Tutorial Sheet 2, Topology 2011 (with Solutions)

. Let X be any set and p € X be some point in X. Define 7 to be the collection of all subsets of X
that do not contain p, plus X itself. Prove that 7 is a topology on X. (It is called the “excluded
point topology.”)

Solution: Just check this satisfies the definition of topology: contains the empty set, entire space,

unions, and finite complements.

. Consider the following metrics on R? (which are not the usual metric): d;(z,y) = max;—1 2 |z; — vi
and da(z,y) = |1 — y1| + |2 — y2|. Describe the open sets induced by these metrics. (What does an
open ball look like?)

Solution: For the first metric, the open ball of radius € at the origin is a square with sides length
2¢, not including its edges, which are parallel to the axes, and centered at the origin. For the second
metric, we also get a square but it has been rotated so that its vertices now lie on the axes, at points
(te€,0) and (0, +€). One can actually check, though, that the topologies induced by these metrics are
both the same as the usual topology. (Although that wasn’t really part of the question.)

. Let (X, d) be a metric space containing at least two points. Prove that the metric topology cannot

be the trivial topology.

Solution: We just need to find an open set other than () or X, which implies the topology cannot
be trivial. Take z,y € X such that x # y. Then d(z,y) = € > 0 > 0 and so Bs(z) is the desired open
set, since x € Bs(x) but y ¢ Bs(x).

. Prove that, in the real line with the usual topology, every point is a limit point of the rationals.

Solution: Take any x € R and any open set O containing z. Pick B.(z) C O. Define N so that
1/N < e. Then the points of the set A = {p/N : p € Z} C Q divide the real line up into subintervals
of length strictly less than e. Hence, Bc(xz) N (A \ {z}) # 0, and so Bc(z) N (Q\ {x}) # 0.

. Find all the limit points of the following subsets of the real line:

(a) {(1/m)+ (1/n):n,m=1,2,3,...}
(b) {(1/n)sinn:n=1,2,3,...}

Solution: a) Notice that 1 + (1/n) limis to 1 only, 1/2 4+ (1/n) limits to 1/2 only, etc. Hence, the

limit points are the set {1/n}, as well as zero. b) The only limit point is zero.

. Let X be the real line equipped with the finite complement topology. Prove that if A is an infinite
set, then every point is a limit point of A. In addition, prove that if A is a finite set, then it has no
limit points.

Solution: In the first case, let U be open and contain . Then the complement of U is finite. As
a result, there must be some point in A (other than z) that’s also in U. Hence, z is a limit point.
Conversely, if A is finite, then consider the open set U = X \ A. (Put = back in if z € A). This is an

open set containing x that doesn’t intersect A, so x cannot be a limit point.



7. Find a family of closed subsets of the real line whose union is not closed.

Solution: C,, = [1/n,1], so that U,C,, = (0,1]. (Alternatively, take any non-closed set, for example
(0,1). Let C; = {z} for each x in your set. This also works.)



