Question 1

- (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. [2 marks]
- (ii) Given a metric space (X, d) and the associated metric topology τ , prove that τ is in fact a topology. [6 marks]
- (iii) Consider the set $R = [0, 1] \times [0, 1]$ with the subspace topology inherited from \mathbb{R}^2 , where \mathbb{R}^2 has the metric topology. Give an example of a set that is open in R but not in \mathbb{R}^2 . Provide an argument supporting your answer. [2 marks]
- (iv) Consider the same set R as in part (iii), with the same topology. Let ∂R denote the boundary of R in \mathbb{R}^2 and define an equivalence relation on R as follows: $(x_1, y_1) \sim (x_2, y_2)$ if either (I) $(x_1, y_1) = (x_2, y_2)$ and $(x_1, y_1) \notin \partial R$ or (II) $(x_1, y_1), (x_2, y_2) \in \partial R$. Consider the associated identification space R/\sim .
 - (a) Define what it means for a set in R/\sim to be open. [2 marks]
 - (b) Pick any open set $U \subset R/\sim$ that contains the equivalence class defined by (II). Draw the inverse image of U in R under the associated identification map. [2 marks]
 - (c) The space R/\sim is homeomorphic to a familiar surface. Determine what this surface is, and prove it is homeomorphic to R/\sim . [6 marks]

Question 2

- (i) Consider the rational numbers \mathbb{Q} , considered as a subset of \mathbb{R} .
 - (a) If \mathbb{R} is given the discrete topology, is \mathbb{Q} open? Is \mathbb{Q} closed? Is \mathbb{Q} compact? [3 marks]
 - (b) If \mathbb{R} is given the finite complement topology, is \mathbb{Q} open? Is \mathbb{Q} closed? Is \mathbb{Q} compact? [3 marks]

Provide brief arguments supporting your answers.

- (ii) Suppose X is a compact topological space and $A \subset X$ is closed. Is A necessarily compact? If so, provide a brief reason why. If not, what additional assumption could you place on X to ensure that A would be compact? [2 marks]
- (iii) If A is a dense subset of a topological space X and $O \subset X$ is open, prove that $O \subseteq \overline{A \cap O}$, where $\overline{A \cap O}$ denotes the closure of $A \cap O$ in X. [6 marks]
- (iv) Let Y be a subspace of X. Given $A \subseteq Y$, let $int(A_Y)$ denote the interior of A in Y (ie relative to the subspace topology on Y), and let $int(A_X)$ denote the interior of A in X (ie relative to the topology on X). Prove $int(A_X) \subset int(A_Y)$, and find an example where equality doesn't hold. [6 marks]

Question 3

- (i) Suppose $f: X \to Y$, where X and Y are topological spaces. Carefully define what it means for f to be continuous. Carefully define what it means for f to be a homeomorphism. [2 marks]
- (ii) Which of the following are examples of homeomorphic spaces? Provide brief arguments to support your answers.
 - (a) The unit disk $D = \{(x, y) : x^2 + y^2 \le 1\}$ and the closed ellipse $E = \{(x, y) : 2x^2 + 3y^2 \le 1\}$, both with the usual subspace topologies inherited from \mathbb{R}^2 . [2 marks]
 - (b) The set $(0,1) \times (0,1)$, considered as a subspace of \mathbb{R}^2 with the usual topology, and the unit sphere S^2 , considered as a subspace of \mathbb{R}^3 with the usual topology. [2 marks]
 - (c) The set $X = \mathbb{R}$, with the usual topology, and the set $Y = \mathbb{R}$, with the particular point topology. [2 marks]
- (iii) Let A ⊂ X, f : X → Y be continuous, and Y be Hausdorff. Suppose there exists a continuous function g : Ā → Y such that g(a) = f(a) for all a ∈ A. Prove that f(x) = g(x) for all x ∈ Ā. [6 marks]
- (iv) Let X denote the real numbers with the finite complement topology. Define $f : \mathbb{R} \to X$, f(x) = x where the domain has the usual topology. Prove that f is continuous, but not a homeomorphism. [6 marks]

Question 4

- (i) Carefully define what it means for a topological space X to be path connected. [2 marks]
- (ii) Consider the functions $f(t) = (\cos(\pi t), \sin(\pi t))$ and $g(t) = (\cos(\pi t), -\sin(\pi t))$.
 - (a) Prove that $f, g: [0, 1] \to \mathbb{R}^2$ are homotopic. [3 marks]
 - (b) Are $f, g : [0, 1] \to \mathbb{R}^2 \setminus \{(0, 0)\}$ homotopic? Provide a brief argument to support your answer. [3 marks]
- (iii) Recall that a function $f : X \to Y$ is said to be null homotopic if f is homotopic to a continuous function that sends all of X to a single point in Y.
 - (a) Let X be a topological space such that the identity map $Id : X \to X$, Id(x) = x, is null-homotopic. Prove that X is path connected. [6 marks]
 - (b) Recall that a loop is a path that begins and ends at the same point. Consider the torus $S^1 \times S^1$. Give an example of a loop on the torus that is is not null-homotopic. Explain why this implies that the torus and the sphere $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}$, for $n \ge 2$, cannot have isomorphic fundamental groups. [6 marks]