Tutorial Sheet 4, Topology 2013

1. Find an open cover of \mathbb{R} that does not contain a finite subcover. Do the same for (0,1) considered as a subset of \mathbb{R} .

Solution: For the real line, take $B_1(n)$ for all $n \in \mathbb{Z}$. (This is essentially the same as the example in class regarding \mathbb{R}^2 .) For (0,1) take (1/n, 1-1/n), for $n \in \mathbb{N}$.

- 2. Are either of the following sets compact?
 - (a) The rational numbers, considered as a subset of the real line.
 - (b) $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}$, with finitely many points removed, considered as a subset of \mathbb{R}^{n+1} .

Solution: We use the Heine-Borel Theorem. The first is not compact because it is not closed or bounded. The second is not compact because it is not closed (although it is bounded).

- 3. Let X be an infinite set with the finite complement topology.
 - (a) Prove that X is not Hausdorff.
 - (b) Prove that every subset of X is compact.
 - (c) Find an example of a subset of X that is not closed, which is therefore an example of a compact set that is not closed.

Solution: a) We'll prove that no two open sets are disjoint, which implies the result. BWOC, let U, V be disjoint open sets. This implies $V \subset (X \setminus U)$, and $X \setminus U$ is a finite set, which implies V is finite. But then $X \setminus V$ is infinite, contradicting the fact that V is open. b) Let $A \subset X$ and let $\{U_{\alpha}\}$ be an open cover. Pick any single element of the cover, U_{α^*} . Its complement has finitely many elements, so there are only finitely many elements of A, x_1, \ldots, x_n , that are not in this set. For each one, find a U_{α_i} containing x_i . Then $U_{\alpha^*}, \{U_{\alpha_i}\}_{i=1}^n$ is a finite subcover. c) Any open set other than X or \emptyset is a set that is compact, but not closed.

4. Find an example of a function $f : X \to Y$, where X is compact and f is a continuous bijection, but such that f is not a homeomorphism. (Note: based on the theorem from class this implies Y cannot be Hausdorff.)

Solution: Let X = [a, b] with the usual topology and Y be [a, b] with the finite complement topology. Above we showed that any infinite space with the finite complement topology is not Hausdorff. Let f(x) = x, and check it is continuous, but its inverse isn't. (It is clearly one to one and onto.) This is related to question 4 of tutorial sheet 3.

5. Suppose $f : X \to \mathbb{R}$ where X is compact and f is continuous. Prove that f is bounded and attains its bounds. (This means you should prove that $f(X) \subseteq [a, b]$ for some $a, b \in \mathbb{R}$ and $\exists x, y \in X$ such that f(x) = a and f(y) = b. Hint: use the Heine-Borel theorem.)

Solution: Since X is compact, so is f(X), and so by Heine-Borel it is closed and bounded. Consider $a = \inf_{x \in X} f(x)$. Since f(X) is closed, $a \in f(X)$, so there must be some $x \in X$ such that f(x) = a. A similar argument works for $b = \sup_{x \in X} f(x)$.