
Tutorial Sheet 3, Topology 2011

1. Consider the following theorem:

Theorem 1. Let β be a nonempty collection of subsets of X. If the intersection of any finite number
of elements of β is always in β, and if ⋃

B∈β
B = X,

then β is a basis for a topology on X.

Use this theorem to do the following. Let X be the real line and let β = {[a, b) : a < b}. Prove that
β is a base for a topology and that in this topology each member of β is both open and closed. (This
topology is called the half-open interval topology.)

Remark: Apologies if this question was in any way unclear. I should perhaps have said explicitly
that the corresponding topology is τ = {U : U = ∅ or U = ∪α[aα, bα)}. Therefore, you only really
need to check that any nonempty intersection of sets in β is in β. [Or, I could have allowed for a = b

in the definition of β, with the convention that [a, a) = ∅.]

Solution: To check that it is a base, we need to check that its union is the entire real line (this is
clear – take a = n, b = n+ 1 for all n) and that it contains all finite intersections (if the intersection
is nonempty, take the largest a and smallest b – the intersection is then [a, b)). Hence, it is a base.
Note that the associated topology, by the definition of basis, is defined as follows: a set is open if it
can be written as the union of basis elements. (Or if it is the empty set.)

Note that each member of β is open by definition. The complement is (−∞, a) ∪ [b,∞), which can
be written as the union of sets of the form [−n, a) and [b, n). Hence this complement is open, and so
the set is closed.

2. Find a countable basis for the usual topology on R.

[Some remarks on terminology: A topological space with a countable basis is called second countable.
An example of a space that is not second countable is the real line with the half-open interval topology,
defined above (you don’t need to prove this). A related concept is as follows. A space that has a
countable dense subset is called separable. We’ve already seen an example of this - the real line with
the usual topology, which has the rationals as a countable dense set.]

Solution: A countable basis for the real line with the usual topology is the collection of all open
intervals whose endpoints are rational.

3. Verify the following for arbitrary subsets A and B of a topological space X: A ∩B ⊆ Ā ∩ B̄. Show
that equality need not hold.

Solution: First note that if x ∈ A∩B, then clearly x ∈ Ā∩B̄. So assume x ∈ A ∩B \(A∩B), which
means that x is a limit point of A∩B. Then for any open set O containing x, O∩((A∩B)\{x}) 6= ∅.
BWOC – without loss of generality, suppose x is not a limit point for A. Then we can find an open
set U containing x such that U ∩ (A \ {x}) = ∅. But this implies U ∩ ((A∩B) \ {x}) = ∅, which is a
contradiction. Thus, x ∈ Ā ∩ B̄.
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A simple example where equality doesn’t hold is A = (0, 1) and B = (1, 2). Another one is

A = {p/q ∈ Q : q = 2n, n ∈ N}, B = {p/q ∈ Q : q = 3n, n ∈ N}.

We have A ∩B = ∅ = ∅, but Ā ∩ B̄ = R ∩ R = R.

4. Determine the interior, closure, and frontier of each of the following sets.

(a) The plane with both axes removed.

(b) R2 \ {(x, sin(1/x)) : x > 0}

Solution: a) The closure is the entire plane, the interior is the set itself, and the frontier is the axes.
b) Denote A = R2 \ {(x, sin(1/x)) : x > 0}. Then int(A) = A \ {(0, y) : −1 ≤ y ≤ 1}, cl(A) = R2,
front(A) = R2 \A.

5. Let X be the real line equipped with the finite complement topology. Prove that if A is an infinite
set, then every point is a limit point of A. In addition, prove that if A is a finite set, then it has no
limit points.

Solution: In the first case, let U be open and contain x. Then the complement of U is finite. As
a result, there must be some point in A (other than x) that’s also in U . Hence, x is a limit point.
Conversely, if A is finite, then consider the open set U = X \A. (Put x back in if x ∈ A). This is an
open set containing x that doesn’t intersect A, so x cannot be a limit point.

6. Prove that f : X → Y is continuous if and only if C begin closed implies f−1(C) is also closed.

Solution: Assume that f is continuous. Then if C is closed, Y \ C is open, so f−1(Y \ C) is open,
and so X \f−1(Y \C) = f−1(C) is closed. Suppose now that inverse images of closed sets are closed.
Let O be open, so Y \O is closed. The proof now follows as before.

7. Prove that any two open intervals in the real line (with the usual topology) are homeomorphic.

Solution: Suppose the intervals are given by (a, b) and (c, d). Use the linear homeomorphism
f(x) = (d− c)(x− a)/(b− a) + c.

8. Prove that the function defined in lecture is really a homeomorphism between the square and the
disk.

Solution: The boundary of the square consists of points of the form (−1/2, y∗), (1/2, y∗), (x∗,−1/2),
and (x∗, 1/2). In the first case, the line containing the point and the origin is {y = −2y∗x}. The
corresponding point on the circle is x = −

√
1/(1 + 4(y∗)2), y = 2y∗

√
1/(1 + 4(y∗)2). Thus, on that

part of the boundary, the function is defined by

f(−1/2, y) =
(
−
√

1
1 + 4y2

, 2y
√

1
1 + 4y2

)
.

You can now prove directly that this function is continuous, compute its inverse explicitly, and check
that it is continuous. For example, the inverse is

f−1(a, b) =

(
−1

2
, sgn(b)

√
1− a2

4a2

)
, if a2 + b2 = 1, a ∈ [−1,−1/

√
2].

You can then do a similar calculation for each piece of the boundary.
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9. Let D and E be disks with boundaries ∂D and ∂E. Prove that any homeomorphism h : ∂D → ∂E

extends to a homeomorphism from D to E. This means there exists a homeomorphism h̃ : D → E

such that h̃|∂D = h. (You may assume that any homeomorphism from one disk to another maps the
boundary of one disk to the boundary of the other.)

Solution: Let D1 be the unit disk. Since they are both 2-disks, there exist homeomorphisms taking
them to D1, call them h1 and h2. Since hi must map the bondary of Di to the boundary of the unit
disk, g := h2 ◦ h ◦ h−1

1 is a homeomorphism from the boundary of D1 to itself. Given any x 6= 0 in
the interior of D1, define g̃(x) = |x|g(x/|x|) and g̃(0) = 0, which extends g to the entire disk. Then,
we take h̃ = h−1

2 ◦ g̃ ◦ h1.
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