Tutorial Sheet 6, Topology 2011

- 1. Prove that \mathbb{Q} , with the subspace topology inherited from \mathbb{R} , is totally disconnected, but not discrete.
- 2. Let $\{A_{\alpha}\}$ be a collection of connected subspaces of a topological space X. Suppose there is a point $x \in X$ such that $x \in A_{\alpha}$ for all α . Prove that $\bigcup_{\alpha} A_{\alpha}$ is connected.
- 3. Let X be the real numbers with the half-open interval topology. What are the components of this space?
- 4. If X has a finite number of components, show that each component is both open and closed. Find a space for which none of its components are open.
- 5. Prove that the unit ball $B^n = \{x \in \mathbb{R}^n : |x| \le 1\}$ is path connected.
- 6. Prove that a connected open subset X of \mathbb{R}^n is path-connected using the following steps.
 - (a) For any $x \in X$ let U(x) be the set of all points in X that can be connected to x with a path. Prove that U(x) is open, by showing for each $y \in U(x)$ there is a $\delta > 0$ such that $B_{\delta}(y) \subset U(x)$.
 - (b) Prove that U(x) is closed by showing its complement is open.
 - (c) Conclude X is path connected.
- 7. (a) If $f: X \to Y$ is continuous and γ is a path in X, prove that $f \circ \gamma$ is a path in Y.
 - (b) Conclude that path-connectedness is a topological invariant.
- 8. Find an example of each of the following:
 - (a) A subspace of the real line that is locally connected, but not connected.
 - (b) A space that is connected but not locally connected. (Hint: think about the topologist's sine curve.)
 - (c) A space that is neither connected nor locally connected.