Tutorial Sheet 3, Topology 2011

1. Consider the following theorem:

Theorem 1. Let 8 be a nonempty collection of subsets of X. If the intersection of any finite number
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of elements of B is always in B, and if

then (B is a basis for a topology on X.

Use this theorem to do the following. Let X be the real line and let 5 = {[a,b) : a < b}. Prove that
3 is a base for a topology and that in this topology each member of 3 is both open and closed. (This
topology is called the half-open interval topology.)

Remark: Apologies if this question was in any way unclear. I should perhaps have said explicitly
that the corresponding topology is 7 = {U : U = ) or U = Uyaa,ba)}. Therefore, you only really
need to check that any nonempty intersection of sets in 3 is in 3. [Or, I could have allowed for a = b
in the definition of 3, with the convention that [a,a) = 0.]

Solution: To check that it is a base, we need to check that its union is the entire real line (this is
clear — take a = n,b =n + 1 for all n) and that it contains all finite intersections (if the intersection
is nonempty, take the largest a and smallest b — the intersection is then [a,b)). Hence, it is a base.
Note that the associated topology, by the definition of basis, is defined as follows: a set is open if it

can be written as the union of basis elements. (Or if it is the empty set.)

Note that each member of 3 is open by definition. The complement is (—o0,a) U [b, 00), which can
be written as the union of sets of the form [—n,a) and [b,n). Hence this complement is open, and so

the set is closed.

2. Find a countable basis for the usual topology on R.

[Some remarks on terminology: A topological space with a countable basis is called second countable.
An example of a space that is not second countable is the real line with the half-open interval topology,
defined above (you don’t need to prove this). A related concept is as follows. A space that has a
countable dense subset is called separable. We’ve already seen an example of this - the real line with

the usual topology, which has the rationals as a countable dense set.]

Solution: A countable basis for the real line with the usual topology is the collection of all open

intervals whose endpoints are rational.

3. Verify the following for arbitrary subsets A and B of a topological space X: AN B C AN B. Show
that equality need not hold.

Solution: First note that if z € AN B, then clearly z € ANB. So assume z € AN B\ (AN B), which
means that « is a limit point of AN B. Then for any open set O containing z, ON((ANB)\{z}) # 0.
BWOC — without loss of generality, suppose z is not a limit point for A. Then we can find an open
set U containing x such that U N (A\ {z}) = 0. But this implies UN (AN B) \ {z}) = 0, which is a
contradiction. Thus, z € AN B.



A simple example where equality doesn’t hold is A = (0,1) and B = (1,2). Another one is
A={p/q€eQ:q=2"neN},  B={p/qeQ:q=3"n€eN}

We have ANB=0=0,but ANB=RNR=R.

. Determine the interior, closure, and frontier of each of the following sets.

(a) The plane with both axes removed.

(b) R2\ {(z,sin(1/x)) : 2 > 0}

Solution: a) The closure is the entire plane, the interior is the set itself, and the frontier is the axes.
b) Denote A = R? \ {(z,sin(1/x)) : > 0}. Then int(4) = A\ {(0,y) : =1 < y < 1}, cl(A) = R?,
front(A) = R?\ A.

. Let X be the real line equipped with the finite complement topology. Prove that if A is an infinite
set, then every point is a limit point of A. In addition, prove that if A is a finite set, then it has no

limit points.

Solution: In the first case, let U be open and contain x. Then the complement of U is finite. As
a result, there must be some point in A (other than x) that’s also in U. Hence, z is a limit point.
Conversely, if A is finite, then consider the open set U = X \ A. (Put = back in if z € A). This is an

open set containing x that doesn’t intersect A, so x cannot be a limit point.

. Prove that f: X — Y is continuous if and only if C' begin closed implies f~!(C) is also closed.

Solution: Assume that f is continuous. Then if C is closed, Y \ C is open, so f~1(Y \ C) is open,
and so X \ f~1(Y'\ C) = f~1(C) is closed. Suppose now that inverse images of closed sets are closed.
Let O be open, so Y \ O is closed. The proof now follows as before.

. Prove that any two open intervals in the real line (with the usual topology) are homeomorphic.
Solution: Suppose the intervals are given by (a,b) and (c¢,d). Use the linear homeomorphism
fx)=(d-c)(x—a)/(b—a)+ec.

. Prove that the function defined in lecture is really a homeomorphism between the square and the
disk.

Solution: The boundary of the square consists of points of the form (—1/2,y*), (1/2,y*), (z*,—1/2),
and (z*,1/2). In the first case, the line containing the point and the origin is {y = —2y*z}. The

corresponding point on the circle is x = —/1/(1 + 4(y*)?), y = 2y*\/1/(1 + 4(y*)?). Thus, on that
part of the boundary, the function is defined by

f(=1/2y) = <_\/1 +14y2 ’ 2y\/1 +14y2> ‘

You can now prove directly that this function is continuous, compute its inverse explicitly, and check

that it is continuous. For example, the inverse is

1 1— a2
f‘l(a,b)=<—2,sgn(b) 4a2a>, if a®4+0°=1,a¢c[-1,-1/V2].

You can then do a similar calculation for each piece of the boundary.



9. Let D and FE be disks with boundaries 0D and OF. Prove that any homeomorphism h : 0D — OF
extends to a homeomorphism from D to E. This means there exists a homeomorphism h : D — E
such that f~L|3D = h. (You may assume that any homeomorphism from one disk to another maps the

boundary of one disk to the boundary of the other.)

Solution: Let D; be the unit disk. Since they are both 2-disks, there exist homeomorphisms taking
them to D1, call them Ay and ho. Since h; must map the bondary of D; to the boundary of the unit
disk, g ;== hgoho hfl is a homeomorphism from the boundary of D; to itself. Given any x # 0 in
the interior of Dy, define g(z) = |z|g(z/|x|) and g(0) = 0, which extends g to the entire disk. Then,
we take B:hglogohl.



