Solutions to Tutorial Sheet 8, Topology 2011

1. Prove that any two continuous functions $f, g: X \to A$, where A is a convex subset of \mathbb{R}^n and X is an arbitrary topological space, are homotopic.

Solution: We can use a straight-line homotopy F(x,t) = (1-t)f(x) + tg(x), which maps $X \times I \to A$ because A is convex.

2. (a) Let $f, g: X \to S^n$ be continuous functions such that f(x) and g(x) are never antipodal (ie $f(x) \neq -g(x)$ for any $x \in X$). Prove that

$$F(x,t) = \frac{(1-t)f(x) + tg(x)}{|(1-t)f(x) + tg(x)|}$$

is a homotopy between f and g.

Solution: This function is continuous because the denominator is never zero. This is guaranteed by the assumption that the functions are never antipodal. If (1 - t)f(x) + tg(x) = 0, then f(x) = -(tg(x))/(1 - t) But since |f(x)| = |g(x)| = 1, this implies t = 1/2 and f(x) = -g(x), which can't happen.

(b) Suppose that $f: S^1 \to S^1$ is continuous and not homotopic to the identity. Prove that f(x) = -x for some $x \in S^1$.

Solution: BWOC, if not, then by part a) f would be homotopic to the function g(x) = x, which is the identity – hence, a contradiction.

- 3. Recall that a space is said to be simply connected if its fundamental group is trivial.
 - (a) Prove that, in a simply connected space, any two paths that both begin at some point x_0 and both end at some point x_1 are path-homotopic.

Solution: Note that $f \cdot g^{-1}$ is a loop at x_0 , and since the space is simply connected $f \cdot g^{-1} \simeq_p e$. But this implies $g \simeq_p e \cdot g \simeq_p (f \cdot g^{-1}) \cdot g \simeq_p f$. (Note: to see that $f \simeq_p g$ implies $f \cdot h \simeq_p g \cdot g$, if F is the path-homotopy from f to g one can just use the path homotopy

$$G(s,t) = \begin{cases} F(2s,t) & \text{if } 0 \le s \le 1/2 \\ h(2s-1) & \text{if } 1/2 \le s \le 1 \end{cases}$$

which goes from $f \cdot h$ to $g \cdot h$.)

(b) Prove that any convex subset of \mathbb{R}^n is simply connected.

Solution: By problem 1, any two paths on the convex subset must be homotopic, and in fact the strait-line homotopy shows they are path-homotopic. Thus, all paths are path-homotopic to the identity, and so the fundamental group is trivial.

4. Let $f: X \to S^n$ be continuous but not onto, where X is an arbitrary topological space. Show that f is "null homotopic," meaning that it is homotopic to a map that sends all of X to a single point. (In other words, f is homotopic to a constant function.)

Solution: Chose $p \in S^n$ so that $-p \neq f(x)$ for all $x \in X$, which is possible since f is not onto. Then as in the solution to 2a, since g(x) = p is not antipodal to f, they are homotopic.