Review of notation and properties of sets, Topology 2011

Sets and Subsets

Let A be a set, meaning it is just a collection of objects. The notation $x \in A$ means that x is an element of the set - in other words, x is in A. If we write $x \notin A$, then x is not in A. The symbol \emptyset denotes the empty set, meaning the set that consists of nothing. Given two sets A and B, if we write $B \subset A$, then B is a subset of A, meaning that every element of B is also in A. For any set A it is true that $\emptyset \subset A$. Sometimes one uses the notation $B \subseteq A$ to emphasize that B may possibly be equal to A. Similarly, $B \subsetneq A$ means that B is a subset of A but is not equal to A, and $B \not \subset A$ means that B is not a subset of A. A set B such that $B \subsetneq A$ is called a proper subset of A.

Let X and A be sets, with $A \subset X$. The complement of A in X (often just written "complement of A ", if it is understood what X is), is the set of all points that are in X but not in A. It is written

$$
A^{c}=\{x \in X: x \notin A\} .
$$

Another way to write this is $X \backslash A$ or $X-A$, which means the set X minus all elements of A.
Given a set X, the collection of all subsets of X is called the power set of X and is denoted $P(X)$. Note that $P(X)$ is a set of sets. So if $O \in P(X)$, then O itself is a set - in particular, a subset of X.

Combining sets

There are at least two key ways to combine sets: intersections and unions. The intersection $A \cap B$ is the collection of elements, or points, that are in both A and B :

$$
A \cap B=\{x: x \in A \text { and } x \in B\} .
$$

Note that $A \cap B \subset A$ and $A \cap B \subset B$. If $A \cap B=\emptyset$, we say that A and B are disjoint, meaning they have no common elements. The union of A and B, written $A \cup B$, is the set of points that are in either A or B :

$$
A \cup B=\{x: x \in A \text { or } x \in B\} .
$$

Thus, $A \subset A \cup B$ and $B \subset A \cup B$. The difference between sets is

$$
A \backslash B=\{x: x \in A \text { and } x \notin B\} .
$$

The following useful facts are referred to as DeMorgan's laws:

$$
(A \cap B)^{c}=A^{c} \cup B^{c}, \quad(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Another way to combine sets is through their Cartesian product. The set $A \times B$ is the set of ordered pairs (a, b) with $a \in A$ and $b \in B$:

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\}
$$

Indexed families

Let I be a set and suppose that for each $i \in I$ we are given a set A_{i}. The collection of sets $\left\{A_{i}: i \in I\right\}$ is called a family of sets indexed by I. For example, if we have an infinite family of sets $A_{1}, A_{2}, A_{3}, \ldots$, then this family is indexed by the natural numbers, $I=\mathbb{N}=\{1,2,3, \ldots\}$. The indexing set can have finitely or infinitely many elements, and it need not be countable. We could have a family A_{α} for each $\alpha \in \mathbb{R}$, for example. One can consider unions and intersections, based upon this indexing:

$$
\bigcup_{i \in I} A_{i}=\left\{x: x \in A_{j} \text { for some } j \in I\right\}, \quad \bigcap_{i \in I} A_{i}=\left\{x: x \in A_{j} \text { for all } j \in I\right\} .
$$

Exercises

1. Let $X=\{1,2,3, \ldots, 9,10\}, A=\{1,2,3,4,5,6\}$, and $B=\{5,6,7,8\}$. Determine $A \cap B, A \cup B, A^{c}$, and $A \backslash B$. Is $A \subset B$? Is $B \subset A$? What is $X \backslash(A \cup B)$?
2. Prove DeMorgan's laws. [Hint: Given two sets X and Y, if one can show that $X \subset Y$ and $Y \subset X$, then it must be true that $X=Y$.]
3. For each $x \in \mathbb{R}$, let $A_{x}=\{y \in \mathbb{R}: y=n x$ for some $n \in \mathbb{Z}\}$. Given two numbers $x_{1}, x_{2} \in \mathbb{R}$, when is $A_{x_{1}} \cap A_{x_{2}} \neq \emptyset$? If $A_{x_{1}} \cap A_{x_{2}} \neq \emptyset$, what is $A_{x_{1}} \backslash A_{x_{2}}$? What is $\cup_{x \in \mathbb{R}} A_{x}$? What is $\cap_{x \in \mathbb{R}} A_{x}$?
