Tutorial Sheet 1, Topology 2013

- 1. Prove that the finite complement topology, which was defined in lecture, is indeed a topology.
- 2. Let X be any set and $p \in X$ be some point in X. Define τ to be the collection of all subsets of X that do not contain p, plus X itself. Prove that τ is a topology on X. (It is called the "excluded point topology.")
- 3. Consider the following metrics on \mathbb{R}^2 (which are not the usual metric): $d_1(x, y) = \max_{i=1,2} |x_i y_i|$ and $d_2(x, y) = |x_1 - y_1| + |x_2 - y_2|$. Draw a picture of what $B_{\epsilon}(x)$ looks like for each of these metrics.
- 4. Prove that the metric topology is indeed a topology.
- 5. Let (X, d) be a metric space containing at least two points. Prove that the metric topology is not the trivial topology. (Recall the trivial topology was defined in lecture.)
- 6. Prove that the subspace topology is indeed a topology.