Tutorial Sheet 7, Topology 2011

- 1. Explain how to construct the torus as an identification space.
- 2. Let $f: X \to Y$ be an onto continuous map. Prove that, if f maps open sets to open sets, or if f maps closed sets to closed sets, then f is an identification map.
- 3. Consider the identification space \mathbb{R}^2/\sim under the following equivalence relations. What familiar spaces are they homeomorphic to?

(a)
$$(x_1, y_1) \sim (x_2, y_2)$$
 if $x_1 + y_1^2 = x_2 + y_2^2$

- (b) $(x_1, y_1) \sim (x_2, y_2)$ if $x_1^2 + y_1^2 = x_2^2 + y_2^2$
- 4. Let X be a topological space and I = [0, 1]. Consider the subset of $X \times I$ given by $A = X \times \{1\}$. Construct $(X \times I)/A$. This is referred to as the cone on X, and is denoted CX.
- 5. Consider S^n , and define $x \sim y$ if x = -y (in which case they are referred to as *antipodal*). The space S^n / \sim is referred to as *real projective space* and denoted by P^n . Consider another identification space $(\mathbb{R}^n \setminus \{0\}) / \sim$, where in this case $x \sim y$ if x and y lie on the same line through the origin. Prove that P^n and $(\mathbb{R}^n \setminus \{0\}) / \sim$ are homeomorphic. In other words, these are two equivalent ways to construct real projective space.
- 6. Convince yourself by drawing pictures that the Klein bottle is homeomorphic to two Möbius strips glued together at their boundaries.
- 7. Let X be a compact Hausdorff space and let $A \subset X$ be closed. Show that X/A is homeomorphic to the one-point compactification of $X \setminus A$.
- 8. Consider X = {[0,1] × {n} : n = 1,2,3,...} and Z = {(x,x/n) : x ∈ [0,1], n = 1,2,3,...}. Define g: X → Z by g(x,n) = (x,x/n). Consider the resulting identification space X*, whose elements are the sets {g⁻¹(z)}. Consider the induced map f : X* → Z. Prove that f is not a homeomorphism. [Hint: First show that, if g : X → Z is an identification map for any topological spaces X and Z, then C is closed in Z if and only if g⁻¹(C) is closed in X. Then consider the set A = {(1/n, n)}.]