
Tutorial Sheet 5, Topology 2011

1. Show that the diagonal map ∆ : X → X × X, ∆(x) = (x, x), is continuous, and prove that X is
Hausdorff if and only if ∆(X) is closed in X ×X.

Solution: To see that it is continuous. Let U1 and U2 be open in X, and note that ∆−1(U1×U2) =
U1 ∩ U2, which is open.

Next, assume that X is Hausdorff. Suppose that (p1, p2) is a limit point of ∆(X) but p1 6= p2, so
(p1, p2) /∈ ∆(X). Let U1 and U2 be disjoint open sets containing p1 and p2. But then U1 × U2 is an
open set in X ×X containing (p1, p2) and such that (U1×U2)∩∆(X) = ∅, which is a contradiction.

Finally, assume that ∆(X) is closed and let x1 6= x2. Then (x1, x2) is not a limit point of ∆(X), so I
can find an open set U × V ∈ X ×X that contains this point and is disjoint from ∆(X). But being
disjoint from ∆(X) implies that U ∩ V = ∅, which shows that X is Hausdorff.

2. We know that the projection maps send open sets to open sets. Do they send closed sets to closed
sets?

Solution: No. Consider R × R and define C = ∪∞n=1(1/n, n). Note that p1(C) = {1/n}, which is
not closed because 0 is a limit point not in this set.

I claim that C is a closed set in the product space. Suppose that (p1, p2) is a limit point not in the set.
If p2 6= n for any n, then letN be the closest natural number to p2 and let ε = min(p2−N,N+1−p2)/2.
Then U ×Bε(p2) for any open set U containing p1 is an open set containing this point that is disjoint
from C. A similar argument works if p1 6= 1/n and p1 6= 0. If p1 = 0, let N be the closest natural
number to p2. Take δ < 1/(2N) and ε = |p2 − N |/2 (or ε = 1/2, if this difference is zero). Then
Bδ(0)×Bε(p2) is an open set containing (0, p2) but disjoint from C.

3. Prove that X × Y is Hausdorff if and only if both X and Y are Hausdorff.

Solution: Suppose X and Y are Hausdorff and (x1, y1) 6= (x2, y2). Then wlog x1 6= x2, so there are
disjoint open sets U1 and U2 in X that contain x1,2. But then U1 × Y and U2 × Y are disjoint open
sets in X × Y that contain (x1, y1) and (x2, y2).

Next, suppose the product is Hausdorff, and let x1 6= x2. Pick any y ∈ Y and two disjoint open
sets O1 and O2 in the product space that contain (x1, y) and (x2, y). This implies there exist basis
elements U1 × V1 ⊂ O1 and U2 × V2 ⊂ O2 that contain (x1, y) and (x2, y). But since y ∈ V1 and
y ∈ V2, U1 and U2 must be disjoint. Thus, they are the desired open sets.

4. Are the following sets connected?

(a) The rational numbers, considered as a subset of the real numbers.

(b) The subset of R2 defined by

X = {(x, y) : y = 0} ∪ {(x, y) : x > 0 and y = 1/x}

(c) Any set with the discrete topology.
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Solution: The first is not connected because the sets (−∞, π)∩Q and (π,∞)∩Q are both open in Q,
in the subspace topology, and thus they form a disconnection of the rationals. (The above argument
works if π is replaces by any irrational number.) The second set is also not connected; just apply
the result in question 5, with A = {(x, y) : y = 0} and B = {(x, y) : x > 0 and y = 1/x}. Finally,
the third set is also not connected, since {x} and X \ {x} are disjoint open sets that disconnect the
space, for any x ∈ X.

5. Prove that a space X is connected if and only if there do not exist nonempty disjoint sets A and B

(not necessarily open) such that Ā ∩B = A ∩ B̄ = ∅ and whose union is X.

Solution: Suppose there do not exists such sets A and B, and bwoc let X be disconnected. Then
there exists disjoint nonempty open sets U and V that separate X. Suppose Ū ∩ V 6= ∅. Then there
is a limit point p of U that is also in V . But then V would be an open set containing p, and so the
definition of limit point implies that V ∩U 6= ∅, which isn’t true. Therefore, U and V are sets of the
form A and B, described above, which is a contradiction. Hence, X is connected.

Suppose now that X is connected, and bwoc suppose there exist sets as described above. Consider
int(A) and int(B), which are clearly disjoint open sets. We will show they are nonempty and their
union is the entire space, thus contradicting the fact that X is connected. Suppose there exists an
x ∈ X, x /∈ int(A) ∪ int(B). Then wlog x ∈ A \ int(A). But then for any open set U containing x,
there is a point y ∈ U that is not in A – ie y ∈ B. But then x is a limit point of B, and so A∩ B̄ 6= ∅,
which isn’t true. Thus, int(A) ∪ int(B) = X. To see that both int(A) and int(B) are nonempty,
suppose instead that int(A) = ∅. Since A is nonempty, there exists an x ∈ A \ int(A). But again the
above argument shows this can’t happen, because it would imply that Ā ∩B 6= ∅.

6. Let X be the set of all points in the plane which have at least one rational coordinate. Show that
X, with the subspace topology, is a connected space.

Solution: If we visualize this as a union of horizontal and vertical lines with rational intersection
with the axes, we can see how to get from one point to another using a path, so intuitively the space
is path connected. To make this rigorous, use the theorem from lecture about a family of connected
sets that cover the space, no two of which are separated. (Use Z(p/q) = ({p/q}×Y )∪ (X ×{p/q}).)

7. Let f : [a, b] → R be continuous with f(a) < 0 < f(b). Use the connectedness of [a, b] to prove the
intermediate value theorem: there must be a c ∈ (a, b) such that f(c) = 0.

Solution: bwoc. Since (−∞, 0) and (0,∞) are open and 0 /∈ f([a, b]), f−1(−∞, 0) and f−1(0,∞)
are open, and [a, b] ⊂ f−1(−∞, 0) ∪ f−1(0,∞). But since [a, b] is connected, it cannot be written as
the union of two open, disjoint sets. Hence this is a contradiction, which proves the result.

8. Prove that the continuous image of a connected set is connected.

Solution: BWOC, let f : X → f(X) be continuous with X connected, and suppose f(X) is not
connected. There there is a subset A ⊂ f(X) that is both open and closed. But then f−1(A) is open,
and f−1(f(X) \ A) is also open. But this implies f−1(A) is closed. Thus, f−1(A) = ∅ or X. Hence,
A∅ or f(X).
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