x ∈ (0, 1) and x /∈ K, just find the smallest n such that 1/n < x,
and then [1/n, 1/(n−1)) is such an open set. The point 0 is a limit point because [0, ε) intersects
K for any ε, because there is always an n large enough so that 1/n < ε. [2 marks]

(b) The particular point topology with the particular point chosen to be 0.

Solution: In this case, K̄ = K. For any other point x /∈ K, the set {0, x} (or just {0}, if x = 0)
is an open set that doesn’t intersect K. Thus, K has no limit points. [2 marks]

(c) The finite complement topology.

Solution: In this case, K̄ = R. To see this, pick any x ∈ R and let U be an open set containing
x. Since its complement must be finite, and K has infinitely many points, U ∩K 6= ∅ - in fact
there are infinitely many points in the intersection. Hence, x is a limit point. [2 marks]

Provide brief arguments supporting your answers.

(iii) Prove that U is open if and only if U = int(U).

Solution: Let U be open. Since int(U) is the union of all open sets contained in U , by definition
int(U) ⊂ U . Also, U ⊂ int(U), since U is open and contained in itself. Thus, U = int(U). Conversely,
since the interior is the union of a collection of open sets, it is open. Thus, if U = int(U) then U is
open. [6 marks]

(iv) Consider X = {(x, y) : x = 1/2n, n = 1, 2, . . . , y ∈ [0, 1]} ∪ {(0, 0), (0, 1)} with the subspace topology
inherited from R2. Prove that any subset of X that is both open and closed and that contains (0, 0)
must also contain (0, 1).

Solution: Let O be open and closed and contain the origin. Thus, O = U ∩ X, where U is open
in R2 and contains the origin. Since it is closed, X \ O = V ∩X, where V is open in R2. Suppose
that (0, 1) /∈ O. Then (0, 1) ∈ X \ O so (0, 1) ∈ V . Since V is open, for n sufficiently large we have
Lv := V ∩ {(1/2n, y) : y ∈ [0, 1]} 6= ∅, and similarly Lu := U ∩ {(1/2n, y) : y ∈ [0, 1]} 6= ∅. Also, by
construction Lu ∪ Lv = {(1/2n, y) : y ∈ [0, 1]}, which is homeomorphic to the interval [0, 1]. Thus,
we have found disjoint, nonempty open sets, U and V , that disconnect a set that is homeomorphic
to an interval. This is a contradiction, since the interval is connected. [6 marks]

Question 3

(i) Carefully state what it means for a subset of a topological space to be path connected.
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Solution: A topological space X is path connected if for all x, y ∈ X there exists a continuous
function γ : [0, 1]→ X such that γ(0) = x and γ(1) = y. [2 marks]

(ii) Provide arguments supporting your answers to the following questions.

(a) Is the product of two path connected spaces necessarily connected?

Solution: Yes. Let X and Y be path connected, and let (x1, y1), (x2, y2) ∈ X × Y . Let α be a
path in X from x1 to x2, and let β be a path in Y from y1 to y2. Define γ : [0, 1]→ X × Y to
be γ(t) = (α(t), β(t)). Since p1 ◦ γ = α and p2 ◦ γ = β are continuous, γ is continuous and it is
the required path. [3 marks]

(b) If A ⊂ X and A is path connected, is Ā necessarily path connected?

Solution: No. The topologists sine curve is a counterexample: S = {(x, sin(1/x)) : x ∈ (0, 1)}.
As discussed in lecture, it is path connected, but its closure isn’t. [3 marks]

(c) If f : X → Y is continuous and X is path-connected, is f(X) necessarily path connected?

Solution: Yes. Let y1,2 ∈ f(X), so there exist x1,2 ∈ X such that f(xi) = yi, i = 1, 2. Let γ be
a path between x1 and x2. Then f ◦γ is continuous, because it is the composition of continuous
functions, and it is a path from y1 to y2 in f(X). [3 marks]

(iii) Given continuous functions f1, f2 : X → Y such that f1 and f2 are homotopic, and also g1, g2 : Y → Z

such that g1 and g2 are homotopic, prove that g1 ◦ f1 and g2 ◦ f2 are homotopic.

Solution: Let F and G be the homotopies between the respective maps. Consider H(t, x) =
G(t, F (t, x)). Note thatH(0, x) = G(0, F (0, x)) = G(0, f1(x)) = g1(f1(x)) andH(1, x) = G(1, F (1, x)) =
G(1, f2(x)) = g2(f2(x)). Also, H is continuous because it is the composition of continuous functions.
[3 marks]

(iv) Let A be a subspace of Rn and let h : A→ Y be such that h(x0) = y0. Suppose there is a continuous
function H : Rn → Y such that H(x) = h(x) for all x ∈ A. Prove that the induced map h∗ on the
fundamental groups, h∗ : π1(A, x0)→ π1(Y, y0), is the trivial homomorphism, meaning that it maps
everything to the identity element.

Solution: Recall that, by definition, h∗(〈α〉) = 〈h ◦ α〉. We must show that, for any α, h ◦ α is
homotopic in Y to a constant loop. Since α is a loop in A, h◦α = H◦α. Since Rn is simply connected,
there exists a homotopy F (t, x) from α to the loop γ(t) = x0 for all t ∈ [0, 1]: F (t, x) : [0, 1]×Rn → Rn,
F (0, x) = α(x), F (1, x) = x0. But then H(F (t, x)) is a homotopy in Y from h ◦ α to h ◦ γ, where
h ◦ γ is constant and equal to y0. Thus, h∗(〈α〉) = 〈y0〉 for all α. [6 marks]

Question 4

(i) Carefully state the Heine-Borel Theorem.

Solution: A subset of Rn (with the usual topology) is compact if and only if it is closed and bounded.
[2 marks]

(ii) For the following questions, all sets are considered to be subspaces of R2, with the usual topology.
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(a) Is the set A = {(x, y) : x, y ∈ Z} closed? Provide a argument supporting your answer.

Solution: Yes. The set A has no limit points: for any point (x, y), it is possibly to take Bε(x, y),
for ε sufficiently small, so that Bε(x, y) ∩ A = ∅ or {(x, y)}, if (x, y) ∈ A. Thus, A = Ā, and it
is closed. [2 marks]

(b) If I remove finitely many points from the set D = {(x, y) : x2 + y2 ≤ 1}, is the resulting set
compact? Provide a argument supporting your answer.

Solution: No, because it will not be closed - each one of the removed points is a limit point.
Hence, by Heine-Borel, it cannot be compact. [2 marks]

(c) If I remove finitely many points from the set S1 = {(x, y) : x2 + y2 = 1}, is the resulting set
connected? Provide a argument supporting your answer.

Solution: Yes, if you remove only one point, no otherwise. If you remove only one point, the
set is homeomorphic to an open interval, hence connected. If you remove more than one, it is
homeomorphic to a finite, disjoint union of open intervals, which is not connected. [2 marks]

(iii) Consider the map p1 : R × R → R, p1(x, y) = x. Let A = {(x, y) : x ≥ 0 or y = 0 (or both)}, with
the subspace topology. Let q : A→ R be defined by the restriction of p1 to A: q = p1|A. Prove that
q is an identification map but that it does not necessarily send open sets to open sets.

Solution: We must show q is continuous, onto, and that U is open in R if and only if p−1
1 (U) is open in

A. Note that it is continuous because it is the restriction of a continuous function. It is onto because
p1(x, 0) = x and (x, 0) ∈ A for all x ∈ R. Let U be any subset of R. Then q−1(U) = (U × R) ∩ A,
which is open if and only if U is open: If U is open, then (U × R) ∩ A is open by the definition of
the subspace topology. Conversely, if (U ×R)∩A is open, then for any (x, y) ∈ (U ×R)∩A there is
a Bε(x)×Bδ(y) ⊂ (U × R) ∩A, which implies Bε(x) ⊂ U , so U is open. Thus, q is an identification
map. However, B = ((−1, 1)× (1, 2))∩A is open in A, but q(B) = [0, 1), which is not open in R. [6
marks]

(iv) Let X be the so-called Hawaiian earring, which is defined by X = ∪∞n=1Cn, where Cn = {(x, y) :
(x − 1/n)2 + y2 = 1/n2}. So X is the union of the circles with center (1/n, 0) and radius 1/n for
n = 1, 2, 3, . . . . Let Y be the identification space formed by starting with R and defining x ∼ y

if either x = y or if x, y ∈ Z. Prove that X and Y are not homeomorphic. (Hint: think about
compactness.)

Solution: Suppose they were homeomorphic. I claim that X is compact, but Y isn’t, which is then
a contradiction. To see that Y is not compact, consider the open cover Oj = (j, j + 1) for all j ∈ Z
together with the image of the set (−1/4, 1/4) under the identification map. This set has no finite
subcover, because if any set is removed, either j+ 1/2 for some j or all the integers are not contained
in the remaining subcover. To see that X is compact, note first that it is bounded. To see that it
is also closed, hence compact, take p /∈ X. We’ll show that p cannot be a limit point. First note
that p 6= 0, because 0 ∈ X. If p is outside all of the circles, then Bε(p), where ε is less than the
distance to the outermost circle, is an open set that is disjoint from X. If p is inside any circle, it
must be outside some smaller circle – so it lies “between” two circles. To make this precise, let Dn

be the open region enclosed by the circle Cn. One can find an n such that p ∈ Dn \ D̄n+1, which is
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an open set that is disjoint from X. Hence, p is not a limit point. Thus, X is closed and bounded,
so compact, and it cannot be homeomorphic to Y . [6 marks]
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