1. Find an open cover of \(\mathbb{R}^1 \) that does not contain a finite subcover. Do the same for \((0,1)\).

2. Let \(X \) be an infinite set with the finite complement topology.

 (a) Prove that \(X \) is not Hausdorff.

 (b) Prove that every subset of \(X \) is compact.

 (c) Find an example of a subset of \(X \) that is not closed, which is therefore an example of a compact set that is not closed.

3. Are either of the following sets compact?

 (a) The rational numbers, considered as a subset of the real line.

 (b) \(S^n = \{ x \in \mathbb{R}^{n+1} : |x| = 1 \} \), with finitely many points removed, considered as a subset of \(\mathbb{R}^{n+1} \).

4. Find an example of a function \(f : X \to Y \), where \(X \) is compact and \(f \) is a continuous bijection, but such that \(f \) is not a homeomorphism. (Note: based on the theorem from class this implies \(Y \) cannot be Hausdorff.)

5. Do the real numbers with the half-open interval topology form a compact space? (See tutorial sheet 3 for a definition of this topology.)

6. Prove the Bolzano-Weierstrass Theorem: Any infinite subset of a compact space must have a limit point. (Hint: use a proof by contradiction.)

7. Suppose \(f : X \to \mathbb{R} \) where \(X \) is compact and \(f \) is continuous. Prove that \(f \) is bounded and attains its bounds. (This means \(f(X) \subseteq [a,b] \) for some \(a, b \in \mathbb{R} \) and \(\exists x, y \in X \) such that \(f(x) = a \) and \(f(y) = b \). Hint: use the Heine-Borel theorem.)

8. Let \((X, \tau_X)\) be a Hausdorff space that is \(\text{locally compact} \), meaning that each point \(x \in X \) has a neighborhood that is compact. Form a new space by adding one extra point, which we denote by \(\infty \): \(Y = X \cup \{ \infty \} \). Let

 \[\tau_Y = \{ U \subseteq Y : U \in \tau_X \text{ or } U = (X \setminus K) \cup \{ \infty \} \text{ where } K \text{ is compact as a subset of } X \} \]

 (a) Prove that \(\tau_Y \) is a topology on \(Y \).

 (b) Prove that \(Y \) is a compact Hausdorff space.

Note: \(Y \) is called the \(\text{one-point compactification} \) of \(X \). (Think about what this space is like if \(X = \mathbb{R} \). \(\mathbb{R} \cup \{ \infty \} \) is actually homeomorphic to the circle \(S^1 \).)