Tutorial Sheet 9, Topology 2013

- 1. Describe the homomorphism h_* that is induced for each of the following continuous functions on the circle S^1 :
 - (a) $h(e^{i\theta}) = e^{i(\theta + \pi)}, \ \theta \in [0, 2\pi]$ (b)

$$h(e^{i\theta}) = \begin{cases} e^{i\theta} & \text{if } \theta \in [0,\pi] \\ e^{i(2\pi - \theta)} & \text{if } \theta \in [\pi, 2\pi] \end{cases}$$

Solution:

- (a) This function just rotates the entire circle counterclockwise by π degrees. This doesn't affect the number of times a loop goes around the circle, or the direction in which it goes around. Also, $h: S^1 \to S^1$ is in fact a homeomorphism. Thus, h_* is the identity from $\pi_1(S^1, 1)$ to $\pi_1(S^1, -1)$.
- (b) This function is the identity on the top half of the circle, and maps the bottom half of the circle onto the top half of the circle. Thus, if a loop approaches and attempts to pass through -1 counterclockwise, it is forced by h to turn around a go back up. A similar thing happens if the loop tries to pass through 1. Thus, $h \circ \alpha$ will never go around the circle, and so it will be homotopic to the constant loop. Thus, $h_*(\langle \alpha \rangle) = \langle e \rangle$ for all α . In other words, h_* sends everything to the identity, and maps $\pi_1(S^1, 1)$ to the subgroup of $\pi_1(S^1, 1)$ given by the trivial group.
- 2. Compute the fundamental groups of the following spaces:
 - (a) A cylinder: $\pi_1(S^1 \times J, x_0)$ where J is any interval in \mathbb{R} and $x_0 = (y_0, z_0) \in S^1 \times J$ is any point. **Solution:** By the theorem from class on product spaces, this fundamental group is isomorphic to $\pi_1(S^1, y_0) \times \pi_1(J, z_0) = \mathbb{Z} \times \{e\}$, which is isomorphic to \mathbb{Z} . These are all independent of the base point, because the spaces are path connected.
 - (b) The punctured plane: $\pi_1(\mathbb{R}^2 \setminus \{(0,0)\}, x_0)$, for any point $x_0 \in \mathbb{R}^2 \setminus \{0\}$. Solution: Using polar coordinates (r, θ) , one can see that the punctured plane $\mathbb{R}^2 \setminus \{(0,0)\}$ is homeomorphic to $(0,\infty) \times S^1$, and so by part a), the fundamental group is isomorphic to \mathbb{Z} .
 - (c) A punctured disk: π₁(B² \ {0}, x₀), for any point x₀ ∈ B² \ {0}.
 Solution: As in b), the space is homeomorphic to (0, 1] × S¹, so its fundamental group is the integers.